2021年浙江省高考数学试卷(理科)
2021-2021高考浙江理科数学真题及答案详解(精校版)

2021-2021高考浙江理科数学真题及答案详解(精校版)2021年普通高等学校招生全国统一考试(浙江卷)数学(理科)试题一、选择题:本大题共10小题,每小题5分,共50分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设函数f(x)????x,x?0,?x,x?0.2若f(?)?4,则实数?=C.-2或4D.-2或2A.-4或-2 B.-4或22.把复数z的共轭复数记作z,i为虚数单位,若z?1?i,则(1?z)?z= A.3-i B.3+i C.1+3i 3.若某几何体的三视图如图所示,则这个几何体的直观图可以是4.下列命题中错误的是..D.3A.如果平面??平面?,那么平面?内一定存在直线平行于平面? B.如果平面α不垂直于平面?,那么平面?内一定不存在直线垂直于平面? C.如果平面??平面?,平面??平面?,???=l,那么l?平面? D.如果平面??平面?,那么平面?内所有直线都垂直于平面??x?2y?5>0?5.设实数x,y满足不等式组?2x?y?7>0,若x,y为整数,则3x?4y的最小值是?x≥0,y≥0,?A.14B.16C.17D.196.若0<?<?2,-??1???3<?<0,cos(??)?,cos(?)?,则cos(??)? 2432423B.? A.3 33 31bC.53 9D.?6 91m”是a<或b>的 7.若a,b为实数,则“0<ab<A.充分而不必要条件B.必要而不充分条件1a第 - 1 - 页共 34 页C.充分必要条件 D.既不充分也不必要条件x2y2y22?1有公共的焦点,C1的一条渐8.已知椭圆C1:2?2?1(a>b>0)与双曲线C1:x?ab4近线与以C1的长轴为直径的圆相交于A,B两点,若C1恰好将线段AB三等分,则2A.a?13 2B.a2?13 2C.b?1 2D.b2?29.有5本不同的书,其中语文书2本,数学书2本,物理书1本.若将其随机的并排摆放到书架的同一层上,则同一科目的书都不相邻的概率A.1 5B.2 5C.34 D 5510.设a,b,c为实数,f(x)=(x+a)(x2?bx?c),g(x)?(ax?1)(ax2?bx?1).记集合S=xf(x)?0,x?R,T?xg(x)?0,x?R,若S,T分别为集合元素S,T的元素个数,则下列结论不可能的是...A.S=1且T=0 C.S=2且T=2B.S?1且T=1 D.S=2且T=3非选择题部分(共100分)二、填空题:本大题共7小题,每小题4分,共28分11.若函数f(x)?x?x?a为偶函数,则实数a? = 。
2021年浙江省高考数学(含解析版)

A.充分不必要条件
B.必要不充分条件
C.充分必要条件
D.既不充分也不必要条件
答案:
B
解析:
若 c a 且 c b ,则 a c b c 0 ,但 a 不一定等于 b ,故充分性不成立,
若 a b ,则 a c b c ,必要性成立,故为必要不充分条件.
故选 B.
, E( )
.
6
3
答案:
1 8 9
解析:
P(
2)
C42 C2
mn4
6 C2
mn4
1 6
C
2 mn
4
36
,所以 m n 4 9 ,
P(一红一黄)
C41 Cm1 C2
mn4
4m 36
m 9
1 3
m
3
,所以 n
2 ,则 m n
1,
P(
2)
1 6
,
P(
1)
C41 C51 C92
45 36
13.已知多项式 (x 1)3 (x 1)4 x4 a1x3 a2 x a3x a4 ,则 a1
; a2 a3 a4
.
答案:
5 10
解析:
根据二项式通项公式: a1x3 C30 x3 (1)0 C41x311 5x3 ,故 a1 5 ;
同理, a2 x2 C31x2 (1)1 C42 x212 3x2 6x2 3x2 a2 3 ,
a
,故 e
5
.
5
解析二:不妨假设 c 2 , sin PF1F2
sin HF1M
HM F1M
2 , HM 3
c 2
2
2
,
F1M
【高三】浙江2021年高考数学理科试卷(附答案和解释)

【高三】浙江2021年高考数学理科试卷(附答案和解释)浙江卷数学(理)试题答案与解析选择题部分(共50分)一、选择题:每小题5分,共50分.1.已知i是虚数单位,则(?1+i)(2?i)=A.?3+iB.?1+3i C.?3+3i D.?1+i【命题意图】本题考查复数的四则运算,属于容易题【答案解析】B2.设集合S={xx>?2},T={xx2+3x?4≤0},则(?RS)∪T=A.(?2,1]B.(?∞,?4]C.(?∞,1]D.[1,+∞)【命题意图】本题考查集合的运算,属于容易题【答案解析】C 因为(?RS)={xx≤?2},T={x?4≤x≤1},所以(?RS)∪T=(?∞,1]. 3.已知x,y为正实数,则A.2lgx+lgy=2lgx+2lgyB.2lg(x+y)=2lgx ? 2lgyC.2lgx ? lgy=2lgx+2lgy D.2lg(xy)=2lgx ? 2lgy【命题意图】本题考查指数和对数的运算性质,属于容易题【答案解析】D 由指数和对数的运算法则,易知选项D正确4.已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ?R),则“f(x)是奇函数”是“φ=π2”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【命题意图】本题考查简易逻辑以及函数的奇偶性,属于中档题【答案解析】B 由f(x)是奇函数可知f(0)=0,即cosφ=0,解出φ=π2+kπ,k?Z,所以选项B正确5.某程序框图如图所示,若该程序运行后输出的值是95,则A.a=4B.a=5C.a=6D.a=7【命题意图】本题考查算法程序框图,属于容易题【答案解析】A6.已知α?R,sin α+2cos α=102,则tan2α=A.43B.34C.?34D.?43【命题意图】本题考查三角公式的应用,解法多样,属于中档题【答案解析】C 由(sin α+2cos α)2=1022可得sin2α+4cos2α+4sin αcos α sin2α+cos2α=104,进一步整理可得3tan2α?8tan α?3=0,解得tan α=3或tanα=?13,于是tan2α=2tan α1?tan2α=?34.7.设△ABC,P0是边AB上一定点,满足P0B=14AB,且对于AB上任一点P,恒有→PB?→PC≥→P0B?→P0C,则A.?ABC=90?B.?BAC=90?C.AB=ACD.AC=BC【命题意图】本题考查向量数量积的几何意义,不等式恒成立的有关知识,属于中档题【答案解析】D 由题意,设→AB=4,则→P0B=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,→PB?→PC=→PH→PB=(→PB ?(a+1))→PB,→P0B?→P0C=?→P0H→P0B=?a,于是→PB?→PC≥→P0B?→P0C恒成立,相当于(→PB?(a+1))→PB≥?a恒成立,整理得→PB2?(a+1)→PB+a≥0恒成立,只需?=(a+1)2?4a=(a?1)2≤0即可,于是a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,所以AC=BC8.已知e为自然对数的底数,设函数f(x)=(ex?1)(x?1)k(k=1,2),则A.当k=1时,f(x)在x=1处取到极小值B.当k=1时,f(x)在x=1处取到极大值C.当k=2时,f(x)在x=1处取到极小值D.当k=2时,f(x)在x=1处取到极大值【命题意图】本题考查极值的概念,属于中档题【答案解析】C 当k=1时,方程f(x)=0有两个解,x1=0,x2=1,由标根法可得f(x)的大致图象,于是选项A,B错误;当k=2时,方程f(x)=0有三个解,x1=0,x2=x3=1,其中1是二重根,由标根法可得f(x)的大致图象,易知选项C正确。
2021年浙江省高考数学(含解析版)

2021年普通高等学校招生全国统一考试(浙江卷)数 学一、选择题1.设集合{|1}A x x =≥,{|12}B x x =-<<,则A B ⋂=( ) A.{|1}x x >- B.{|1}x x ≥ C.{|11}x x -<< D.{|12}x x ≤< 答案: D 解析:易知{|12}A B x x ⋂=≤<.故选D2.已知a R ∈,(1)3ai i i +=+(i 为虚数单位),则a =( ) A.1- B.1 C.3- D.3 答案: C 解析:(1)33ai i i a i a +=-=+⇒=-.故选择:C.3.已知非零向量a ,b ,c ,则“a c b c ⋅=⋅”是“a b =”的( ) A.充分不必要条件 B.必要不充分条件 C.充分必要条件D.既不充分也不必要条件 答案: B 解析:若c a ⊥且c b ⊥,则0a c b c ⋅=⋅=,但a 不一定等于b ,故充分性不成立, 若a b =,则a c b c ⋅=⋅,必要性成立,故为必要不充分条件. 故选B.4.某几何体的三视图如图所示(单位:cm ),则该几何体的体积(单位:3cm )是( )A.32B.3C.2D.答案: A 解析:易知原图为一个等腰梯形为底面的四棱柱ABCD A B C D ''''-,作C E A D '''⊥,则根据三视图可知1C D ''=,而C ED ''∆为等腰直角三角形,所以D E C E ''==,再根据三视图可知B C ''=A D ''=故113()1222ABCD A B C D V B C A D C E BB ''''-''''''=+⋅⋅=⨯=. 故选A.5.若实数x ,y 满足约束条件1002310x x y x y +≥⎧⎪-≤⎨⎪+-≤⎩,则12z x y =-的最小值是( )A.2-B.32-C.12-D.110答案: B 解析:画出可行域,如图所示:令直线l :22y x z =-,易知当l 过点(1,1)-时,z 最小,即为min 13122z =--=-. 故选B.6.如图,已知正方体1111ABCD A B C D -,M ,N 分别是1A D ,1D B 的中点,则( )A.直线1A D 与直线1D B 垂直,直线//MN 平面ABCDB.直线1A D 与直线1D B 平行,直线MN⊥平面11BDD BC.直线1A D 与直线1D B 相交,直线//MN 平面ABCDD.直线1A D 与直线1D B 异面,直线MN ⊥平面11BDD B答案: A 解析:连接1AD ,易证M 在1AD 上,在正方形11ADD A 中,11AD A D ⊥,∵AB ⊥面11ADD A ,1A D ⊂面11ADD A ,∴1AB A D ⊥,∵1AB AD A ⋂=,∴11A D ⊥面1D AB ,1D B ⊂面1D AB ,∴11A D D B ⊥.在正方形11AA D D 中,∵1D M MA =,1D N NB =,∴//MN AB ,又∵MN ⊄面ABCD ,AB ⊂面ABCD ,∴//MN 面ABCD .取1AA 中点E ,连接NE ,易证1EB ED =,ED EB =,且N 为1BD ,1B D 的中点,故NE ⊥面11BDD B ,MN 与NE 相交,故MN 与11BDD B 不垂直.7.已知函数21()4f x x =+,()sin g x x =,则图象为如图的函数可能是( )A.1()()4y f x g x =+-B.1()()4y f x g x =-- C.()()y f x g x =D.()()g x y f x =答案: D 解析:21()4f x x =+为偶函数,()sin g x x =为奇函数,图中函数为奇函数,1()()4y f x g x =+-与1()()4y f x g x =--均不是奇函数,故排除A ,B 项;21()()()sin 4y f x g x x x =⋅=+⋅,2'1[()()]2sin +(x +)cosx 4y f x g x x x '=⋅=⋅,则[()()]044f g ππ'⋅>,与图不符,故排除C项;故选D.8.已知α,β,γ是互不相同的锐角,则在sin cos αβ,sin cos βγ,sin cos γα三个值中,大于12的个数的最大值是( ) A.0 B.1 C.2 D.3 答案: C 解析:22sin cos 0sin cos 2αβαβ+<≤,当且仅当sin cos αβ=时取“=”,同理sin cos βγ,sin cos γα有类似性质,三式相加得30sin cos sin cos sin cos 2αββγγα<++≤,所以,不可能三个式子都大于12,另一方面,取30α=︒,60β=︒,45γ=︒,则1sin cos 2242βγ==>,1sin cos 2242γα=⨯=>,所以,可以有两个式子大于12,故大于12的个数的最大值是2. 9.已知,a b R ∈,0ab >,函数2()()f x ax b x R =+∈,若()f s t -,()f s ,()f s t +成等比数列,则平面上点(,)s t 的轨迹是( ) A.直线和圆 B.直线和椭圆 C.直线和双曲线 D.直线和抛物线 答案: C 解析:由题意得2()()[()]f s t f s t f s -+=,即2222[()][()]()a s t b a s t b as b -+++=+,即222222(2)(2)()as at ast b as at ast b as b +-++++=+,即2222()(2)as at b ast ++-22()0as b -+=,即222222(22)40as at b at a s t ++-=,即222242220a s t a t abt -++=,所以22220as at b -++=或0t =,所以2212s t b b a a-=为双曲线,0t =为直线.10.已知数列{}n a 满足11a =,1)n a n N *+=∈,记数列{}n a 的前n 项和为n S ,则( ) A.100132S << B.10034S << C.100942S <<D.100952S << 答案: A 解析:设()0)f x x =>,1()f x +'=()0f x '>,∴()f x 在(0,)+∞上单调递增,现用数学归纳法证明3n ≥时,6(1)(2)n a n n <++,∵11a =,212a =,312a =-,当3n =时,36120a =-<,不等式成立,假设n k =时,不等式成立,则6(1)(2)k a k k <++成立,则当1n k =+时,16k a +=<要证16(2)(3)k a k k +<++66(2)(3)k k <++,则需证:311k k +<+21k <+, 则需证:246(1)(1)(2)k k k <+++,则需证:1k <,而显然成立,∴16(2)(3)k a k k +<++成立,∴3n ≥时,6(1)(2)n a n n <++,即116()(3)12n a n n n <-≥++,∴1001210011116()245S a a a =+++<++-++1136616()331011022410217-=+-=-<,又1001232S a a >+=,满足100132S <<.二、填空题11.我国古代数学家赵爽用弦图给出了勾股定理的证明,弦图是由四个全等的直角三角形和中间的一个小正方形拼成的一个大正方形(如图所示),若直角三角形直角边的长分别为3,4,记大正方形的面积为1S ,小正方形的面积为2S ,则12S S = .答案:25解析:1k <2125S ==,21254(34)12S =-⨯⨯⨯=,所以1225251S S ==.12.已知a R ∈,函数24,2()|3|,2x x f x x a x ⎧->=⎨-+≤⎩,若(3f f =,则a = .答案:2解析:242(2)3f f =-=⇒=,即|23|32a a -+=⇒=.13.已知多项式34431234(1)(1)x x x a x a x a x a 2-++=++++,则1a = ;234a a a ++= .答案:5 10解析:根据二项式通项公式:30301313134(1)15a x C x C x x =-+=,故15a =; 同理,21212222222342(1)13633a x C x C x x x x a =-+=-+=⇒=,2123133343(1)13477a x C x C x x x x a =-+=+=⇒=,303404434(1)10a C x C x =-+=,所以23410a a a ++=.14.在ABC ∆中,60B ∠=︒,2AB =,M 是BC的中点,AM =AC = ;cos MAC ∠= .答案:13解析:(1)2222cos AM AB BM BM BA B =+-⋅⋅,即21124222BM BM =+-⋅⋅. 所以22804BM BM BM --=⇒=,所以8BC =, 所以22212cos 4642286816522AC AB BC AB BC B =+-⋅⋅=+-⋅⋅⋅=-=,故AC =(2)由余弦定理得222cos 2AC AM MC MAC AM AC+-∠=⋅===15.袋中有4个红球,m 个黄球,n 个绿球.现从中任取两个球,记取出的红球数为ξ,若取出的两个球都是红球的概率为16,一红一黄的概率为13,则m n -= ,()E ξ= .答案:189解析:2244224461(2)366m n m n m n C P C C C ξ++++++====⇒=,所以49m n ++=, 1142441()33693m m n C C m m P m C ++⋅====⇒=一红一黄,所以2n =,则1m n -=, 1(2)6P ξ==,114529455(1)369C C P C ξ⋅⨯====,2529105(0)3618C P C ξ====, ∴155158()2106918399E ξ=⨯+⨯+⨯=+=.16.已知椭圆22221(0)x y a b a b+=>>,焦点1(,0)F c -,2(,0)F c (0c >).若过1F 的直线和圆2221()2x c y c -+=相切,与椭圆的第一象限交于点P ,且2PF x ⊥轴,则该直线的斜率是 ;椭圆的离心率是_________.答案:5解析: 解析一:如图所示,132F A c =,122F F c =,1F B =,AB c =.(1)121tan 5AB k PF F BF =∠===. (2)方法一:112~F AB F PF ∆∆,所以222c e b c a=⇒=方法二:利用(1方法三:122PF PF a +=,所以122sin 322b c a PF F c b a a∠==-,故e =解析二:不妨假设2c =,12112sin sin 3HM PF F HF M F M ∠=∠==,222c HM =⋅=,1332F M c ==,12tan PF F ∠==5k =,则22212PF b k PF F F a=⇒=,1224F F c ==,224804a k a a a -==--=⇒===所以5c e a ===.17.已知平面向量a ,b ,(0)c c ≠满足1a =,2b =,0a b ⋅=,()0a b c -⋅=,记平面向量d 在a ,b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值是 . 答案:25解析:可令(1,0)a =,(0,2)b =,(,)c m n =,(0)n >因为()0a b c -⋅=,故20m n -=,故(2,)c n n =, 因为d 在a ,b 方向(即x 轴和y 轴正方向)的投影分别为x ,y ,故可设(,)d x y =, 因为d a -在c方向上的投影为()2d a cx z c -⋅==,故22x y+-=, 故22222(2)2415x y x y z ++=++≥=, 当且仅当24122x y x y⎧==⎪⎨⎪+=⎩,即25155x y z ⎧=⎪⎪⎪=⎨⎪⎪=-⎪⎩时取等号,故填25.18.记函数()sin cos ()f x x x x R =+∈.(1)求函数2[()]2y f x π=+的最小正周期;(2)求函数()()4y f x f x π=-在[0,]2π上的最大值. 答案:见解析解析:(1)()sin cos )4f x x x x π=+=+,222333[()])]2sin ()1cos(2)1sin 22442y f x x x x x ππππ=+=+=+=-+=-, 所以222T πππω===.(2)()())44y f x f x x x ππ=-=+22sin()sin 2sin (cos )cos 422x x x x x x x x π=+=⋅+=1cos 2222sin(2)2222242x x x x x π-=+=-+=-+, 令24x t π-=,[0,]2x π∈,所以3[,]44t ππ∈-,所以sin [t ∈,故[0,1y ∈,所以函数()()4y f x f x π=-在[0,]2π上的最大值为12+. 19.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,120ABC ∠=︒,1AB =,4BC =,PA =,M ,N 分别为BC ,PC 的中点,PD DC ⊥,PM MD ⊥.(1)证明:AB PM ⊥.(2)求直线AN 与平面PDM 所成角的正弦值.答案:见解析解析:(1)证明:在DCM ∆中,1DC =,2CM =,60DCM ∠=︒,∴DCM ∆为直角三角形,90MDC ∠=︒,即DM DC ⊥,由题意DC PD ⊥且PD DM D ⋂=,PD ,DM ⊂面PDM ,∴DC ⊥面PDM ,又//AB DC ,∴AB ⊥面PDM ,∵PM ⊂面PDM ,∴AB PM ⊥.(2)由PM MD ⊥,PM AB ⊥得PM ⊥面ABCD ,∴PM MA ⊥,MA ==PM ===,取AD 中点E ,连接ME ,则ME ,DM ,PM 两两垂直,以M 为坐标原点,分别以MD 、ME 、MP 所在的直线为x 轴、y 轴、z 轴,建立如图所示空间直角坐标系,则(A,P,D ,(0,0,0)M,1,0)C -,又N 为PC 中点,所以1(22N -,335(22AN =-,由(1)得CD ⊥面PDM ,所以面PDM 的法向量(0,1,0)n =,从而直线AN 与平面PDM 所成角的正弦值为5||sin 6||||27AN n AN n θ⋅===.20.已知数列{}n a 的前n 项和为n S ,194a =-,且*1439()n n S S n N +=-∈. (1)求数列{}n a 的通项公式.(2)设数列{}n b 满足*3(4)0()n n b n a n N +-=∈,记{}n b 的前n 项和为n T ,若n n T b λ≤对任意*n N ∈恒成立,求实数λ的取值范围.答案:见解析解析:(1)由1439n n S S +=-①,得1439(2)n n S S n -=-≥②,①-②得143n n a a +=,即134n n a a +=,所以{}n a 是以94-为首项,34为公比的等比数列,故1933()3()444n n n a -=-=-. (2)由3(4)0n n b n a +-=,得43(4)()34n n n n b a n -=-=-,从而 2343333332()1()0()(4)()44444n n T n =-⨯-⨯-⨯+⨯++-⋅③,故 23413333333()2()1()(5)()(4)()444444n n n T n n +=-⨯-⨯-⨯++-⋅+-⋅④,③-④得 234113333333()()()()(4)()4444444n n n T n +=-⨯+++++--⋅ 1111193[1()9399333164(4)()4()(4)()()344444441]4n n n n n n n n -++++-=-+--=-+---⋅=-⋅-,所以134()4n n T n +=-⋅,由n n T b λ≤得1334()(4)()44n n n n λ+-⋅≤-恒成立,即(4)30n n λ-+≥恒成立,4n =时不等式成立,4n <时,312344n n n λ≤-=----,得1λ≤,4n >时,312344n n n λ≥-=--+-,得3λ≥-,所以31λ-≤≤.21.如图,已知F 是抛物线22(0)ypx p =>的焦点,M 是抛物线的准线与x 轴的交点,且||2MF =. (1)求抛物线的方程.(2)设过点F 的直线交抛物线于A ,B 两点,若斜率为2的直线l 与直线MA ,MB ,AB ,x 轴依次交于点P ,Q ,R ,N ,且满足2||||||RN PN QN =⋅,求直线l 在x 轴上截距的取值范围.答案:见解析解析:(1)||2MF p ==,故抛物线的方程为24y x =.(2)(1,0)F ,(1,0)M -,设11(,)A x y ,22(,)B x y ,显然直线AB 斜率不为0,故可设:1AB x my =+,因为R ,N 不重合,故l 不过点(1,0)F ,故可设:2(2)l y x n n =+≠-,联立直线AB 与抛物线方程可得2244401y x y my x my ⎧=⇒--=⎨=+⎩,故由韦达定理可知121244y y m y y +=⎧⎨=-⎩,故2222121212()2168y y y y y y m +=+-=+,直线AM 的方程为1111()1y y x x y x =-++,联立直线AM 和l 可得1111111(1)(2)(,)2222n x y n y P y x y x +------,同理可得 2222222(1)(2)(,)2222n x y n y Q y x y x +------,故 2212212221122112(2)4(2)|||||(22)(22)(24)(2)|4P Q n y y n y y y y y x y x y y y y --==--------()()2222222121212121216(2)(2)||4286)4(143n n y y y y y y y y y y m --==-+++++++22222(2)()|243|1RP Q n n y y y m m +-===-+,联立直线AB 和l 解得212R n y m +=-,因为2||||||RN PN QN =⋅,故,故22222(2)432431(2)(21)21(21)4n m n m m m -+==++≥+---,解得(,2)(2,14[14)n ∈-∞-⋃--⋃++∞,故(,7[7(1,)2n -∈-∞--⋃-⋃+∞,直线l 在x 轴上截距的取值范围为(,7[7(1,)-∞--⋃-⋃+∞.22.已知函数2()(1,)x f x a bx e a x R =-+>∈.(1)讨论()y f x =的单调性;(2)若对于任意实数22b e >,()f x 均有两个不同零点,求实数a 的取值范围;(3)若a e =,证明:对于任意实数4b e >,()f x 有两个零点1x ,2x (12x x <),且2212ln 2b b e x x e b>+. 答案:见解析解析:(1)由()ln x f x a a b '=-,若0b ≤,有()0f x '>,则()f x 在R 上单调递增; 若0b >,则()f x 在(,log )ln a b a -∞单调递减,在(log ,)ln a b a+∞单调递增; (2)当22b e >,()f x 均有两个不同零点,由(1)可知2min ()(log )log 0ln ln ln a a b b b f x f b e a a a==-+<, 记ln b m a =,即有2ln 0m m m e -+<,即21ln 0e m m-+<, 记2()1ln e g x x x=-+,易知()g x 单调递减,又有2()0g e =, 则由()0g m <,可知2m e >,所以有2ln b a e <恒成立, 则有ln 2a ≤,可得21a e <≤;(3)当a e =时,4b e >,由(1)有2min ()(ln )ln 0f x f b b b b e ==-+<, 又有22()0e b e f e b =>,22()0b f b e b e =-+>,其中2ln e b b b <<, 所以可知()f x 有两个不同的零点, 又22222()0e b e f e e b =-<,则有22121e e x b b <<<, 所以2112ln ln 2b b e x b x e b+<+, 而122111(ln )(ln )0x f b x b e b x e e bx +=--+<-<,所以21ln x x b >+, 则有22112ln ln 2b b e x b x x e b >+>+,不等式得证.。
2021年理科数学浙江省高考真题含答案

普通高等学校招生全国统一考试(浙江卷)数学试题(理科)第Ⅰ卷(共50分)一、选取题:本大题共10小题,每小题5分,共50分,在每小题给出四个选项中,只有一项是符合题目规定。
(1)设集合A=|x |-1≤x ≤2|,B=|x|0≤x ≤4|,则A ∩B=(A ).[0,2](B ).[1,2](C ).[0,4](D ).[1,4](2)已知ni im-=+11,其中m ,n 是实数,i 是虚数单位,则m+ni=(A )1+2i(B )1-2i(C )2+i(D )2-I(3)已知0log log ,10<<<<n m a a a ,则(A )1<n <m(B )1<m <n(C )m <n <1(D )n <m <1(4)在平面直角坐标系中,不等式组⎪⎩⎪⎨⎧≥≥+-≤-+00202y y x y x ,表达平面区域面积是(A )24(B )4(C )22(D )2(5) 双曲线122=-y m x 上点到左准线距离是到左焦点距离31,则m=(A )21 (B )23 (C )81 (D )89 (6)函数R x x x y ∈+=,sin 2sin 212值域是 (A )]23,21[- (B )]21,23[-(C )[]2122,2122++-(D )]2122,2122[---(7)“a >b >0”是“222b a ab +<”(A )充分而不必要条件(B )必要而不充分条件(C )充分必要条件 (D )既不充分也不必要条件(8)若多项式,)1()1(...)1(10109910102+++++++=+x a x a x a a x x 则a 9=(A )9 (B )10 (C )-9 (D )-10(9)如图,O 是半径为球球心,点A 、B 、C 在球面上,OA 、OB 、OC 两两垂直,E 、F 分别是大圆弧AB 与 AC 中点,则点E 、F 在该球面上球面距离是(A )4π(B )3π (C )2π(D )42π(10)函数f :|1,2,3|→|1,2,3|满足f (f (x )=f (x ),则这样函数个数共有(A )1个(B )4个(C )8个(D )10个二、填空题:本大题共4个小题,每小题4分,共16分。
2021年普通高等学校招生全国统一考试 数学 浙江卷(附答案解析)

AP
MO R
NF
x
Q
B l
(第 21 题图)
22. (本小题满分 15 分)
设 a, b 为实数, 且 a > 1, 函数 f (x) = ax − bx + e2 (x ∈ R).
(1) 求函数 f (x) 的单调区间;
(2) 若对任意 b > 2e2, 函数 f (x) 有两个不同的零点, 求 a 的取值范围;
1. 设集合 A = {x | x ⩾ 1}, B = {x | −1 < x < 2}, 则 A ∩ B =( ).
A: {x | x > −1}
B: {x | x ⩾ 1}
C: {x | −1 < x < 1}
2. 已知 a ∈ R, (1 + ai)i = 3 + i (i 为虚数单位), 则 a =( ).
8. 已知 α, β, γ 是互不相同的锐角, 则在 sin α cos β, sin β cos γ, sin γ cos α 三个值中, 大于 1 的个数的最大值是 2
( ).
A: 0
B: 1
C: 2
D: 3
9. 已知 a, b ∈ R, ab > 0, 函数 f (x) = ax2 + b (x ∈ R). 若 f (s − t), f (s), f (s + t) 成等比数列, 则平面上点 (s, t) 的轨迹是 ( ).
.
三、解答题:共 5 小题, 共 74 分. 解答应写出文字说明、证明过程或演算步骤.
18. (本小题满分 14 分)
设函数 f (x) = sin x + cos x (x ∈ R).
(版)高考数学浙江卷(附答案)

绝密★启用前2021年普通高等学校招生全国统一考试〔浙江卷〕数学本试题卷分选择题和非选择题两局部。
全卷共4页,选择题局部1至2页;非选择题局部3至4页。
总分值150分。
考试用时120分钟。
考生注意:1.答题前,请务必将自己的姓名、准考证号用黑色字迹的签字笔或钢笔分别填在试题卷和答题纸规定的位置上。
2.答题时,请按照答题纸上“考前须知〞的要求,在答题纸相应的位置上标准作答,在本试题卷上的作答一律无效。
参考公式:假设事件A,B互斥,那么P(A B)P(A)P(B)柱体的体积公式V Sh假设事件A,B相互独立,那么P(AB)P(A)P(B)其中S表示柱体的底面积,h表示柱体的高假设事件A在一次试验中发生的概率是p,那么n次锥体的体积公式V 1Sh独立重复试验中事件A恰好发生k次的概率3其中S表示锥体的底面积,h表示锥体的高kk nkP n(k)C n p(1p)(k0,1,2,L,n)球的外表积公式台体的体积公式V 1S1S2S2)h S4R2 (S13球的体积公式其中S1,S2分别表示台体的上、下底面积,h表示4 V 3台体的高3R其中R表示球的半径选择题局部〔共40分〕一、选择题:本大题共10小题,每题4分,共40分。
在每题给出的四个选项中,只有一项为哪一项符合题目要求的。
1.全集U1,0,1,2,3,集合A0,1,2,B1,0,1,那么(eA)IB=UA.1B.0,1 C.1,2,3D.1,0,1,32.渐近线方程为x±y=0的双曲线的离心率是2A.B.1 2C.2D.2x3y403.假设实数x,y满足约束条件3x y40,那么z=3x+2y的最大值是x y0A.1B.1C.10D.124.祖暅是我国南北朝时代的伟大科学家,他提出的“幂势既同,那么积不容异〞称为祖暅原理,利用该原理可以得到柱体的体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.假设某柱体的三视图如下图〔单位:cm〕,那么该柱体的体积〔单位:cm3〕是A.158B.162C.182D.3245.假设a>0,b>0,那么“a+b≤4〞是“ab≤4〞的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件6.在同一直角坐标系中,函数y=1x,y=log a(x+1)(a>0,且a≠1)的图象可能是a27.设0<a <1,那么随机变量 X 的分布列是那么当a 在〔0,1〕内增大时,A .D 〔X 〕增大C .D 〔X 〕先增大后减小B .D 〔X 〕减小D .D 〔X 〕先减小后增大8.设三棱锥V –ABC 的底面是正三角形,侧棱长均相等,P 是棱VA 上的点〔不含端点〕.记直线AC 所成的角为 α,直线PB 与平面ABC 所成的角为 β,二面角P –AC –B 的平面角为 γ,那么A .β<γ,α<γB .β<α,β<γC .β<α,γ<αD .α<β,γ<βPB 与直线x,x 0.假设函数yf(x)axb 恰有3个零点,那么9.a,bR ,函数f(x)1x 3 1(a1)x2ax,x032A .a<–1,b<0B .a<–1,b>0C .a>–1,b<0D .a>–1,b>010 .设 a b {a n } 满足 a 1=a , a n+1=a n 2+b,nN ,那么,∈R ,数列1时,a 10B1 时,a 10A .当b=2>10 .当b=4 >10 C .当b=–2时,a 10>10D .当 b=–4a 10>10时,非选择题局部〔共110分〕二、填空题:本大题共7小题,多空题每题6分,单空题每题4分,共36分。
2021年高考浙江卷理科数学试题及解答

3 yO x yO x yO x yO x普通高等学校招生全国统一考试(浙江卷)数学(理工类)第 I 卷(共 50 分)一、选择题:本大题共 10 小题,每小题 5 分,共 50 分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1)“ x > 1”是“ x 2> x ”的( ) A.充分而不必要条件 B.必要而不充分条件 C.充分不必要条件 D.既不充分也不必要条件(2)若函数 f (x ) = 2 s in(ωx +ϕ) ,x ∈ R (其中ω> 0 ,ϕ < π)的最小正周期是π ,且 f (0) =,2则()A .ω= 1 ,ϕ= π26πC .ω= 2,ϕ=6 B .ω= 1 ,ϕ= π23 πD .ω= 2,ϕ=3 (3)直线 x - 2 y +1 = 0 关于直线 x = 1对称的直线方程是()A. x + 2 y -1 = 0 C. 2x + y - 3 = 0 B. 2x + y -1 = 0 D. x + 2 y - 3 = 0(4)要在边长为 16 米的正方形草坪上安装喷水龙头,使整个 草坪都能喷洒到水.假设每个喷水龙头的喷洒范围都是关径为 6 米的圆面,则需安装这种喷水龙头的个数最少是( ) A. 3 B. 4 C. 5 D. 6(5)已知随机变量ξ服从正态分布 N (2,σ2) , P (ξ≤ 4) = 0.84 ,则 P (ξ≤ 0) = ()A . 0.16B . 0.32C . 0.68D , 0.84(6)若 P 两条异面直线l ,m 外的任意一点,则()A.过点 P 有且仅有一条直线与l ,m 都平行 B.过点 P 有且仅有一条直线与l ,m 都垂直 C.过点 P 有且仅有一条直线与l ,m 都相交 D.过点 P 有且仅有一条直线与l ,m 都异面(7)若非零向量a ,b 满足 a + b = b ,则()A. 2a > 2a + b B. 2a < 2a + b C. 2b > a + 2bD. 2b < a + 2b(8)设 f '(x ) 是函数 f (x ) 的导函数,将 y = f (x ) 和 y = f '(x ) 的图象画在同一个直角坐标系中,不可能正确的是( )21 x2 y 2(9)已知双曲线 - a 2 b 2= 1(a > 0,b > 0) 的左、右焦点分别为 F 1 , F 2, P 是准线上一点,且PF 1 ⊥ PF 2 , PF 1 PF 2 = 4ab ,则双曲线的离心率是( )A. B. ⎧⎪x 2,x ≥1 C. 2 D. 3(10)设 f (x ) = ⎨ ⎪⎩x ,x < 1, g (x ) 是二次函数,若 f (g (x )) 的值域是[0,+ ∞),则 g (x ) 的值域是()A . (-∞,-1] [1,+ ∞) C . [0,+ ∞) B . (-∞,-1] [0,+ ∞) D . [1,+ ∞)第 II 卷(共 100 分)二、填空题:本大题共 7 小题,每小题 4 分,共 28 分. (11)已知复数 z 1 = 1- i , z 1 z 2 = 1+ i ,则复数 z 2 = .(12)已知sin θ+ cos θ= ,且π ≤θ≤ 3π,则cos 2θ的值是 .52 4(13)不等式 2x -1 - x < 1的解集是.(14)某书店有 11 种杂志,2 元 1 本的 8 种,1 元 1 本的 3 种,小张用 10 元钱买杂志(每种至多买一本,10 元钱刚好用完),则不同买法的种数是 (用数字作答).(15)随机变量ξ的分布列如下:其中 a ,b ,c 成等差数列,若 E ξ= 1 ,则 D ξ的值是.3(16)已知点O 在二面角α- AB - β的棱上,点 P 在α内,且∠POB = 45.若对于β内异于O 的 任意一点Q ,都有∠POQ ≥ 45,则二面角α- AB - β的大小是.⎧ ⎧x - 2 y + 5 ≥ 0⎫ ⎪ ⎪⎪ 22(17)设 m 为实数,若 ⎨(x ,y ) ⎨3 - x ≥0 ⎪ ⎪mx + y ≥ 0 ⎬ ⊆ {(x ,y ) x + y ⎪ ≤25},则 m 的取值范围⎩⎩ ⎭是 .三、解答题:本大题共 5 小题,共 72 分.解答应写出文字说明,证明过程或演算步骤. (18)(本题 14 分)已知△ABC 的周长为 (I )求边 AB 的长;+1,且sin A + sin B = 2 sin C . (II )若△ABC 的面积为 1sin C ,求角C 的度数.6ξ-1 0 1 Pabc3 2sin n M(19)(本题 14 分)在如图所示的几何体中, EA ⊥ 平面 ABC , DB ⊥ 平面 ABC , AC ⊥ BC ,且 AC = BC = BD = 2 AE , M 是 AB 的中点. D (I )求证: CM ⊥ EM ; E(II )求CM 与平面CDE 所成的角.ACx 2 2(第 19 题)B(20)(本题 14 分)如图,直线 y = kx + b 与椭圆 + y 4A ,B 两点,记△AOB 的面积为 S .= 1交于(I )求在 k = 0 , 0 < b < 1的条件下, S 的最大值; (II )当 AB = 2 , S = 1时,求直线 AB 的方程.(第 20 题)(21)(本题 15 分)已知数列{a n }中的相邻两项 a 的两个根,且 a 2k -1 ≤ a 2k (k = 1,2,3, ) . (I )求 a 1 , a 2 , a 3 , a 7 ; (II )求数列{a n }的前 2n 项和 S 2n ;1 ⎛ ⎫2k -1,a 2k 是关于 x 的方程 x 2 - (3k + 2k )x + 3k 2k = 0(Ⅲ)记 f (n ) =2 ⎝ sin n + 3⎪ , ⎭ T n = (-1) f (2) a a + (-1) f (3) a a + (-1) f (4) a a + …+ (-1) f (n +1) ,a a 1 23 4 5 6 2 n -1 2 n15求证: ≤ T ≤(n ∈ N * ) . 6n24x 32 2(22)(本题 15 分)设 f (x ) = ,对任意实数t ,记 g t (x ) = t 3x - t .3 3(I )求函数 y = f (x ) - g t (x ) 的单调区间; (II )求证:(ⅰ)当 x > 0 时, f (x )g f (x ) ≥ g t (x ) 对任意正实数t 成立; (ⅱ)有且仅有一个正实数 x 0 ,使得 g x (x 0 ) ≥ g t (x 0 ) 对任意正实数t 成立.yA OxB2007 年普通高等学校招生全国统一考试(浙江卷)数学(理工类)答案一、选择题:本题考查基本知识和基本运算.每小题 5 分,满分 50 分. (1)A (2)D (3)D (4)B (5)A (6)B (7)C (8)D (9)B (10)C 二、填空题:本题考查基本知识和基本运算.每小题 4 分,满分 28 分. 7 (11)1 (12) -(13) {x 0 < x < 2}25(14) 2665(15)9三、解答题(16) 90(17) 0 ≤ m ≤ 43(18)解:(I )由题意及正弦定理,得 AB + BC + AC =2 + 1,BC + AC = 2AB ,两式相减,得 AB = 1.(II )由△ABC 的面积 1 BC AC sin C = 1 sin C ,得 BC AC = 1,由余弦定理,得cos C =2 6 3AC 2 + BC 2 - AB 22 AC BC= ( AC + BC )2 - 2 AC BC - AB 2 = 1 所以C = 60.2 A C BC 2(19)本题主要考查空间线面关系、空间向量的概念与运算等基础知识,同时考查空间想象能力和推 理运算能力.满分 14 分. 方法一:(I )证明:因为 AC = BC , M 是 AB 的中点, 所以CM ⊥ AB . 又 EA ⊥ 平面 ABC , 所以CM ⊥ EM .(II )解:过点 M 作 MH ⊥ 平面CDE ,垂足是 H ,连结CH 交延长交 ED 于点 F ,连结 MF ,MD . ∠FCM 是直线CM 和平面CDE 所成的角. D 因为 MH ⊥ 平面CDE , E所以 MH ⊥ ED , E 又因为CM ⊥ 平面 EDM ,H所以CM ⊥ ED ,则 ED ⊥ 平面CMF ,因此 ED ⊥ MF . 设 EA = a , BD = BC = AC = 2a , A C在直角梯形 ABDE 中,MAB = 2 2a , M 是 AB 的中点, B所以 DE = 3a , EM = 3a , MD = 6a ,得△EMD 是直角三角形,其中∠EMD = 90,EM MD所以 MF = DE= 2a .,21- b 2MF = 2 在 Rt △CMF 中, tan ∠FCM = =1 , MC所以∠FCM = 45,故CM 与平面CDE 所成的角是45 . 方法二:如图,以点C 为坐标原点,以CA ,CB 分别为 x 轴和 y 轴,过点C 作与平面 ABC 垂直的直线为 z 轴, 建立直角坐标系C - xyz ,设 EA = a ,则 A (2a ,0,0) , B (0,2a ,0) , E (2a ,0,a ) . D (0,2a ,2a ) , M (a ,a ,0) .(I )证明:因为 EM = (-a ,a ,- a ) , CM = (a ,a ,0) ,所以 EM CM = 0 , 故 EM ⊥ CM .(II )解:设向量 n = (1,y 0,z 0 ) 与平面CDE 垂直,则 n ⊥ CE , n ⊥ CD , 即 n CE = 0 , n CD = 0 .z因为CE = (2a ,0,a ) , CD = (0,2a ,2a ) , D所以 y 0 = 2 , x 0 = -2 , E即 n = (1,2,- 2) ,cos n ,CM, CM n 2xC直线CM 与平面CDE 所成的角θ是n 与CM 夹角的余角,AM所以θ= 45,因此直线CM 与平面CDE 所成的角是 45. y B(20)本题主要考查椭圆的几何性质、椭圆与直线的位置关系等基础知识,考查解析几何的基本思想方 法和综合解题能力.满分 14 分.(Ⅰ)解:设点 A 的坐标为(x 1,b ) ,点 B 的坐标为(x 2,b ) ,x 2 2由+ b 4= 1,解得 x 1,2 = ±2 , 1所以 S = 2 b x 1 - x 2= 2b ≤ b 2 +1- b 2 = 1.当且仅当b = 时,S 取到最大值1.2⎧ y = kx + b , ⎪(Ⅱ)解:由 ⎨ x 2⎪⎩ 4y 2 = 1 得⎛ k 2 + 1 ⎫ x 2 + 2kbx + b 2 - 1 = 0 , 4 ⎪ ⎝ ⎭∆ = 4k 2 - b 2 + 1,1- b 2+ =2S = 1 2| AB |= | x 1 - x 1 | = 1 + k 2 4= 2 . ②设O 到 AB 的距离为 d ,则 d = = 1,| AB || b |又因为 d ,1+ k 2所以b 2 = k 2+ 1,代入②式并整理,得k 4 - k 2 + 1= 0 ,4 解得 k 2 = 1 , b 2 = 3 ,代入①式检验, ∆ > 0, 2 2故直线 AB 的方程是y = 2 x + 6 或 y = 2 x - 6 或 y = - 2 x + 6 ,或 y = - 2 x - 6 .2 2 2 2 2 2 2 221.本题主要考查等差、等比数列的基本知识,考查运算及推理能力.满分 15 分. (I )解:方程 x 2- (3k + 2k)x + 3k 2k= 0 的两个根为 x = 3k , x = 2k, 当 k = 1时, x 1 = 3,x 2 = 2 , 所以 a 1 = 2 ;当 k = 2 时, x 1 = 6 , x 2 = 4, 所以 a 3 = 4 ;当 k = 3时, x 1 = 9 , x 2 = 8 , 所以 a 5 = 8时;当 k = 4 时, x 1 = 12 , x 2 = 16 , 所以 a 7 = 12 .(II )解: S 2n = a 1 + a 2 + + a 2n= (3 + 6 + + 3n ) + (2 + 2 2 + + 2 n ) = 3n 2 + 3n + 22n +1 - 2 .1 1 1 ( -1) f (n +1)(III )证明: T n = a a + - a a a a + + ,a a所以T 1 =1 a 1a2 1 23 45 62 n -1 2 n= 1 ,6 1 1 5 T 2 = a a + a a = 24 .1 23 4当 n ≥ 3时,1 1 1 ( -1) f (n +1) T n = + - + + ,6 a 3a 4 a 5a 6a 2 n -1a 2 n 1 + k 21+ k 24k 2 - b 2 +1≥1+1 -⎛ 1+ +1 ⎫6 a aa a a a⎪3 4 ⎝ 5 6 2 n-1 2 n ⎭≥1+1 -1 ⎛1+ +1 ⎫6 6 22 6 23 2 n ⎪=1+1⎝⎭>1,6 6 2n 65 1 1 ( -1) f (n+1)同时,Tn=--+ +≤ 5 -241+⎛a5a61a7a8+ +1a2 n-1a2 n⎫24 a aa a a a⎪5 6 ⎝ 1 2 2 n-1 2 n ⎭≤5-1+1 ⎛1+ +1 ⎫24 9 23 9 21 2 n ⎪=5-1⎝⎭<5.24 9 2n 24综上,当n ∈N *时,1≤T ≤5.6 n 2422.本题主要考查函数的基本性质,导数的应用及不等式的证明等基础知识,以及综合运用所学知识分析和解决问题的能力.满分15 分.x3 16(I)解:y =- 4x +.3 3由y'=x2 - 4 = 0 ,得x =±2.因为当x∈(-∞,-2)时,y'>0,当x∈(-2,2)时,y'<0,当x∈(2,+∞)时,y'>0,故所求函数的单调递增区间是(-∞,-2),(2,+∞),单调递减区间是(-2,2).(II)证明:(i)方法一:x3 2 2令h(x) =f (x) -gt(x) =-t 3 x +3 3t(x > 0) ,则2h'(x) =x2 -t 3 ,1当t > 0时,由h'(x) = 0 ,得x =t 3 ,1当x∈(x3,+∞)时,h'(x)>0,1所以h(x)在(0,+∞)内的最小值是h(t3)=0.故当x > 0 时,f (x) ≥gt(x) 对任意正实数t 成立.方法二:2对任意固定的x > 0 ,令h(t) =gt(x) =t 3 x -2t(t > 0) ,则3h '(t ) = 2 - 1 1t 3(x - t 3 ) ,3由 h '(t ) = 0 ,得t = x 3.当0 < t < x 3时, h '(t ) >0 . 当t > x 3 时, h '(t ) < 0 ,所以当t = x 3 时, h (t ) 取得最大值 h (x 3) = 1x 3.3因此当 x > 0 时, f (x ) ≥ g (x ) 对任意正实数t 成立. (ii )方法一:f (2) = 8= g (2) .3t由(i )得, g t (2) ≥ g t (2) 对任意正实数t 成立.即存在正实数 x 0 = 2 ,使得 g x (2) ≥ g t (2) 对任意正实数t 成立. 下面证明 x 0 的唯一性:当 x 0 ≠ 2, x 0 > 0 , t = 8 时,x 3f (x ) = 0 ,g (x ) = 4x - 16 , 03x 0 03x3由(i )得,0 > 4x - 16 ,3 03x 3 再取t = x 3 ,得 g (x ) = 0 ,0 x 03 0 316 x 3所以 g x (x 0 ) = 4x 0 - < 0= g 3 3x 03 (x 0 ) ,即 x 0 ≠ 2时,不满足 g x (x 0 ) ≥ g t (x 0 ) 对任意t > 0都成立. 故有且仅有一个正实数 x 0 = 2 ,使得 g x (x 0 )0 ≥ g t (x 0 ) 对任意正实数t 成立.方法二:对任意 x 0 > 0 , g x (x 0 ) = 4x 0 - 16 ,3因为 g (x ) 关于t 的最大值是 1 x 3,所以要使 g (x ) ≥ g (x ) 对任意正实数成立的充分必要条件是:t 03 0x 0 t 0 4x - 16 ≥ 1x 3 , 03 3 0即(x 0 - 2)2(x 0 + 4) ≤0 , ①又因为 x 0 > 0 ,不等式①成立的充分必要条件是 x 0 = 2 , 所以有且仅有一个正实数 x 0 = 2 ,使得 g x (x 0 ) ≥ g t (x 0 ) 对任意正实数t 成立.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2021年浙江省高考数学试卷(理科)一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=76.(5分)已知,则tan2α=()A.B.C.D.7.(5分)设△ABC,P0是边AB上一定点,满足,且关于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC8.(5分)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于cm3.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有种(用数字作答)15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于.三、解答题:本大题共5小题,共72分.解承诺写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.2020年浙江省高考数学试卷(理科)参考答案与试题解析一.选择题:本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)已知i是虚数单位,则(﹣1+i)(2﹣i)=()A.﹣3+i B.﹣1+3i C.﹣3+3i D.﹣1+i【分析】直截了当利用两个复数代数形式的乘法法则,以及虚数单位i的幂运算性质,运算求得结果.【解答】解:(﹣1+i)(2﹣i)=﹣2+i+2i+1=﹣1+3i,故选:B.【点评】本题要紧考查两个复数代数形式的乘法,虚数单位i的幂运算性质,属于基础题.2.(5分)设集合S={x|x>﹣2},T={x|x2+3x﹣4≤0},则(∁R S)∪T=()A.(﹣2,1]B.(﹣∞,﹣4]C.(﹣∞,1]D.[1,+∞)【分析】先依照一元二次不等式求出集合T,然后求得∁R S,再利用并集的定义求出结果.【解答】解:∵集合S={x|x>﹣2},∴∁R S={x|x≤﹣2},T={x|x2+3x﹣4≤0}={x|﹣4≤x≤1},故(∁R S)∪T={x|x≤1}故选:C.【点评】此题属于以一元二次不等式的解法为平台,考查了补集及并集的运算,是高考中常考的题型.在求补集时注意全集的范畴.3.(5分)已知x,y为正实数,则()A.2lgx+lgy=2lgx+2lgy B.2lg(x+y)=2lgx•2lgyC.2lgx•lgy=2lgx+2lgy D.2lg(xy)=2lgx•2lgy【分析】直截了当利用指数与对数的运算性质,判定选项即可.【解答】解:因为a s+t=a s•a t,lg(xy)=lgx+lgy(x,y为正实数),因此2lg(xy)=2lgx+lgy=2lgx•2lgy,满足上述两个公式,故选:D.【点评】本题考查指数与对数的运算性质,差不多知识的考查.4.(5分)已知函数f(x)=Acos(ωx+φ)(A>0,ω>0,φ∈R),则“f(x)是奇函数”是“φ=”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【分析】φ=⇒f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x ∈R)是奇函数.f(x)为奇函数⇒f(0)=0⇒φ=kπ+,k∈Z.因此“f(x)是奇函数”是“φ=”必要不充分条件.【解答】解:若φ=,则f(x)=Acos(ωx+)⇒f(x)=﹣Asin(ωx)(A>0,ω>0,x∈R)是奇函数;若f(x)是奇函数,⇒f(0)=0,∴f(0)=Acos(ω×0+φ)=Acosφ=0.∴φ=kπ+,k∈Z,不一定有φ=“f(x)是奇函数”是“φ=”必要不充分条件.故选:B.【点评】本题考查充分条件、必要条件和充要条件的判定,解题时要认真审题,认真解答,注意三角函数性质的灵活运用.5.(5分)某程序框图如图所示,若该程序运行后输出的值是,则()A.a=4 B.a=5 C.a=6 D.a=7【分析】依照已知流程图可得程序的功能是运算S=1++…+的值,利用裂项相消法易得答案.【解答】解:由已知可得该程序的功能是运算并输出S=1++…+=1+1﹣=2﹣.若该程序运行后输出的值是,则2﹣=.∴a=4,故选:A.【点评】本题考查的知识点是程序框图,其中分析出程序的功能是解答的关键.6.(5分)已知,则tan2α=()A.B.C.D.【分析】由题意结合sin2α+cos2α=1可解得sinα,和cosα,进而可得tanα,再代入二倍角的正切公式可得答案.【解答】解:∵,又sin2α+cos2α=1,联立解得,或故tanα==,或tanα=3,代入可得tan2α===﹣,或tan2α===故选:C.【点评】本题考查二倍角的正切公式,涉及同角三角函数的差不多关系,属中档题.7.(5分)设△ABC,P0是边AB上一定点,满足,且关于边AB上任一点P,恒有则()A.∠ABC=90°B.∠BAC=90°C.AB=AC D.AC=BC【分析】设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,由此能求出△ABC是等腰三角形,AC=BC.【解答】解:设||=4,则||=1,过点C作AB的垂线,垂足为H,在AB上任取一点P,设HP0=a,则由数量积的几何意义可得,=||•||=||2﹣(a+1)||,•=﹣a,因此•≥••恒成立,整理得||2﹣(a+1)||+a≥0恒成立,只需△=(a+1)2﹣4a=(a﹣1)2≤0即可,因此a=1,因此我们得到HB=2,即H是AB的中点,故△ABC是等腰三角形,因此AC=BC.故选:D.【点评】本题要紧考查了平面向量的运算,向量的模及向量的数量积的概念,向量运算的几何意义的应用,还考查了利用向量解决简单的几何问题的能力8.(5分)已知e为自然对数的底数,设函数f(x)=(e x﹣1)(x﹣1)k(k=1,2),则()A.当k=1时,f(x)在x=1处取得极小值B.当k=1时,f(x)在x=1处取得极大值C.当k=2时,f(x)在x=1处取得极小值D.当k=2时,f(x)在x=1处取得极大值【分析】通过对函数f(x)求导,依照选项知函数在x=1处有极值,验证f'(1)=0,再验证f(x)在x=1处取得极小值依旧极大值即可得结论.【解答】解:当k=1时,函数f(x)=(e x﹣1)(x﹣1).求导函数可得f'(x)=e x(x﹣1)+(e x﹣1)=(xe x﹣1),f'(1)=e﹣1≠0,f'(2)=2e2﹣1≠0,则f(x)在在x=1处与在x=2处均取不到极值,当k=2时,函数f(x)=(e x﹣1)(x﹣1)2.求导函数可得f'(x)=e x(x﹣1)2+2(e x﹣1)(x﹣1)=(x﹣1)(xe x+e x﹣2),∴当x=1,f'(x)=0,且当x>1时,f'(x)>0,当x0<x<1时(x0为极大值点),f'(x)<0,故函数f(x)在(1,+∞)上是增函数;在(x0,1)上是减函数,从而函数f(x)在x=1取得极小值.对比选项.故选:C.【点评】本题考查了函数的极值问题,考查学生的运算能力,正确明白得极值是关键.9.(5分)如图F1、F2是椭圆C1:+y2=1与双曲线C2的公共焦点,A、B分别是C1、C2在第二、四象限的公共点,若四边形AF1BF2为矩形,则C2的离心率是()A.B.C.D.【分析】不妨设|AF1|=x,|AF2|=y,依题意,解此方程组可求得x,y的值,利用双曲线的定义及性质即可求得C2的离心率.【解答】解:设|AF1|=x,|AF2|=y,∵点A为椭圆C1:+y2=1上的点,∴2a=4,b=1,c=;∴|AF1|+|AF2|=2a=4,即x+y=4;①又四边形AF1BF2为矩形,∴+=,即x2+y2=(2c)2==12,②由①②得:,解得x=2﹣,y=2+,设双曲线C2的实轴长为2m,焦距为2n,则2m=|AF2|﹣|AF1|=y﹣x=2,2n=2c=2,∴双曲线C2的离心率e===.故选:D.【点评】本题考查椭圆与双曲线的简单性质,求得|AF1|与|AF2|是关键,考查分析与运算能力,属于中档题.10.(5分)在空间中,过点A作平面π的垂线,垂足为B,记B=fπ(A).设α,β是两个不同的平面,对空间任意一点P,Q1=fβ[fα(P)],Q2=fα[fβ(P)],恒有PQ1=PQ2,则()A.平面α与平面β垂直B.平面α与平面β所成的(锐)二面角为45°C.平面α与平面β平行D.平面α与平面β所成的(锐)二面角为60°【分析】设P1是点P在α内的射影,点P2是点P在β内的射影.依照题意点P1在β内的射影与P2在α内的射影重合于一点,由此可得四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角,依照面面垂直的定义可得平面α与平面β垂直,得到本题答案.【解答】解:设P1=fα(P),则依照题意,得点P1是过点P作平面α垂线的垂足∵Q1=fβ[fα(P)]=fβ(P1),∴点Q1是过点P1作平面β垂线的垂足同理,若P2=fβ(P),得点P2是过点P作平面β垂线的垂足因此Q2=fα[fβ(P)]表示点Q2是过点P2作平面α垂线的垂足∵对任意的点P,恒有PQ1=PQ2,∴点Q1与Q2重合于同一点由此可得,四边形PP1Q1P2为矩形,且∠P1Q1P2是二面角α﹣l﹣β的平面角∵∠P1Q1P2是直角,∴平面α与平面β垂直故选:A.【点评】本题给出新定义,要求我们判定平面α与平面β所成角大小,着重考查了线面垂直性质、二面角的平面角和面面垂直的定义等知识,属于中档题.二、填空题:本大题共7小题,每小题4分,共28分.11.(4分)设二项式的展开式中常数项为A,则A=﹣10.【分析】先求出二项式展开式的通项公式,再令x的系数等于0,求得r的值,即可求得展开式中的常数项的值.=••(﹣1)【解答】解:二项式的展开式的通项公式为T r+1r•=(﹣1)r••.令=0,解得r=3,故展开式的常数项为﹣=﹣10,故答案为﹣10.【点评】本题要紧考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数,属于中档题.12.(4分)若某几何体的三视图(单位:cm)如图所示,则此几何体的体积等于24cm3.【分析】先依照三视图判定几何体的形状,再利用体积公式运算即可.【解答】解:几何体为三棱柱去掉一个三棱锥后的几何体,底面是直角三角形,直角边分别为3,4,侧面的高为5,被截取的棱锥的高为3.如图:V=V棱柱﹣V棱锥==24(cm3)故答案为:24.【点评】本题考查几何体的三视图及几何体的体积运算.V椎体=Sh,V柱体=Sh.考查空间想象能力.13.(4分)设z=kx+y,其中实数x,y满足,若z的最大值为12,则实数k=2.【分析】先画出可行域,得到角点坐标.再对k进行分类讨论,通过平移直线z=kx+y 得到最大值点A,即可得到答案.【解答】解:可行域如图:由得:A(4,4),同样地,得B(0,2),z=kx+y,即y=﹣kx+z,分k>0,k<0两种情形.当k>0时,目标函数z=kx+y在A点取最大值,即直线z=kx+y在y轴上的截距z最大,即12=4k+4,得k=2;当k<0时,①当k>﹣时,目标函数z=kx+y在A点(4,4)时取最大值,即直线z=kx+y 在y轴上的截距z最大,现在,12=4k+4,故k=2.②当k时,目标函数z=kx+y在B点(0,2)时取最大值,即直线z=kx+y在y轴上的截距z最大,现在,12=0×k+2,故k不存在.综上,k=2.故答案为:2.【点评】本题要紧考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数给予几何意义.14.(4分)将A,B,C,D,E,F六个字母排成一排,且A,B均在C的同侧,则不同的排法共有480种(用数字作答)【分析】按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,因此只看左的情形最后乘以2即可.【解答】解:按C的位置分类,在左1,左2,左3,或者在右1,右2,右3,因为左右是对称的,因此只看左的情形最后乘以2即可.当C在左边第1个位置时,有A,当C在左边第2个位置时,A和B有C右边的4个位置能够选,有A A,当C在左边第3个位置时,有A A+A A,共为240种,乘以2,得480.则不同的排法共有480种.故答案为:480.【点评】本题考查排列、组合的应用,关键在于明确事件之间的关系,同时要把握分类讨论的处理方法.15.(4分)设F为抛物线C:y2=4x的焦点,过点P(﹣1,0)的直线l交抛物线C于两点A,B,点Q为线段AB的中点,若|FQ|=2,则直线l的斜率等于不存在.【分析】由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).利用根与系数的关系可得y1+y2=4m,利用中点坐标公式可得=2m,x0=my0﹣1=2m2﹣1.Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).再利用两点间的距离公式即可得出m及k,再代入△判定是否成赶忙可.【解答】解:由题意设直线l的方程为my=x+1,联立得到y2﹣4my+4=0,△=16m2﹣16=16(m2﹣1)>0.设A(x1,y1),B(x2,y2),Q(x0,y0).∴y1+y2=4m,∴=2m,∴x0=my0﹣1=2m2﹣1.∴Q(2m2﹣1,2m),由抛物线C:y2=4x得焦点F(1,0).∵|QF|=2,∴,化为m2=1,解得m=±1,不满足△>0.故满足条件的直线l不存在.故答案为不存在.【点评】本题综合考查了直线与抛物线的位置关系与△的关系、根与系数的关系、中点坐标关系、两点间的距离公式等基础知识,考查了推理能力和运算能力.16.(4分)△ABC中,∠C=90°,M是BC的中点,若,则sin∠BAC=.【分析】作出图象,设出未知量,在△ABM中,由正弦定理可得sin∠AMB=,进而可得cosβ=,在RT△ACM中,还可得cosβ=,建立等式后可得a=b,再由勾股定理可得c=,而sin∠BAC═=,代入化简可得答案.【解答】解:如图设AC=b,AB=c,CM=MB=,∠MAC=β,在△ABM中,由正弦定理可得=,代入数据可得=,解得sin∠AMB=,故cosβ=cos(﹣∠AMC)=sin∠AMC=sin(π﹣∠AMB)=sin∠AMB=,而在RT△ACM中,cosβ==,故可得=,化简可得a4﹣4a2b2+4b4=(a2﹣2b2)2=0,解之可得a=b,再由勾股定理可得a2+b2=c2,联立可得c=,故在RT△ABC中,sin∠BAC====,另解:设∠BAM为α,∠MAC为β,正弦定理得BM:sinα=AM:sin∠BBM:sinβ=AM又有sinβ=cos∠AMC=cos(α+∠B),联立消去BM,AM得sin∠Bcos(α+∠B)=sinα,拆开,将1化成sin2∠B+cos2∠B,构造二次齐次式,同除cos2∠B,可得tanα=,若,则cos∠BAM=,tan∠BAM=,解得tan∠B=,cosB=易得sin∠BAC=.另解:作MD⊥AB交于D,设MD=1,AM=3,AD=2,DB=x,BM=CM=,用△DMB和△CAB相似解得x=,则cosB=,易得sin∠BAC=.故答案为:【点评】本题考查正弦定理的应用,涉及三角函数的诱导公式以及勾股定理的应用,属难题.17.(4分)设、为单位向量,非零向量=x+y,x、y∈R.若、的夹角为30°,则的最大值等于2.【分析】由题意求得=,||==,从而可得===,再利用二次函数的性质求得的最大值.【解答】解:∵、为单位向量,和的夹角等于30°,∴=1×1×cos30°=.∵非零向量=x+y,∴||===,∴====,故当=﹣时,取得最大值为2,故答案为2.【点评】本题要紧考查两个向量的数量积的运算,求向量的模,利用二次函数的性质求函数的最大值,属于中档题.三、解答题:本大题共5小题,共72分.解承诺写出文字说明、证明过程或演算步骤.18.(14分)在公差为d的等差数列{a n}中,已知a1=10,且a1,2a2+2,5a3成等比数列.(Ⅰ)求d,a n;(Ⅱ)若d<0,求|a1|+|a2|+|a3|+…+|a n|.【分析】(Ⅰ)直截了当由已知条件a1=10,且a1,2a2+2,5a3成等比数列列式求出公差,则通项公式a n可求;(Ⅱ)利用(Ⅰ)中的结论,得到等差数列{a n}的前11项大于等于0,后面的项小于0,因此分类讨论求d<0时|a1|+|a2|+|a3|+…+|a n|的和.【解答】解:(Ⅰ)由题意得,即,整理得d2﹣3d﹣4=0.解得d=﹣1或d=4.当d=﹣1时,a n=a1+(n﹣1)d=10﹣(n﹣1)=﹣n+11.当d=4时,a n=a1+(n﹣1)d=10+4(n﹣1)=4n+6.因此a n=﹣n+11或a n=4n+6;(Ⅱ)设数列{a n}的前n项和为S n,因为d<0,由(Ⅰ)得d=﹣1,a n=﹣n+11.则当n≤11时,.当n≥12时,|a1|+|a2|+|a3|+…+|a n|=﹣S n+2S11=.综上所述,|a1|+|a2|+|a3|+…+|a n|=.【点评】本题考查了等差数列、等比数列的差不多概念,考查了等差数列的通项公式,求和公式,考查了分类讨论的数学思想方法和学生的运算能力,是中档题.19.(14分)设袋子中装有a个红球,b个黄球,c个蓝球,且规定:取出一个红球得1分,取出一个黄球2分,取出蓝球得3分.(1)当a=3,b=2,c=1时,从该袋子中任取(有放回,且每球取到的机会均等)2个球,记随机变量ξ为取出此2球所得分数之和.求ξ分布列;(2)从该袋子中任取(且每球取到的机会均等)1个球,记随机变量η为取出此球所得分数.若,求a:b:c.【分析】(1)ξ的可能取值有:2,3,4,5,6,求出相应的概率可得所求ξ的分布列;(2)先列出η的分布列,再利用η的数学期望和方差公式,即可得到结论.【解答】解:(1)由题意得ξ=2,3,4,5,6,P(ξ=2)==;P(ξ=3)==;P(ξ=4)==;P(ξ=5)==;P(ξ=6)==.故所求ξ的分布列为ξ23456P(2)由题意知η的分布列为η123PEη==Dη=(1﹣)2+(2﹣)2+(3﹣)2=.得,解得a=3c,b=2c,故a:b:c=3:2:1.【点评】本题要紧考查随机事件的概率和随机变量的分布列、数学期望等概念,同时考查抽象概括、运算能力,属于中档题.20.(15分)如图,在四面体A﹣BCD中,AD⊥平面BCD,BC⊥CD,AD=2,BD=2.M 是AD的中点,P是BM的中点,点Q在线段AC上,且AQ=3QC.(1)证明:PQ∥平面BCD;(2)若二面角C﹣BM﹣D的大小为60°,求∠BDC的大小.【分析】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ.依照平行线分线段成比例定理结合三角形的中位线定理证出四边形OPQF是平行四边形,从而PQ∥OF,再由线面平行判定定理,证出PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH.依照线面垂直的判定与性质证出BM⊥CH,因此∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°.设∠BDC=θ,用解直角三角形的方法算出HG和CG关于θ的表达式,最后在Rt△CHG中,依照正切的定义得出tan∠CHG==,从而得到tanθ=,由此可得∠BDC.【解答】(1)取BD的中点O,在线段CD上取点F,使得DF=3CF,连接OP、OF、FQ∵△ACD中,AQ=3QC且DF=3CF,∴QF∥AD且QF=AD∵△BDM中,O、P分别为BD、BM的中点∴OP∥DM,且OP=DM,结合M为AD中点得:OP∥AD且OP=AD∴OP∥QF且OP=QF,可得四边形OPQF是平行四边形∴PQ∥OF∵PQ⊄平面BCD且OF⊂平面BCD,∴PQ∥平面BCD;(2)过点C作CG⊥BD,垂足为G,过G作GH⊥BM于H,连接CH∵AD⊥平面BCD,CG⊂平面BCD,∴AD⊥CG又∵CG⊥BD,AD、BD是平面ABD内的相交直线∴CG⊥平面ABD,结合BM⊂平面ABD,得CG⊥BM∵GH⊥BM,CG、GH是平面CGH内的相交直线∴BM⊥平面CGH,可得BM⊥CH因此,∠CHG是二面角C﹣BM﹣D的平面角,可得∠CHG=60°设∠BDC=θ,可得Rt△BCD中,CD=BDcosθ=2cosθ,CG=CDsinθ=sinθcosθ,BG=BCsinθ=2sin2θRt△BMD中,HG==;Rt△CHG中,tan∠CHG==∴tanθ=,可得θ=60°,即∠BDC=60°【点评】本题在底面为直角三角形且过锐角顶点的侧棱与底面垂直的三棱锥中求证线面平行,同时在已知二面角大小的情形下求线线角.着重考查了线面平行、线面垂直的判定与性质,解直角三角形和平面与平面所成角求法等知识,属于中档题.21.(15分)如图,点P(0,﹣1)是椭圆C1:+=1(a>b>0)的一个顶点,C1的长轴是圆C2:x2+y2=4的直径,l1,l2是过点P且互相垂直的两条直线,其中l1交圆C2于A、B两点,l2交椭圆C1于另一点D.(1)求椭圆C1的方程;(2)求△ABD面积的最大值时直线l1的方程.【分析】(1)由题意可得b=1,2a=4,即可得到椭圆的方程;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.利用点到直线的距离公式和弦长公式即可得出圆心O到直线l1的距离和弦长|AB|,又l2⊥l1,可得直线l2的方程为x+kx+k=0,与椭圆的方程联赶忙可得到点D的横坐标,即可得出|PD|,即可得到三角形ABD的面积,利用差不多不等式的性质即可得出其最大值,即得到k的值.【解答】解:(1)由题意可得b=1,2a=4,即a=2.∴椭圆C1的方程为;(2)设A(x1,y1),B(x2,y2),D(x0,y0).由题意可知:直线l1的斜率存在,设为k,则直线l1的方程为y=kx﹣1.又圆的圆心O(0,0)到直线l1的距离d=.∴|AB|==.又l2⊥l1,故直线l2的方程为x+ky+k=0,联立,消去y得到(4+k2)x2+8kx=0,解得,∴|PD|=.==,∴三角形ABD的面积S△令4+k2=t>4,则k2=t﹣4,f(t)===,∴S=,当且仅,即,当时取等号,△故所求直线l1的方程为.【点评】本题要紧考查了椭圆的几何性质、直线与圆及椭圆的位置关系等基础知识,同时考查了推理能力和运算能力及分析问题和解决问题的能力.22.(14分)已知a∈R,函数f(x)=x3﹣3x2+3ax﹣3a+3.(1)求曲线y=f(x)在点(1,f(1))处的切线方程;(2)当x∈[0,2]时,求|f(x)|的最大值.【分析】(1)求出原函数的导函数,求出函数取x=1时的导数值及f(1),由直线方程的点斜式写出切线方程;(2)求出原函数的导函数,分a≤0,0<a<1,a≥1三种情形求|f(x)|的最大值.专门当0<a<1时,仍需要利用导数求函数在区间(0,2)上的极值,然后在依照a的范畴分析区间端点值与极值绝对值的大小.【解答】解:(1)因为f(x)=x3﹣3x2+3ax﹣3a+3,因此f′(x)=3x2﹣6x+3a,故f′(1)=3a﹣3,又f(1)=1,因此所求的切线方程为y=(3a﹣3)x﹣3a+4;(2)由于f′(x)=3(x﹣1)2+3(a﹣1),0≤x≤2.故当a≤0时,有f′(x)≤0,现在f(x)在[0,2]上单调递减,故|f(x)|max=max{|f(0)|,|f(2)|}=3﹣3a.当a≥1时,有f′(x)≥0,现在f(x)在[0,2]上单调递增,故|f(x)|max=max{|f(0)|,|f(2)|}=3a﹣1.当0<a<1时,由3(x﹣1)2+3(a﹣1)=0,得,.因此,当x∈(0,x1)时,f′(x)>0,函数f(x)单调递增;当x∈(x1,x2)时,f′(x)<0,函数f(x)单调递减;当x∈(x2,2)时,f′(x)>0,函数f(x)单调递增.因此函数f(x)的极大值,极小值.故f(x1)+f(x2)=2>0,.从而f(x1)>|f(x2)|.因此|f(x)|max=max{f(0),|f(2)|,f(x1)}.当0<a<时,f(0)>|f(2)|.又=故.当时,|f(2)|=f(2),且f(2)≥f(0).又=.因此当时,f(x1)>|f(2)|.故.当时,f(x1)≤|f(2)|.故f(x)max=|f(2)|=3a﹣1.综上所述|f(x)|max=.【点评】本题考查了利用导数研究曲线上某点处的切线方程,考查了利用导数求闭区间上的最值,考查了分类讨论的数学思想方法,正确的分类是解答(2)的关键,此题属于难题.。