圆中的计算问题 华东师大
【全版】数学九年级下华东师大版圆中的计算问题课件推荐PPT

使MN=CM,
。
连结CN.△CMN是等边三角形, MA=NB,
△△MMAA?C≌△NBC?,
.
AC=BC, ∠MAC=∠NBC,B
。C
∠AMC=∠BNC,
MN
∠AMC∠=6C0M°N,=∠BAC=60°,
∠BNC=60°, △CMN是等边三角形,
8
题目:
如图,M是等边△ABC的外接圆BC上的一点,
A
∠AMB=60°,
。
MEM=BM=BE连=BB结,EB,E.
E
△△MMBB?C≌△EBA?, BC=BA, ∠BCM=∠BAMB,
CM=AE,
。C
M
16
题目: 如图,M是等边△ABC的外接圆BC上的一点, 求证:MA = MB+MC.
证法5:在AM上截取AE=MC,连结BE.
.
B
60°。C
M
6
题目:
如图,M是等边△ABC的外接圆BC上的一点,
求证:MA = MB+MC.
分析: 把已知条件及可得结论
. ∠BAC=60°,A 。
标在图上:
把能表示的60°角 用圆弧表示:
.
B
。C
M
7
题目:
如图,M是等边△ABC的外接圆BC上的一点,
求证:MA = MB+MC.
. 分析1:补短延法长BM到N, ∠BAC=60°,A
∴MA=TA.
B
。C
∵∠AMC=∠ABC=60°, M
∴MA=MT=AT, ∴MA=MB+MC. 13
题目:
如图,M是等边△ABC的外接圆BC上的一点,
求证:MA = MB+MC.
华师大版数学九年级下册27.3《圆中的计算问题》教学设计

华师大版数学九年级下册27.3《圆中的计算问题》教学设计一. 教材分析《圆中的计算问题》这一节内容,主要让学生掌握与圆有关的一些计算公式和方法。
在本节课中,学生需要学习圆的周长、圆的面积、弧长和扇形的面积等计算公式,并能灵活运用这些公式解决实际问题。
教材通过例题和练习题的形式,帮助学生理解和掌握这些计算方法。
二. 学情分析九年级的学生已经学习了平面几何的基础知识,对圆的概念和性质有一定的了解。
但是,对于圆的计算问题,部分学生可能还存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,针对学生的薄弱环节进行有针对性的讲解和辅导。
三. 教学目标1.理解圆的周长、圆的面积、弧长和扇形的面积等计算公式。
2.能够运用这些计算公式解决实际问题。
3.提高学生的计算能力和解决问题的能力。
四. 教学重难点1.圆的周长和面积的计算公式。
2.弧长和扇形的面积的计算公式。
3.如何运用这些公式解决实际问题。
五. 教学方法1.讲授法:教师通过讲解,让学生理解和掌握圆的计算公式和方法。
2.例题解析法:通过分析例题,让学生学会如何运用计算公式解决实际问题。
3.练习法:通过练习题,让学生巩固所学知识,提高计算能力。
六. 教学准备1.教学PPT:制作相关的教学PPT,展示圆的计算公式和例题。
2.练习题:准备一些相关的练习题,供学生课堂练习和课后巩固。
3.教学黑板:准备一块黑板,用于板书和展示解题过程。
七. 教学过程1.导入(5分钟)教师通过提问方式,引导学生回顾平面几何中与圆有关的知识,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过PPT展示圆的周长、圆的面积、弧长和扇形的面积等计算公式,并简要讲解公式的推导过程。
3.操练(20分钟)教师给出一些例题,让学生运用所学知识解决问题。
学生在课堂上独立完成,教师进行讲解和辅导。
4.巩固(10分钟)教师给出一些练习题,让学生巩固所学知识。
学生在课堂上独立完成,教师进行讲解和辅导。
初三下数学课件(华东师大)-圆中的计算问题

︵ 解析:要求AB的弧长,圆心角知,半径知,只要代入弧长公式即可.
答案:R=40mm,n=110°,∴A︵B的长=n1π8R0 =1101×8040π ≈76.8(mm),圆心角为60°的扇形的 半径为10厘米,求这个扇形的面积和 周长.(π≈3.14)
轨的长度吗?(精确到0.01米)如果圆心角是任意的角
度,如何计算它所对的弧长呢?
【解】铁轨的长度 l=2×π4×100=50π≈157.08 米
【探究】设圆的半径为r,
1.圆的周长可以看作________度的圆心角所对的弧长.
2.1°的圆心角所对的弧长是________,
2°的圆心角所对的弧长是________,
练一练:
已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的
长度。
解:l n 2r nr
360
180
= 50 cm
3
答:此圆弧的长度为 50 cm
3
扇形:
定义:如图,由组成圆心角的两条半 径和圆心角所对的弧所围成的图形叫 做扇形.
提问:
1.将组成扇形的一条半径绕着圆心旋转,可以发现,扇 形的面积与组成扇形的弧所对的圆心角的大小有关.圆 心角越大,扇形的面积也越大.怎样计算圆心角为n° 的扇形面积呢? 2.我们知道,如果设圆的面积为S,圆的半径为r,那么 圆面积的计算公式为S=πr2,半径为r的扇形的面积与半 径为r的圆的面积有没有关系呢?圆心角为1°的扇形面 积以及圆心角为n°的扇形面积分别是圆面积的几分之 几?
结论:
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么
扇形的面积为: S nr 2 nr r 1 lr
华师大版数学九年级下册27.3《圆中的计算问题》说课稿

华师大版数学九年级下册27.3《圆中的计算问题》说课稿一. 教材分析华师大版数学九年级下册27.3《圆中的计算问题》这一节主要讲述了圆中的计算问题,包括弧长、扇形的面积等计算。
这部分内容是圆的基础知识的进一步拓展,对于学生来说,掌握这部分内容对于理解圆的性质和解决实际问题具有重要意义。
二. 学情分析九年级的学生已经学习了平面几何的基本知识,对圆的概念和性质有一定的了解。
但是,对于圆中的计算问题,他们可能还存在一定的困难。
因此,在教学过程中,我将以引导学生理解圆中的计算问题为主线,通过实例分析和练习,帮助学生掌握计算方法。
三. 说教学目标1.知识与技能目标:使学生掌握圆中的计算问题,如弧长、扇形的面积等计算方法。
2.过程与方法目标:通过实例分析和练习,培养学生解决实际问题的能力。
3.情感态度与价值观目标:激发学生学习圆的性质和计算问题的兴趣,培养学生的耐心和细心。
四. 说教学重难点1.教学重点:圆中的计算问题,如弧长、扇形的面积的计算方法。
2.教学难点:如何引导学生理解圆中的计算问题,并能够运用到实际问题中。
五. 说教学方法与手段1.教学方法:采用问题驱动法、实例分析法和练习法,引导学生主动探究圆中的计算问题。
2.教学手段:利用多媒体课件和板书,生动形象地展示圆中的计算问题。
六. 说教学过程1.导入:通过复习平面几何的基本知识,引导学生回顾圆的概念和性质,为新课的学习做好铺垫。
2.新课讲解:讲解圆中的计算问题,如弧长、扇形的面积的计算方法,并结合实例进行分析。
3.课堂练习:布置相关的练习题,让学生巩固所学知识,并能够运用到实际问题中。
4.总结与拓展:对本节课的内容进行总结,并提出一些拓展问题,激发学生的学习兴趣。
七. 说板书设计板书设计如下:1.圆中的计算问题–弧长计算公式:弧长 = 半径 × 圆心角–扇形面积计算公式:扇形面积 = 1/2 × 半径² × 圆心角2.实例分析–通过具体的实例,展示弧长和扇形面积的计算过程。
九年级数学 圆中的计算问题华东师大版知识精讲

九年级数学 圆中的计算问题华东师大版【本讲教育信息】一. 教学内容:§28.3 圆中的计算问题二. 重点、难点: 1. 重点:⑴弧长和扇形的面积; ⑵圆锥的侧面积和全面积 2. 难点:弧长和扇形面积公式的推导三. 知识梳理:(一)弧长和扇形的面积 1. 弧长的计算公式如果弧长为l ,圆心角度数为n ,圆的半径为r ,那么,弧长的计算公式为:2360180n n rl r ππ=⋅=. 2. 扇形的面积公式如果设圆心角是n °的扇形面积为S ,圆的半径为r ,那么扇形面积为213602n r S S lr π==或 说明:⑴对于弧长公式和扇形面积公式,无须死记硬背,应在明确其“来历”的基础上理解掌握.⑵在应用弧长公式180n rl π=或扇形面积公式2360n r S π=进行计算时,要注意公式中的n的意义,n 表示1°的圆心角的倍数,因此不带单位.⑶扇形的另一个面积公式12S lr =与三角形的面积公式有些类似.形式基本一样,可以联系起来记忆.(二)圆锥的侧面积和全面积如图,我们把圆锥底面圆周上任意一点与圆锥顶点的连线叫做圆锥的母线.连结顶点与底面圆心的线段叫做圆锥的高.如图,沿着圆锥的母线,把一个圆锥的侧面展开,得到一个扇形,这个扇形的弧长等于圆锥底面的周长,而扇形的半径等于圆锥的母线的长.圆锥的侧面积就是弧长为圆锥底面的周长、半径为圆锥的一条母线的长的扇形面积,而圆锥的全面积就是它的侧面积与它的底面积的和.说明:⑴研究圆锥的侧面积和全面积,必须先将其展开.圆锥的侧面展开图是扇形,这个扇形的半径是圆锥的母线长,弧长是圆锥底面圆的周长.⑵若设圆锥的母线长为l ,底面半径为r ,则圆锥的侧面积就是其展开图——扇形的面积,122r l rl ππ⋅⋅=S=;圆锥的全面积是侧面积与底面积的和,是2rl r ππ+.另外,知道扇形的半径和弧长,还可以求得扇形的圆心角.【典型例题】例1. 如图,一块长为8的正方形木板ABCD ,在水平桌面上绕点A 按逆时针方向旋转到ADEF 的位置,则顶点C 从开始到结束所经过的路径长为( )A. 16 ;B. 162 ;C. 8π ;D. 42π分析:在旋转过程中,AC 的长度保持不变,所以顶点C 从开始到结束所经过的路径长是以A 为圆心,AC 长为半径的90°的弧长,因为AC =82,所以,ππ241802890=⋅⋅=l ,故选D .例2. 如图,⊙A 、⊙B 、⊙C 、⊙D 互相外离,它们的半径都是1,顺次连结四个圆心得到四边形ABCD ,则图中四边形内的四个扇形面积之和为( )A. 2π;B.π;C.32π ; D. 21π分析:根据题中的条件无法求出四个扇形的圆心角的度数,因而从整体考虑,可以发现四个扇形的圆心角分别是四边形的四个内角,所以四个扇形的圆心角的度数之和为360°,故选B .例3. 如图,如果圆锥的底面圆的半径是8,母线长是15,那么这个圆锥侧面展开图的扇形的圆心角的度数是 .分析:由圆锥的底面圆的半径是8,可以求出底面圆的周长,也就是扇形CAB 的弧长,再利用弧长公式2360180n n rl r ππ=⋅=即可求扇形的圆心角的度数. 解:∵圆锥底面圆的半径是8,∴BC l r C ==⋅=ππ162 ∵母线长为15∵180Rn l BC ⌒π=∴1801516⋅=ππn 192=n∴圆心角的度数为192°.例4. 如图,一把纸扇完全打开后,外侧两竹条AB 和AC 的夹角为120°,AB 长为25cm ,贴纸部分的宽BD 为17cm ,则贴纸部分的面积为_______.(结果保留π)分析:扇形面积公式有两个,一是2360n r S π=,另一个是12S lr =,贴纸部分的面积实际是由两个扇形的面积相减所得.由解意很容易列出关于所求贴纸部分的面积:2212025120(2517)360360ππ⋅⋅⋅⋅--=187π(cm 2).例5. 如图1,在正方形铁皮上剪下一个圆形和扇形,使之恰好围成图2所示的一个圆锥模型.设圆的半径为r ,扇形半径为R ,则圆的半径与扇形半径之间的关系为A. R =2rB. R =94r C. R =3r D. R =4r分析:注意题中的“底面圆的半径”与“扇形的半径”是两个不同的概念.要找到圆的半径与扇形半径之间的关系,需要得到一个等量关系,由圆锥的有关概念,根据圆锥底面圆的周长等于扇形的弧长,可得2πr =90180πR∴R =4r ∴答案选D例6. 如图所示,半径是10cm 的圆纸片,剪去一个圆心角是120°的扇形(图中阴影部分),用剩下部分围成一圆锥,求圆锥的高和底面圆的半径.分析:首先,根据题意画出圆锥体的示意图,从图中可知,要求圆锥的底面圆的半径需求出其所在圆的周长,而底面圆的周长为左图中剩下扇形的弧长,这样转化到求弧长的问题;关于圆锥的高,只要由底面半径与圆锥的母线长构造直角三角形即可.解:如答图中的甲、乙图,∵n =360°-120°=240°,R =10cm ,如图(甲)所示,24010401801803OAmB n r l πππ⨯===扇形(cm ) 如图乙中连结O ′P ,则O ′P ⊥CD ,设⊙O ′半径为r , ∵'',2OAmB O O C l C r π==扇形,∴4023r ππ=,∴r =203(cm ) ∴ O ′P =22'22201010533PD O D ⎛⎫-=-=⎪⎝⎭(cm )例7. 已知矩形ABCD 中,AB =1cm ,BC =2cm ,以B 为圆心,BC 长为半径作41圆弧交AD 于F ,交BA 的延长线于E ,求阴影部分面积.分析:要求阴影部分面积,只须将它转化为求规则图形的面积的和差,故需连结BF ,ABF BFE S S S △扇形阴-=解:连结BF∵BC =2,F 点在以B 为圆心,BC 为半径的圆上 ∴BF =2∵矩形ABCD ,AB =1,BF =2 ∴∠ABF =60° ∴ππ323602602=⋅⋅=BFES 扇形3BA BF AF ,BAF Rt 22=-=∆中231321=⨯⨯=ABF S △∴ABF BFE S S S △扇形阴-= =2cm )2332(-π 答:阴影部分面积为2cm )2332(-π.例8. 如图已知圆锥的底面半径r =10cm ,母线长为40cm .⑴求它的侧面展开图的圆心角和表面积;⑵若一只甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B ,它所走的最短路程是多少?SAB分析:⑴把圆锥的侧面沿母线SA 展开,如图 则⋂'AA 的长为2πr =20π,SA =40 所以20π=40180n π⋅所以n =90°所以圆锥的侧面展开图的圆心角是90°S 表面=S 侧+S 底=29040360π⋅+π·102=500π(cm 2)⑵由圆锥的侧面展开图可见,甲虫从A 点出发沿着圆锥侧面绕行到母线SA 的中点B 所走的最短路程是线段AB 的长在Rt △ASB 中,∠ASB =90°,SA =40,SB =20所以AB =22SA +SB =205cm答:圆锥的侧面展开图的圆心角是90°,圆锥的表面积是500π2cm ,甲虫所走的最短路程长205cm .例9. 如图,扇形OAB 的圆心角为90°,分别以OA 、OB 为直径在扇形内作半圆,P 和Q 分别表示两个封闭图形的面积,那么P 和Q 的大小关系是( )A. P =Q ;B. P >Q ;C. P <Q ;D. 无法确定.分析:本题中两个封闭图形的面积不易直接求,可用代数方法来求,根据图形的对称性,另两个封闭图形的面积相等,不妨设为M ,再设OA =2r ,由图形可得M +Q =221r ⋅π,2M +P +Q =2r ⋅π,解得P =Q ,故选A .[方法探究]在一个问题不能直接解决的情况下,就要善于从另一个角度来寻找其它的途径.本题是通过设未知数,把几何问题转化为代数问题,即通过方程思想,使问题迎刃而解.例10. 如图,秋千拉绳长AB 为3米,静止时踩板离地面0.5米,某小朋友荡该秋千时,秋千在最高处时踩板离地面2米(左右对称),请计算该秋千所荡过的圆弧长(精确到0.1米)?解析:由题意要求圆弧BF 的长,只要求得圆心角∠BAF 的度数即可,根据左右对称,所以将∠BAC 置于一个直角三角形中来计算其度数.过点B 作BE ⊥地面于点E ,作BG ⊥AD 于点G ,则有GD =BE =2,又AD =AC +CD =3.5,所以AG =1.5,则在Rt ΔABG 中,AB =3,AG =1.5,所以∠BAC =60°,所以∠BAF =120°.则弧BF 的长=1203180π⋅⋅=2π≈6.3(米).例11. 如图是某学校田径体育场一部分的示意图,第一条跑道每圈为400米,跑道分直道和弯道,直道为长相等的平行线段,弯道为同心的半圆型,弯道与同心的半圆型,弯道与直道相连接.已知直道BC 的长为86.96米,跑道的宽为1米(π=3.14,结果精确到0.01米) ⑴求第一条跑道的弯道部分⋂AB 的半径;⑵求一圈中第二条跑道比第一条跑道长多少米?⑶若进行200米比赛,求第六道的起点F 与圆心O 的连线FO 与OA 的夹角∠FOA 的度数.解析:⑴弯道的半圆周长为400286.962-⨯=113.04(米),由圆周长L =2πr ,所以半圆弧线长'l r π=,则第一道弯道部分的半径r ='113.043.14l π==36.00(米)⑵第二道与第一道的直跑道长相等,第二道与第一道的弯跑道的半径之差为1米,第二道与第一道的弯跑道长的差即为两圆周长之差,即2π(r +1)-2πr =2π=6.28(米).⑶从第一道200米,是以A 点为始点,第六道上的运动员需要跑86.96米的直道和113.04米的弯道,即弧长为113.04米,又第六道弯道半圆的半径为41米, 由弧长与半圆、圆心角的关系得n =,所以∠FOA =180°°°.【模拟试题】(答题时间:30分钟)1. 一个扇形的弧长是20πcm ,面积是240π2cm ,则扇形的半径是( )A. 6cmB. 21cmC. 24 cmD. 62 cm2. 一个圆锥的侧面积是底面积的3倍,这个圆锥的侧面展开图的圆心角是( ) A. 60° B. 90° C. 120° D. 180°3. 底面圆半径为3cm ,高为4cm 的圆锥侧面积是( )A. 7. 5π2cmB. 12π2cmC. 15π2cmD. 24π2cm4. 扇形的半径OA =20cm ,∠AOB =135 ,用它做成一个圆锥的侧面,此圆锥底面的半径是( )A. B. C. 15cm D. 30cm5. 如图,⊙A ,⊙B ,⊙C 两两不相交,且半径都是,则圆中的三个扇形即(三个阴影部分)的面积之和为( )A.12π2cm B.8π2cm C. 6π2cm D.4π2cm6. 一个圆锥的底面积是25π2cm ,母线长13cm ,则这个圆锥的侧面积是 .7. 一个圆锥的侧面展开图是一个面积为8π的半圆,则这个圆锥的全面积是________. 8. 如图所示,已知⊙1O 内切于扇形AOB ,切点为C 、D 、E ,⊙1O 的面积为16π,∠AOB =60°,求扇形AOB 的周长和面积.9. 如图所示是一管道的横截面示意图,某工厂想测量管道横截面的面积,工人师傅使钢尺与管道内圆相切并交外圆于A 、B 两点,测量结果为AB =30cm , 求管道阴影部分的面积为多少?【试题答案】1. C2. C3. C4. B5. B6. 65π2cm7.12π8. 24π提示:连结O 1C ,OO 1并延长OO 1,则必过切点E ,设⊙O 1的半径为r ∴1O S 圆21,16r S O ππ==圆,∴216r ππ=,r =4, ∴O 1C =4, ∵OA ,OB 切圆1O 于C ,D ,∠AOB =60°, ∴∠AOE =30° ∵∠COO 1=30°,O 1C =4,∴O 1O =8, ∴R =OE =OO 1+O 1E =8+4=12 ∴24412242,41801260+=⨯+=+==⨯=⋂⋂ππππr l l lAOB OAB AOB扇形∴224360OABn R S ππ==扇形. 9. 解:设钢尺AB 与管道内圆相切于C 点,连结OC 、OA ,则OC ⊥AB ,设OC =r ,OA =R ,∵AB =30cm ,OC ⊥AB ,∴AC =152AB=, ∴222222()15225S OA OC R r AC ππππππ=⋅-⋅=-=⨯=⨯=阴影(cm 2)。
九年级数学圆中的计算问题华东师大版知识精讲

九年级数学圆中的计算问题华东师大版【同步教育信息】一. 本周教学内容: 圆中的计算问题【知识与技能】1. 探索归纳圆的弧长、扇形面积公式,会恰当运用公式进行弧长、扇形面积的有关计算。
2. 了解圆柱、圆锥的特征,认识圆柱、圆锥的侧面展开图分别是矩形、扇形,并会计算侧面积及全面积。
【过程与方法】在探索归纳弧长、扇形面积公式时,体现了“从特殊到一般”的数学思维方法。
【情感、态度、价值观】在探求公式过程中,提高推理、归纳能力及应用意思,培养与他人合作能力,进一步发展我们对立体图形的了解,同时也增强空间立体感。
【教学过程】 1. 弧长公式:l n r=π180注意:(1)在弧长公式中,n 表示“1°”的圆心角的倍数,在应用公式计算时,“n ”和“180”不应再写单位。
(2)在计算时,若题目中没有标明精确度,可以用“π”表示弧长,如弧长是3π,π,15.π等。
(3)在弧长公式中已知l n r 、、中的任意两个量都可以求出第三个量。
2. 扇形:(1)定义:由组成圆心角的两条半径和圆心角所对的弧所围成的图形叫做扇形。
如图:(2)周长:扇形的周长等于弧长加上两个半径的长,即l r +2。
(3)面积:S n r =π2360或S lr =12注意:①公式S n r =π2360中的“n ”与弧长公式中“n ”的意义一样,表示“1°”圆心角的倍数,参与计算时不带单位。
②S lr =12与三角形面积公式S ah =12十分相似,为了便于记忆,可以把扇形看作曲边三角形,把弧长看作底,半径r 看作底边上的高。
③注意二个公式的区别。
如:已知半径r 、圆心角度数求S ,用S n r =π2360。
已知半径r 、弧长l 求S ,用S lr =12。
④已知:S l n r 、、、四个量中任意两个量,可以求出另外两个量。
3. 圆柱的侧面积与全面积(1)侧面展开图是矩形,一组对边等于母线长,另一组对边等于底面圆的周长。
华东师大初中数学九下《27.3圆中的计算问题》word教案 (1)

27.3 实践与探索教材:华东师大版九年级下1.教学目标1)知识目标:①掌握如何将实际问题抽象出二次函数模型;②能运用函数关系中的对应法则并解释自变量取值范围的实际意义;③学会根据题意,合理建系,并准确标识题意;④能运用并合理解释二次函数模型。
2)能力目标:①数学思考能力:联系实际,感知数学与现实世界的密切联系,让学生经历数学建模过程,渗透数学建模思想,体会二次函数是刻画现实世界的有效数学模型。
②解决问题的能力:结合具体情境,发现并提出问题,并寻找解决问题的方法。
能与他人合作交流,并通过反思来体验解决问题策略的多样性,以此来获得解决问题的经验。
3)情感目标:了解数学理论的实用价值,提高学生对数学的好奇心和求知欲;增强学数学的自信心,同时借助题目中丰富的背景知识来充实自己的精神世界,形成良好的个性品质。
2.教学重点——建立并合理解释数学模型3.教学难点——实际问题数学化过程4.教学过程1)教学思路实际问题的提出,说明引入二次函数模型的必要性。
——体现构建二次函数数学模型解决实际问题的思想——通过丰富的问题情景,形成用二次函数解决实际问题的一般性策略和方法。
——合理解释相应的数学模型2)教学环节分析环节一:抛砖引玉,点明主旨环节二:自主探索,实践新知环节三:拓展转化,加深理解环节四:合作探索,学以致用环节五:反思小结,形成新知环节六:布置作业,巩固新知用活几1)喷出的水流距水平面的最大高度是多少?2) 如果不计其他因素,那么水池的半径至少为多少时,才能使喷出的水流都落在水池内?(x-2最大高度为-教榜样启发、同伴启发在三份获奖作品中任选一份,模仿问题计题。
反思和发表对本堂课时,测得涵洞顶点与水面的距离为2.4m离开3)一只宽为1m,高为1.5m的小船能否通过?为什么?让学生充分探究各种AE D学§27.3 二次函数的实践与探索 课堂卷例1:某公园要建造一个圆形的喷水池,在水池中央垂直于水面竖一根柱子,上面的A 处安装一个喷头向外喷水。
九年级下册数学课件(华师版)圆中的计算问题

知识要点
弧长公式
l n 2 R n R
360
180
注意 用弧长公式 l n R ,进行计算时,要注意公式中n的
180
意义.n表示1°圆心角的倍数,它是不带单位的.
算一算 已知弧所对的圆心角为60°,半径是4,则弧 长为__43__.
例1 制造弯形管道时,要先按中心线计算“展直长度”,再下 料,试计算图所示管道的展直长度l.(单位:mm,精确到1mm)
则整个旋转过程中线段OH所扫过的面积为 (C )
A1
A.
7 3
7 8
C.
3
B.
4 3
7 8
3
D. 4 3 3
H
A
O
C
O1 H1
B
C1
3.如图,☉A、☉B、 ☉C、 ☉D两两不相交,且半径都是2cm,
则图中阴影部分的面积是12cm2 .
C B
A
D
4.(例题变式题)如图、水平放置的圆柱形排水管道的截面 半径是0.6cm,其中水面高0.9cm,求截面上有水部分的面积.
.
3
3.已知扇形的圆心角为120°,半径为2,则这个扇形的
面积S扇=
4 3
.
例2 如图,圆心角为60°的扇形的半径为10cm.求这个扇形的 面积和周长.(精确到0.01cm2和0.01cm)
解:∵n=60,r=10cm,
∴扇形的面积为
S = n r2 = 60 102 = 50 52.36(cm2 ).
扇形.
B B
弧 圆心角 O
A
扇形 O
A
判一判
下列图形是扇形吗?
想一想
问题1 半径为R的圆,面积是多少?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆柱的母线长 与高是相等的
S侧面积=2 rl
四、练习
2、用一张面积为900平方厘米的正方形硬纸 片围成一个圆柱的侧面,则这个圆柱的底 面直径约为__9_._6_c_m__。(精确到0.1厘米)
圆
柱
的
圆柱底面的周长
高
生活中的圆锥
设置情境
如图,一只蚂蚁从底面圆周上一点B出发沿圆锥的 侧面爬行一周后回到点B,请你帮助它找到最短的 路线。
360
180
2
360
45
(3)圆心角是45°,占整个周角的___3_6_0____,因此它所对
的弧长_______; 45 • 2r 45 r 1 r
360
180 4
1
(4)圆心角是1°,占整个周角的____3_6_0____,因此它所对
的弧长_______;
1 • 2r 1 r
360
180
n
结论:
如果设圆心角是n°的扇形面积为S,圆的半径为r,那么
扇形的面积为: S nr 2 nr r 1 lr
360 180 2 2
因此扇形面积的计算公式为
nr 2
S 360
或
S 1 lr 2
小试牛刀:
1、如果扇形的圆心角是230°,那么这个扇形的面积
等于这个扇形所在圆的面积的____________;
探索
图 23.3.4
(是11)80°如的图扇,形圆面心积角是是圆18面0°积,的占__整__个__周_角__的;138600,因此圆心角
(2) 圆心角是90°,占整个周角的________,因此圆心角 是90°的扇形面积是圆面积的________; (3) 圆心角是45°,占整个周角的________,因此圆心角 是45°的扇形面积是圆面积的________; (4) 圆心角是1°,占整个周角的________,因此圆心角是 1°的扇形面积是圆面积的_________; (5) 圆心角是n°,占整个周角的________,因此圆心角是 n°的扇形面积是圆面积的_________.
B’
A
B.
B
C
圆锥的再认识
圆锥是由一个底面和一个侧面围成的,它 的底面是一个圆,侧面是一个曲面.
高
连结圆锥顶点与底面圆心的线 段叫做圆锥的高
连接圆锥顶点和底面圆周上任意一
ha
点的线段叫做圆锥的母线
母线 (母线有无数条,母线都是相等的 )
nR 2
3601 lR 2Fra bibliotek圆 柱
一.圆柱的直观特征
圆柱是由两个底面和一个 侧面围成的.
底面是两个等圆;
侧面是一个曲面, 可以展开铺在平面上。
两个底之间的距离 是圆柱体的高.
二、圆柱的侧面展开图
侧面展开图是__矩__形__.
矩形的两边圆与柱圆柱体 有何S关侧系=?c·h=2πrh
矩形的S一表边=长S等侧+于_2圆_S_柱__的__高___(_即__圆__柱__的__母__线__长__)_;
27.3 圆中的计算问题
(第1课时)
问题情景:
如图是圆弧形状的铁轨示意图,其中铁轨的半径为100 米,圆心角为90°.你能求出这段铁轨的长度吗?(π 取3.14 )
分析:我们容易看出这段铁轨是圆周
长的四分之一,所以铁轨的长度 ≈ 23100 =157.0(米).
4
图 23.3.1
问题探究
上面求的是的圆心角900所对的弧长,若圆心角为n0, 如何计算它所对的弧长呢?
长度。
解:l n 2r nr
360
180
= 50 cm
3
答:此圆弧的长度为 50 cm
3
扇形:
定义:如图,由组成圆心角的两条半 径和圆心角所对的弧所围成的图形叫 做扇形.
提问:
1.将组成扇形的一条半径绕着圆心旋转,可以发现,扇 形的面积与组成扇形的弧所对的圆心角的大小有关.圆 心角越大,扇形的面积也越大.怎样计算圆心角为n° 的扇形面积呢? 2.我们知道,如果设圆的面积为S,圆的半径为r,那么 圆面积的计算公式为S=πr2,半径为r的扇形的面积与 半径为r的圆的面积有没有关系呢?圆心角为1°的扇形 面积以及圆心角为n°的扇形面积分别是圆面积的几分 之几?
长是圆柱的母线长;它的另一边长是圆柱的
底面圆周长。
2.圆柱的侧面积是母线与圆柱的底面圆周 长围成的矩形面积。
3.圆柱的全面积=侧面积+底面积
三、练习
S侧=2πrh
1.如果圆柱侧面积60πcm2,母线长为10cm, 则圆柱底面半径为_________r_=.3cm
设圆柱底面半径为r, 则有60π=2πr·10
思考:
请同学们计算半径为 r,圆心角分别为1800、900、450、 10、n0所对的弧长。
A
O
B
图 23.3.2
探索:
(1)圆心角是180°,占整个周角的180,因此它所对的弧长
_______; 180 • 2r r
360
360
(2)圆心角是90°,占整个周角的 90 ,因此它所对的弧长
_______; 90 • 2r 90 •r 1 r
另一边底是_底__面__圆__的__周__长____. 圆柱的侧面积应等于_底__面__圆__的__周__长__乘__以__圆__柱__的__高____.
圆柱的表面积是_上__下__两__底__面__圆_的__面__积__与__侧__面__面__积__之__和__.
回顾
圆柱侧面展开图
1.圆柱的侧面展开图是一个矩形,它的一边
(5)圆心角是n°,占整个周角的____3_6_0____,因此它所对
的弧长_______.
n • 2r n r
360
180
结论:
如果弧长为l,圆心角度数为n,圆的半径为r,那么,弧长 的计算公式为:
l n 2r nr
360
180
练一练:
已知圆弧的半径为50厘米,圆心角为60°,求此圆弧的
解:因为n=60°,r=10厘米,所以扇形面积为
S nr 2 60 3.14 10 2 =52.33(平方厘米);
360
360
扇形的周长为
图 23.3.5
l
nr
180
2r
60 3.1410 180
20
=30.47(厘米)。
27.3 圆中的计算问题
(第2课时)
回顾
nR
l 180
R
图S23扇.3形.2
2
2、扇形的面积是它所在圆的面积的 ,这个扇形的圆
心角的度数是_________°.
3
3、扇形的面积是S,它的半径是r,这个扇形的弧长是 _____________ ;
23
2s
答案:
36
240°,
r
例题讲解
例1 如图,圆心角为60°的扇形的半径为10厘米,求这 个扇形的面积和周长(π≈3.14).