110KV短线路光纤纵差保护

合集下载

110kV线路光纤差动保护联调方案

110kV线路光纤差动保护联调方案

110kV线路光纤差动保护联调方案摘要:文章依据110kV线路的结构特点,分析了线路中光纤分相差动保护的工作原理,光纤分相差动保护装置的特点,差动保护中通信装置的接口方式,以及时钟在保护装置中所起到的作用。

从保护联调的角度分析了联调的具体实施方法和存在的问题。

关键词:线路;光纤;差动保护;联调110kV线路是电力系统中联系整个系统的支架,线路是否运行在安全可靠的状态下在很大程度上决定着整个电力系统是否能安全可靠的运行。

因此,在110kV输电线路上采用的多个成套微机保护装置应同时满足继电保护装置选择性、灵敏性、速动性以及可靠性四个最基本的要求。

一、输电线路上常用差动保护概述在输电线路上最常使用的差动保护方式是分相电流差动保护。

分相电流差动保护,从保护的工作原理上来说,是一种理想化的方式。

分相电流差动保护的优势体现在,保护方式不受震荡干扰、不受运行方式影响,过渡电阻对它的影响非常小,保护方式自身具备选相的能力,因其具备继电保护装置应该具备的绝对选择性、灵敏性以及速动性等诸多优点,光纤分相电流差动保护已成为了110kV输电线路上使用最多最主要的保护方式。

分相电流差动保护的保护原理是,通过输电线路两侧的微机保护装置之间的互通信息,实现对本输电线路的保护。

要想确保分相电流差动保护能够安全可靠的投入到运行中,就要对输电线路两侧的微机保护装置进行联调。

就目前一些铺设的输电线路,分相电流差动保护是采用光纤通道,将110kV输电线路两侧的微机保护装置进行纵向联结,将一端的电流、电压幅值及方向等电气量数据传送到另一端,将两端的电气量数值进行对比,依此判断输电线路上的故障时发生在本段线路范围之内还是范围之外,针对于线路范围之内的故障才采取切断线路的一系列动作。

在输电线路的实际应用中,差动保护装置在交换线路两侧电气量的时候一般采用允许式信号作为接受对侧电气量的指示,当装置发生异常或者是TA发生断线时,发生异常的这一侧的起动元件及差动继电器有可能都发生动作,但线路的另一侧不会向异常的这一侧发出允许信号,有效避免了纵联差动保护的误动现象,提高了输电线路运行的可靠性;另外,输电线路上的保护装置还能传输来自远方的跳闸信号,传输过电压命令信号等,纵联差动实现了输电线路两侧断路器在故障发生时快速跳闸,从而保证了继电保护装置的速动性。

KV线路光纤差动保护原理

KV线路光纤差动保护原理

首先,光纤差动保护的原理和一般的纵联差动保护原理基本上是一样的,都是保护装置通过计算三相电流的变化,判断三相电流的向量和是否为零来确定是否动作,当接在电流互感器的二次侧的电流继电器(包括零序电流)中有电流流过达到保护动作整定值是,保护就动作,跳开故障线路的开关。

即使是微机保护装置,其原理也是这样的。

但是,光纤差动保护采用分相电流差动元件作为快速主保护,并采用PCM光纤或光缆作为通道,使其动作速度更快,因而是短线路的主保护!另外,光纤差动保护和其它差动保护的不同之处,还在于所采用的通道形式不同。

纵联保护的通道一般有以下几种类型:1.电力线载波纵联保护,也就是常说的高频保护,利用电力输电线路作为通道传输高频信号;2.微波纵联保护,简称微波保护,利用无线通道,需要天线无线传输;3.光纤纵联保护,简称光纤保护,利用光纤光缆作为通道;4.导引线纵联保护,简称导引线保护,利用导引线直接比较线路两端电流的幅值和相位,以判别区内、区外故障。

差动保护差动保护是输入CT(电流互感器)的两端电流矢量差,当达到设定的动作值时启动动作元件。

保护范围在输入CT的两端之间的设备(可以是线路,发电机,电动机,变压器等电气设备)。

中文名差动保护外文名Differential protection目录1.1概述2.2原理3.3技术参数4.?环境条件1.?工作电源2.?控制电源3.?交流电流回路4.?交流电压回路5.?开关量输入回路1.?继电器输出回路2.4功能3.5主要措施4.6缺点概述编辑电流差动保护是继电保护中的一种保护。

正相序是A超前B,B超前C各是120度。

反相序(即是逆相序)是 A 超前C,C超前B各是120度。

有功方向变反只是电压和电流的之间的角加上180度,就是反相功率,而不是逆相序[1]。

差动保护是根据“电路中流入节点电流的总和等于零”原理制成的。

差动保护把被保护的电气设备看成是一个节点,那么正常时流进被保护设备的电流和流出的电流相等,差动电流等于零。

110kV培训I线光纤差动保护对调方案路通

110kV培训I线光纤差动保护对调方案路通

110kV培训I线光纤差动保护对调方案路通110kV培训I线路光纤差动保护联调方案 1. 试验条件1.1. 设备状况在进行光纤纵差保护对调前,应完成相应光缆通道的试验、线路两侧保护装置整体调试、定值试验、自环方式下各种区内外故障试验及带开关传动试验,具备对调条件。

1.2. 仪器准备两侧通信畅通,根据保护通道类型配备相应的通道调试设备及对调使用的通信工具,如光功率计,两侧各一套,,继电保护测试仪,联系电话等。

2. 装置检查2.1. 版本号核对检查两侧保护软件版本、RCS校验码,其版本号及RCS校验码应一致并记录: 培训I回A侧:保护软件版本及校验码:培训I回B侧:保护软件版本及校验码: 2.2. 光功率测试两侧分别进行光功率测量,在装置的光发送插件背板处旋开尾纤,在其尾纤插座上插入光功率计测量发送功率;将接收端尾纤插头插入光功率计测量接收功率。

要求保护收发光功率符合相关的规程规定。

培训I回A侧保护装置发光功率:培训I回A侧保护装置收光功率:培训I回B侧保护装置发光功率:培训I回B侧保护装置收光功率:12.3. 通道告警功能检验将一侧光纤的“发”芯拔出。

另一侧应发出通道告警信号。

,两侧轮流进行测试,结果:3. 线路保护装置联调试验3.1. 检查电流传变值输入正常运行定值,合上两侧开关,两侧退出主保护,本侧保护A、B、C三相分别加入1A、2A、3A电流,对侧保护对应相应显示相同电流值,A、B、C三相差流也为1A、2A、3A,两侧轮流测试,。

结果:3.2. 模拟线路正常运行,区内故障3.2.1. 检验电流差动功能合两侧开关,两侧同时模拟正方向单相故障,A0、B0、C0,,相间故障,AB、BC、CA,,以下同,略去,,两侧差动保护能按要求正确动作。

结果:3.2.2. 检验零差保护功能合两侧开关,两侧同时模拟正方向单相故障加入零序?段定值,使相电流突变量不启动,,两侧零差保护应能按要求正确动作。

结果:3.3. 模拟线路单端空载运行,区内故障合本侧开关,断对侧开关,本侧加入正向单相、相间故障,对侧加入全电压,本侧差动保护应能按要求正确动作。

110kV光纤纵差线路保护

110kV光纤纵差线路保护

风电场110kV升压站
110kV光纤纵差微机保护
调试报告
变电站名:风力发电场
110kV升压站
设备名称: 110kV利风房线微机保护
装置型号: RCS-943AM 直流电压: DC220V 交流电压: 57.7V 交流电流: 1A 校验类型:整组试验
调试日期:
一、外观检查:
装置外观无破损、划伤,机箱及面板表面处理,喷涂均匀,字符清晰,紧固件无破损,安装牢固。

各回路对地及相互间绝缘电阻≥20MΩ。

二、上电检查:
1.各插件外观焊接良好,所有芯片插接紧。

2.液晶显示正常,按键灵活,版本号:
3.00,校验码:EF51。

3.装置外形端正,无损坏和变形现象。

4.保护装置的各部件固定良好,无松动现象。

三、零漂及采样线性度检查:
1.零漂:
2.采样线性度:
四、保护定值校验
3. 零序保护(Ⅰ段定值5A时间:0s Ⅱ段定值4A时间0.5s
4. TV断线过流保护(定值2A时间:0.5s)
五、整组试验
1. 整组动作时间测量
六、使用仪器:
广东昂立ONLLY-AD461微机继电保护测试仪
ZC-7型1000V兆欧表 FLUKE-15B数字式万用表
七、结论:试验合格,具备投运条件
试验负责人:试验人员:。

RCS9613说明书

RCS9613说明书

RCS-9613光纤纵差保护测控装置1基本配置及规格1.1基本配置RCS-9613适用于110KV以下电压等级的非直接接地系统或小电阻接地系统中的短线路光纤纵差和电流电压保护及测控装置。

可在开关柜就地安装。

保护方面的主要功能有:1)短线路光纤纵差保护;2)三段式可经低电压闭锁的定时限方向过流保护,其中第三段可整定为反时限段;3)零序过流保护/小电流接地选线;4)三相一次重合闸(检无压、同期、不检);5)一段定值可分别独立整定的合闸加速保护(可选前加速或后加速);6)低周减载保护等;7)独立的操作回路及故障录波。

测控方面的主要功能有:1)8路遥信开入采集、装置遥信变位、事故遥信;2)正常断路器遥控分合、小电流接地探测遥控分合;3)U A、U B、U C、U0、U AB、U BC、U CA、I A、I C、P、Q、COSф、F 14个模拟量的遥测;4)开关事故分合次数统计及事件SOE等;5)4路脉冲输入。

1.2 技术数据1.2.1额定数据直流电源: 220V,110V 允许偏差 +15%,-20%交流电压: 100/3V,100V交流电流: 5A,1A频率: 50Hz1.2.2 功耗:交流电压: < 0.5VA/相交流电流: < 1VA/相 (In =5A)< 0.5VA/相 (In =1A)直流回路:正常 < 15W跳闸 < 25W1.2.3主要技术指标①光纤纵差保护光纤接口技术指标:光纤接头方式: ST型光纤类型:多模光纤推荐传输距离: < 2km(若线路长度大于2公里,订货时请特别声明,光纤接口需另行处理)通讯方式:异步通讯传输速率: 9600 bit/s纵差保护固有动作时间:< 50ms②定时限过流电流定值:0.1In~20In时间定值:0~100S定值误差:< 5%③重合闸重合闸时间:0.1~9.9S定值误差:< 5%④低周减载低周定值:45Hz~50Hz低压闭锁:10V~90Vdf/dt闭锁:0.3Hz/s~10Hz/s定值误差:< 5%其中频率误差:< 0.01Hz⑤遥测量计量等级:电流 0.2级其他: 0.5级⑥遥信分辨率: <2ms信号输入方式: 无源接点2 装置原理2.1 硬件配置及逻辑框图见附图RCS-96132.2 模拟输入外部电流及电压输入经隔离互感器隔离变换后,由低通滤波器输入至模数变换器,CPU 经采样数字处理后,组成各种继电器并判断计算各种遥信遥测量。

110KV供电系统中的各种保护

110KV供电系统中的各种保护

1、纵联差动保护,即输电线的纵联差动保护,是用某种通信通道将输电线两端的保护装置纵向联结起来,将各端的电气量(电流、功率的方向等)传送到对端,将两端的电气量比较,以判断故障在本线路范围内还是在线路范围外,从而决定是否切断被保护线路。

2、差动保护差动保护是一种依据被保护电气设备进出线两端电流差值的变化构成的对电气设备的保护装置,一般分为纵联差动保护和横联差动保护。

变压器的差动保护属纵联差动保护,横联差动保护则常用于变电所母线等设备的保护。

特性由于纵联差动保护只在保护区内短路时才动作,不存在与系统中相邻元件保护的选择性配合问题,因而可以快速切除整个保护区内任何一点的短路,这是它的可贵优点。

但是,为了构成纵联差动保护装置,必须在被保护元件各端装设电流互感器,并将它们的二次线圈用辅助导线连接起来,接差动继电器。

以前由于受辅助导线条件的限制,纵向连接的差动保护仅限于用在短线路上,由于光纤的广泛使用,纵联差动保护已可作为长线路的主保护。

对于发电机、变压器及母线等,均可广泛采用纵联差动保护实现主保护。

保护原理所谓变压器的纵联差动保护,是指由变压器的一次和二次电流的数值和相位进行比较而构成的保护。

纵联差动保护装置,一般用来保护变压器线圈及引出线上发生的相间短路和大电流接地系统中的单相接地短路。

对于变压器线圈的匝间短路等内部故障,通常只作后备保护。

联差动保护装置由变压器两侧的电流互感器和继电器等组成,两个电流互感器串联形成环路,电流继电器并接在环路上。

因此,电流继电器的电流等于两侧电流互感器二次侧电流之差。

在正常情况下或保护范围外发生故障时,两侧电流互感器二次侧电流大小相等,相位相同,因此流经继电器的差电流为零,但如果在保护区内发生短路故障,流经继电器的差电流不再为零,因此继电器将动作,使断路器跳闸,从而起到保护作用。

变压器纵差保护原理接线图变压器纵差保护是按照循环电流原理构成的,变压器纵差保护的原理要求变压器在正常运行和纵差保护区(纵差保护区为电流互感器TA1、TA2之间的范围)外故障时,流入差动继电器中的电流为零,保证纵差保护不动作。

iPACS_5713线路光纤纵差保护测控装置技术说明书V1.

iPACS_5713线路光纤纵差保护测控装置技术说明书V1.

WORD格式整理iPACS-5713线路光纤纵差保护测控装置技术说明书版本:V1.01江苏金智科技股份有限公司目录1. 概述 (1)1.1.应用范围 (1)1.2.保护配置和功能 (1)1.2.1. 保护配置 (1)1.2.2. 测控功能 (1)1.2.3. 保护信息功能 (1)2. 技术参数 (2)2.1.机械及环境参数 (2)2.1.1. 工作环境 (2)2.1.2. 机械性能 (2)2.2.电气参数 (2)2.2.1. 额定数据 (2)2.2.2. 功率消耗 (2)2.2.3. 过载能力 (2)2.3.主要技术指标 (2)2.3.1. 光纤纵差保护 (2)2.3.2. 过流保护 (3)2.3.3. 零序保护 (3)2.3.4. 低频保护 (3)2.3.5. 重合闸 (3)2.3.6. 遥信开入 (3)2.3.7. 遥测量计量等级 (3)2.3.8. 电磁兼容 (3)2.3.9. 绝缘试验 (4)2.3.10. 输出接点容量 (4)3. 软件工作原理 (4)3.1.保护程序结构 (4)3.2.装置起动元件 (5)3.2.1. 光纤纵差起动 (5)3.2.2. 过电流起动 (5)3.2.3. 零序电流起动 (6)3.2.4. 低频起动 (6)3.2.5. 位置不对应起动 (6)3.3.光纤纵差保护 (7)3.4.过流保护 (7)3.5.零序保护(接地保护) (8)3.6.过负荷保护 (9)3.7.加速保护 (9)3.8.低频减载保护 (9)3.9.重合闸 (9)3.10.装置自检 (10)3.11.装置运行告警 (10)3.11.1. TWJ异常判别 (10)3.11.2. 差流异常判别 (10)3.11.3. 交流电压断线 (10)3.11.4. 交流电流断线 (10)3.11.5. 线路电压断线 (11)3.11.6. 频率异常判别 (11)3.12.遥控、遥测、遥信功能 (11)3.13.对时功能 (11)3.14.逻辑框图 (12)4. 定值内容及整定说明 (14)4.1.系统定值 (14)4.2.保护定值 (14)4.3.通讯参数 (16)4.4.辅助参数 (17)4.5.软压板 (18)5. 装置接线端子与说明 (20)5.1.模拟量输入 (21)5.2.背板接线说明 (21)5.3.装置结构及安装参考尺寸 (23)1.概述1.1.应用范围iPACS-5713线路光纤纵差保护测控装置适用于110kV以下电压等级的非直接接地系统或小电阻接地系统中的短线路光纤纵差和电流保护及测控,可组屏安装,也可在开关柜就地安装。

光纤纵差保护

光纤纵差保护
12、在继电保护小室装有通信专用光纤配线架屏时,分界面在继电保护接入光缆与通信光纤配线架屏上连接尾纤的连接点上;
考虑到专业管理的合理性,接入光缆与连接尾纤的熔接由通信专业承担;
9、保护通道宜不使用普通光缆通道和微波通道。
继电保护光纤通道的应用原则
1、110kV及以上电压等级线路的继电保护光纤通道光缆主要为OPGW及ADSS两种,并以OPGW光缆为首选;
2、 继电保护光纤通道主要有两种应用方式:专用光纤和复用通信电路方式。
3、使用专用光纤方式时,专用光纤通道的适用距离:国产保护≤60KM,进口保护≤40KM;
8、连接光缆的结构应采用非金属加强、阻燃型光缆;
9、为满足继电保护装置的可靠性,无论是采用光纤பைடு நூலகம்用芯或光纤复用通信电路,每套继电保护装置的连接光缆应独立。
10、继电保护使用光纤复用通道时,分界面在通信机房的继电保护设备光电转换器(O/E)与通信PCM(64K)或SDH(2M)的连接线上;
11、继电保护使用专用光纤通道时,分界面在通信机房的继电保护接入光缆与通信的光纤配线架屏上连接尾纤的连接点上;
7、对电缆或电缆架空线混合线路保护通道应采用光纤通道,一套保护直接使用光纤芯,另一套保护复用光纤通道,配置一套光纤分相电流差动保护、一套光纤允许式方向/距离保护或两套光纤分相电流差动保护。
8、对有ADSS光缆的线路,一套保护直接使用光纤芯,另一套选用相—地耦合制的电力线高频通道。配置一套光纤分相电流差动保护、一套高频闭锁式方向/距离保护(专用收发信机)。
1 、两套纵联保护宜由两个完全独立的通道(含通道设备)传送。
2 、对有OPGW光纤通道的线路,纵联保护通道应采用OPGW光纤通道。
3 、220kV线路两套主保护通道一般选用相—地耦合制的电力线高频通道,但分别耦合在不同的相别上。配置两套不同原理的高频闭锁式保护(专用收发信机)。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

110KV短线路光纤纵差保护
【摘要】本文介绍了某污水处理厂110KV主变电站由于与电源侧220KV 变电站相距过近,其110KV进线属于超短联络线,而导致的相应的继电保护配置方面与常规线路保护的一些不同之处。

【关键词】继电保护;超短线路;光纤;保护配置
引言
随着电力系统的发展和对城市电网的优化和改造工程的进行,几公里及十几公里的中低压线路和短线路群的出现,这些短线路若选用传统的电流保护或距离保护,在整定值与动作时间上都难以配合,因此选择光纤纵差保护成为一种必然,其原理简单、运行可靠、动作快速准确且不需要与相邻线路的保护进行配合等诸多优点,使其在线路保护中得到广泛应用。

1 保护配置方案
2000年重庆市第一大污水处理厂开始建设,其承担电源任务的两个110KV 主变电所有两回电源进线,其中一回电源进线来自重庆市电力公司下属城区供电局220KV某变电站。

该线路长度不超过1KM,属于超短线路,根据《继电保护和安全自动装置技术规程》(DL400-91)规定:“如电力网的某些主要线路采用全线速动保护后,不仅改善本线路保护性能,而且能够改善整个电网的保护性能,应装设一套全线速动保护”。

在为该线路配置保护时不宜选用高频闭锁式纵联保护。

110KV超短线路采用高频闭锁式纵联保护,开设电力线载波通信时,高频信号可能产生差拍,导致收信不正确而误动作。

虽然在理论上可采用人为接入固定衰耗的方法来消除频拍,但目前这种设备尚无成熟产品。

参照《规程》的2.6.5节,该线路也可考虑采用短引线差动保护或导引线为通道的纵联差动保护,但是短引线差动保护二次回路由于引线较长,TA的二次负载较大,从而引起线路两侧的TA特性不匹配,并且TA的二次回路接线也较复杂,这些都将直接影响差动保护的动作特性和安全性。

而以导引线为通道的纵联差动保护,其导引线通道易受外界干扰,抗干扰能力差,易受线路故障影响,影响差动保护的安全可靠运行。

目前,光纤通道技术已逐渐成熟,由于光纤传输不受电磁干扰的影响,通信误码率低,工作稳定,在安全性和可靠性方面与导引线通道相比有显著优势。

同时,光纤通道频带宽,容量大,可以缓解电力系统的通道拥挤问题。

因此,利用光纤传输的微机线路纵联差动保护得到了越来越广泛的研究和应用。

与此同时,由重庆电力调度通信中心在对相关电力系统网络进行周密细致的分析计算后得出的结论是在两变电站之间线路:在电源侧装一套带失灵启动微机线路保护和光纤线路纵差保护。

”综合以上意见,本工程的110KV线路保护采用了由国家电力自动化研究院南瑞继保所开发生产的RCS-943A型高压输电线路成套保护装置。

2 保护装置及保护通道
RCS-943A型保护装置包括以分相电流差动和零序电流差动为主体的快速主保护,由三段相间和接地距离保护、四段零序方向过流保护构成的全套后备保护;装置配有三相一次重合闸功能、过负荷告警功能;装置还带有跳合闸操作回路和交流电压切换回路,具有全线速跳功能。

数字差动保护的关键是线路两侧差动保护之间电流数据的交换,本装置中的数据采用64Kb/s高速数据通道、同步通信
方式。

传输通道可以采用专用光纤,也可以复用PCM设备。

在本工程中,变电站与电源侧变电站的线路两侧的装置之间采用专用8芯光纤光缆作为通道直接连接(保护与通信系统各占4芯)。

3 操作回路配置方案及原理接线
由于110KV主变电站的主接线为线路变压器组形式,因此变压器保护与光纤纵差保护动作后,都是跳开同一个高压开关。

而变压器保护柜与光纤纵差保护柜上都带有断路器操作回路装置,所以只能选择其中之一接入二次控制回路,另一操作回路装置停用,那么究竟选择哪一个呢?经过分析研究,我们认为将主变压器高低压两侧的操作回路安装于同一面保护柜,即主变压器保护柜上有利于运行维护人员的监视与管理。

另一方面在光纤纵差保护柜上有通信接口装置,如果主变压器高压侧的操作回路安装于该柜上,由于目前重庆电力公司的管理模式中各个供电局的继电保护班组与自动化班组是分开的,而通信接口装置一旦出现故障,当自动化班进行检修维护时,可能会出现误触碰或震动而造成操作回路装置误动作。

因此为了避免出现这种情况,将主变压器高压侧的操作回路安装于主变压器保护柜上也是更合乎运行要求的,其原理接线图如图2所示。

4 结束语
总之,随着城区变电站的日益密集分布,为了尽量减少占地面积,节约投资,必将造成大量简易接线变电站的投运,同时也会出现更多的超短线路。

这些超短线路的保护如果选用常规阶段式相间距离保护及接地零序保护,难以与相邻线路保护进行配合,不能满足灵敏性及速动性要求,因此,为了改善电网保护的性能,这些线路宜采用全线速动保护。

而随着光纤通信技术的发展及其在电力系统中的应用,传统的导引线保护被以光纤通道为媒质的纵联保护所取代,这样不仅可以改善保护的性能,而且大大提高了保护装置的可靠性。

虽然110KV所采用的光纤纵差保护在重庆主城区的变电站中还是第一次投入使用,但是随着电力系统的不断发展,光纤纵差保护必将在电力系统短线路保护中得到广泛的应用。

相关文档
最新文档