复数及算法
复数与算法

2.若复数 z=a+3+a2i+2a-3i(i 为虚数单位)为纯虚 数,则实数 a 的值为( )
A.-3 B.-3 或 1 C.3 或-1 D.1
解析 ∵z=a+3+a2i+2a-3i=(a2+2a-3)-(a+3)i
是纯虚数,∴a-2+a2+a-3≠3=0,0,
高中数学
第3讲 复数、算法
[考情分析] 高考中对复数的考查多以选择题、填空题 的形式出现,单独命题,一般难度较小.对程序框图的考查 主要以循环结构的程序框图为载体,考查学生对算法的理 解.
热点题型分析
热点1 复数的基本概念 【方法结论】
1.复数的分类
实数b=0, a+bi(a,b∈R)虚数b≠0非纯纯虚虚数数a=a0≠,0.
【题型分析】 1.(2016·全国卷Ⅰ)设 x(1+i)=1+yi,其中 x,y 为实数, 则|x+yi|=( ) A.1 B. 2 C. 3 D.2
解析 因为 x(1+i)=1+yi,所以 x+xi=1+yi,x=1,y =x=1,|x+yi|=|1+i|= 2,故选 B.
2.设复数 z 满足11+-zz=i,则 z=(
2.处理有关复数概念的问题时,首先要找准复数的实 部与虚部(若复数为非标准的代数形式,则应通过代数运算 化为标准代数形式),然后根据定义解题.
3.复数问题实数化是解决复数问题的最基本也是最重 要的方法.
【题型分析】 1.若复数 z=i(3-2i)(i 是虚数单位),则 z =( ) A.2-3i B.2+3i C.3+2i D.3-2i
热点2 复数的几何意义 【方法结论】 1.
2.复数加减法的几何意义可按平面向量加减法理解, 利用平行四边形法则或三角形法则解决问题.
2023年统考版《师说》高考数学复习(文科)课件 第12章 复数、推理与证明、算法

(2)复数加法的运算定律
复数的加法满足交换律、结合律,即对任何z1、z2、z3∈C,有z1+z2
=z2+z1,(z1+z2)+z3=z1+(z2+z3).
二、必明3个常用结论
1+i
1−i
2
1.(1±i) =±2i; =i; =-i;
1−i
1+i
2.-b+ai=i(a+bi);
3.i4n=1,i4n+1=i,i4n+2=-1,i4n+3=-i,i4n+i4n+1+i4n+2+i4n+
第一节 数系的扩充与复数的引入
必备知识—基础落实
关键能力—考点突破
·最新考纲·
1.理解复数的基本概念.
2.理解复数相等的充要条件.
3.了解复数的代数表示及其几何意义.
4.能进行复数代数形式的四则运算.
5.了解复数代数形式的加、减运算的几何意义.
·考向预测·
考情分析:复数的基本概念(复数的实部、虚部、共轭复数、复数的
4a = 4
所以,ቊ
,解得a=b=1,因此,z=1+i.
6b = 6
)
(3)[2021·全国甲卷]已知(1-i)2z=3+2i,则z=(
3
3
A.-1- i B.-1+ i
2
3
C.- +i
2
3
D.- -i
2
2
答案: (3)B
3+2i
解析: (3)(1-i)2z=-2iz=3+2i,z= −2i =
3+2i ·i −2+3i
3
=
=-1+
i.
−2i·i
2
2
)
反思感悟 复数代数形式运算问题的解题策略
复数的
7-2-2复数的乘、除运算(教学课件)-高中数学人教A版(2019) 必修第二册

2
因为( i) =(- i) =-2,
所以 x+2= i 或 x+2=- i,
即 x=-2+ i 或 x=-2- i,
2
所以方程 x +4x+6=0 的根为 x=-2± i.
即时训练6-1:(1)在复数范围内解一元二次方程 x2-2x+5=0;
2
解:(1)Δ=(-2) -4×1×5=-16<0,
,
2
2a
4a
2
b
x
2a
b2 4ac
2a
i.
所以原方程的根为 x b
2a
b2 4ac
2a
i.
总结
在复数范围内,实系数一元二次方程 ax2+bx+c=0(a≠0)的求解方法
1.求根公式法
-b± b2-4ac
①当 Δ≥0 时,x=
.
2a
-b± -(b2-4ac)i
(a+b)(c+d)=ac+ad+bc+bd
多项式乘以
多项式
思考2:复数z1=a+bi,z2=c+di,其中a,b,c,
d∈R,则z1·z2 =(a+bi)(c+di),按照上述运算法则将其展开,
z1·z2等于什么?
1.复数的乘法法则:
z1·z2=
( + )( + ) = + + + 2
(4)
1 3i.
2
i
i
i
探究角度3
复数的积与商的模
即时训练 3-1:(1)已知 i 为虚数单位,则复数
的模等于(
-
复数、算法、推理与证明

复数、算法、推理与证明第一节 数系的扩充与复数的引入一、基础知识1.复数的有关概念 (1)复数的概念:形如a +b i(a ,b ∈R )的数叫复数,其中a ,b 分别是它的实部和虚部.若b =0,则a +b i 为实数;若b ≠0,则a +b i 为虚数;若a =0且b ≠0,则a +b i 为纯虚数.一个复数为纯虚数,不仅要求实部为0,还需要求虚部不为0.(2)复数相等:a +b i =c +d i ⇔a =c 且b =d (a ,b ,c ,d ∈R ). (3)共轭复数:a +b i 与c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ). (4)复数的模:向量OZ ―→的模r 叫做复数z =a +b i(a ,b ∈R )的模,记作|z |或|a +b i|,即|z |=|a +b i|=a 2+b 2.2.复数的几何意义 (1)复数z =a +b i复平面内的点Z (a ,b )(a ,b ∈R ).复数z =a +b i (a ,b ∈R )的对应点的坐标为(a ,b ),而不是(a ,b i ).(2)复数z =a +b i(a ,b ∈R ) 平面向量OZ ―→.3.复数的运算(1)复数的加、减、乘、除运算法则设z 1=a +b i ,z 2=c +d i(a ,b ,c ,d ∈R ),则 ①加法:z 1+z 2=(a +b i)+(c +d i)=(a +c )+(b +d )i ; ②减法:z 1-z 2=(a +b i)-(c +d i)=(a -c )+(b -d )i ; ③乘法:z 1·z 2=(a +b i)·(c +d i)=(ac -bd )+(ad +bc )i ;④除法:z 1z 2=a +b i c +d i =(a +b i )(c -d i )(c +d i )(c -d i )=ac +bd c 2+d 2+bc -adc 2+d 2i(c +d i ≠0).(2)复数加法的运算定律设z 1,z 2,z 3∈C ,则复数加法满足以下运算律: ①交换律:z 1+z 2=z 2+z 1;②结合律:(z 1+z 2)+z 3=z 1+(z 2+z 3).二、常用结论(1)(1±i)2=±2i ,1+i 1-i =i ,1-i1+i=-i. (2)-b +a i =i(a +b i).(3)i 4n =1,i 4n +1=i ,i 4n +2=-1,i 4n +3=-i(n ∈N *);i 4n +i 4n +1+i 4n +2+i 4n +3=0(n ∈N *).(4)z ·z =|z |2=|z |2,|z 1·z 2|=|z 1|·|z 2|,⎪⎪⎪⎪z 1z 2=|z 1||z 2|,|z n |=|z |n.考点一 复数的四则运算[典例] (1)(2017·山东高考)已知i 是虚数单位,若复数z 满足z i =1+i ,则z 2=( ) A .-2i B .2i C .-2D .2(2)(2019·山东师大附中模拟)计算:(2+i )(1-i )21-2i =( )A .2B .-2C .2iD .-2i[解析] (1)∵z i =1+i , ∴z =1+i i =1i +1=1-i.∴z 2=(1-i)2=1+i 2-2i =-2i.(2)(2+i )(1-i )21-2i =-(2+i )2i 1-2i =2-4i1-2i =2,故选A.[答案] (1)A (2)A[解题技法] 复数代数形式运算问题的解题策略(1)复数的加法、减法、乘法运算可以类比多项式的运算,可将含有虚数单位i 的看作一类同类项,不含i 的看作另一类同类项,分别合并即可.(2)复数的除法运算是分子、分母同乘以分母的共轭复数,即分母实数化,解题中要注意把i 的幂写成最简形式.[题组训练]1.(2019·合肥质检)已知i 为虚数单位,则(2+i )(3-4i )2-i =( )A .5B .5iC .-75-125iD .-75+125i解析:选A 法一:(2+i )(3-4i )2-i =10-5i2-i =5,故选A.法二:(2+i )(3-4i )2-i =(2+i )2(3-4i )(2+i )(2-i )=(3+4i )(3-4i )5=5,故选A.2.(2018·济南外国语学校模块考试)已知(1-i )2z =1+i(i 为虚数单位),则复数z 等于( )A .1+iB .1-iC .-1+iD .-1-i解析:选D 由题意,得z =(1-i )21+i =-2i1+i =-1-i ,故选D.3.已知复数z =i +i 2+i 3+…+i 2 0181+i ,则复数z =________.解析:因为i 4n +1+i 4n +2+i 4n +3+i 4n +4=i +i 2+i 3+i 4=0,而2 018=4×504+2,所以z =i +i 2+i 3+…+i 2 0181+i =i +i 21+i =-1+i 1+i =(-1+i )(1-i )(1+i )(1-i )=2i2=i.答案:i考点二 复数的有关概念[典例] (1)(2019·湘东五校联考)已知i 为虚数单位,若复数z =a1-2i +i(a ∈R )的实部与虚部互为相反数,则a =( )A .-5B .-1C .-13D .-53(2)(2018·全国卷Ⅰ)设z =1-i1+i +2i ,则|z |=( )A .0 B.12 C .1 D. 2[解析] (1)z =a 1-2i +i =a (1+2i )(1-2i )(1+2i )+i =a 5+2a +55i ,∵复数z =a1-2i+i(a ∈R )的实部与虚部互为相反数,∴-a 5=2a +55,解得a =-53.故选D.(2)∵z =1-i 1+i +2i =(1-i )2(1+i )(1-i )+2i = -2i2+2i =i ,∴|z |=1.故选C. [答案] (1)D (2)C[解题技法] 紧扣定义解决复数概念、共轭复数问题(1)求一个复数的实部与虚部,只需将已知的复数化为代数形式z =a +b i(a ,b ∈R ),则该复数的实部为a ,虚部为b .(2)求一个复数的共轭复数,只需将此复数整理成标准的代数形式,实部不变,虚部变为相反数,即得原复数的共轭复数.复数z 1=a +b i 与z 2=c +d i 共轭⇔a =c ,b =-d (a ,b ,c ,d ∈R ).[题组训练]1.(2019·山西八校第一次联考)已知a ,b ∈R ,i 为虚数单位,若3-4i 3=2-b ia +i ,则a+b 等于( )A .-9B .5C .13D .9解析:选A 由3-4i 3=2-b i a +i ,得3+4i =2-b ia +i,即(a +i)(3+4i)=2-b i ,(3a -4)+(4a+3)i =2-b i ,则⎩⎪⎨⎪⎧ 3a -4=2,4a +3=-b ,解得⎩⎪⎨⎪⎧a =2,b =-11,故a +b =-9.故选A.2.(2019·贵阳适应性考试)设z 是复数z 的共轭复数,满足z =4i1+i ,则|z |=( )A .2B .2 2C.22 D.12解析:选B 法一:由z =4i1+i =4i (1-i )(1+i )(1-i )=2+2i ,得|z |=|z |=22+22=22,故选B.法二:由模的性质,得|z |=|z |=⎪⎪⎪⎪4i 1+i =|4i||1+i|=42=2 2.故选B.3.若复数z =a 2-a -2+(a +1)i 为纯虚数(i 为虚数单位),则实数a 的值是________. 解析:由于z =a 2-a -2+(a +1)i 为纯虚数,因此a 2-a -2=0且a +1≠0,解得a =2. 答案:2考点三 复数的几何意义[典例] (1)如图,在复平面内,复数z1,z 2对应的向量分别是OA ―→,OB ―→,若zz 2=z 1,则z 的共轭复数z =( )A.12+32i B.12-32i C .-12+32iD .-12-32i(2)复数z =4i 2 018-5i1+2i (其中i 为虚数单位)在复平面内对应的点在( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由题意知z 1=1+2i ,z 2=-1+i ,故z (-1+i)=1+2i , 即z =1+2i -1+i =(1+2i )(1+i )(-1+i )(1+i )=1-3i 2=12-32i ,z =12+32i ,故选A.(2)z =4i 2 018-5i1+2i =4×i 2 016·i 2-5i (1-2i )(1+2i )(1-2i )=-4-5(2+i )5=-6-i ,故z 在复平面内对应的点在第三象限. [答案] (1)A (2)C[解题技法] 对复数几何意义的再理解(1)复数z 、复平面上的点Z 及向量OZ ―→相互联系,即z =a +b i(a ,b ∈R )⇔Z (a ,b )⇔OZ ―→. (2)由于复数、点、向量之间建立了一一对应的关系,因此可把复数、向量与解析几何联系在一起,解题时可运用数形结合的方法,使问题的解决更加直观.[题组训练]1.(2019·安徽知名示范高中联考)已知复数z 满足(2-i)z =i +i 2,则z 在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限解析:选B z =i +i 22-i =-1+i 2-i =(-1+i )(2+i )(2-i )(2+i )=-3+i 5=-35+15i ,则复数z 在复平面内对应的点为⎝⎛⎭⎫-35,15,该点位于第二象限.故选B. 2.若复数z 满足|z -i|≤2(i 为虚数单位),则z 在复平面内所对应的图形的面积为________.解析:设z =x +y i(x ,y ∈R ),由|z -i|≤2得|x +(y -1)i|≤2,所以x 2+(y -1)2≤ 2, 所以x 2+(y -1)2≤2,所以z 在复平面内所对应的图形是以点(0,1)为圆心,以2为半径的圆及其内部,它的面积为2π.答案:2π3.已知复数z =2+a i1+2i ,其中a 为整数,且z 在复平面内对应的点在第四象限,则a 的最大值为________.解析:因为z =2+a i 1+2i =(2+a i )(1-2i )(1+2i )(1-2i )=2+2a +(a -4)i5,所以z 在复平面内对应的点为⎝⎛⎭⎫2+2a 5,a -45,所以⎩⎨⎧2+2a5>0,a -45<0,解得-1<a <4,又a 为整数,所以a 的最大值为3.答案:3[课时跟踪检测]1.(2019·广州五校联考)1+2i(1-i )2=( )A .-1-12iB .1+12iC .-1+12iD .1-12i解析:选C1+2i (1-i )2=1+2i -2i=(1+2i )i 2=-2+i 2=-1+12i ,选C. 2.(2018·洛阳第一次统考)已知a ∈R ,i 为虚数单位,若a -i1+i为纯虚数,则a 的值为( ) A .-1 B .0 C .1D .2解析:选C ∵a -i 1+i =(a -i )(1-i )(1+i )(1-i )=a -12-a +12i 为纯虚数,∴a -12=0且a +12≠0,解得a =1,故选C.3.(2018·甘肃诊断性考试)如图所示,向量OZ1―→,OZ 2―→所对应的复数分别为z 1,z 2,则z 1·z 2=( )A .4+2iB .2+iC .2+2iD .3+i解析:选A 由图可知,z 1=1+i ,z 2=3-i ,则z 1·z 2=(1+i)(3-i)=4+2i ,故选A.4.若复数z 1=4+29i ,z 2=6+9i ,其中i 是虚数单位,则复数(z 1-z 2)i 的实部为( ) A .-20 B .-2 C .4D .6解析:选A 因为(z 1-z 2)i =(-2+20i)i =-20-2i ,所以复数(z 1-z 2)i 的实部为-20. 5.(2019·太原模拟)若复数z =1+m i1+i在复平面内对应的点在第四象限,则实数m 的取值范围是( )A .(-1,1)B .(-1,0)C .(1,+∞)D .(-∞,-1)解析:选A 法一:因为z =1+m i 1+i =(1+m i )(1-i )(1+i )(1-i )=1+m 2+m -12i 在复平面内对应的点为⎝⎛⎭⎫1+m 2,m -12,且在第四象限,所以⎩⎨⎧1+m2>0,m -12<0,解得-1<m <1,故选A.法二:当m =0时,z =11+i =1-i (1+i )(1-i )=12-12i ,在复平面内对应的点在第四象限,所以排除选项B 、C 、D ,故选A.6.(2018·昆明高三摸底)设复数z 满足(1+i)z =i ,则z 的共轭复数 z =( ) A.12+12i B.12-12i C .-12+12iD .-12-12i解析:选B 法一:∵(1+i)z =i ,∴z =i1+i =i (1-i )(1+i )(1-i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法二:∵(1+i)z =i ,∴z =i 1+i =2i2(1+i )=(1+i )22(1+i )=1+i 2=12+12i ,∴复数z 的共轭复数z =12-12i ,故选B.法三:设z =a +b i(a ,b ∈R ),∵(1+i)z =i ,∴(1+i)(a +b i)=i ,∴(a -b )+(a +b )i =i ,由复数相等的条件得⎩⎪⎨⎪⎧a -b =0,a +b =1,解得a =b =12,∴z =12+12i ,∴复数z 的共轭复数z =12-12i ,故选B. 7.设复数z 满足i(z +1)=-3+2i(i 是虚数单位),则复数z 对应的点位于复平面内( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选A 由i(z +1)=-3+2i ,得z =-3+2i i -1=3i 2+2i i -1=2+3i -1=1+3i ,它在复平面内对应的点为(1,3),位于第一象限.8.已知复数z =m i1+i,z ·z =1,则正数m 的值为( ) A. 2 B .2 C.22D.12解析:选A 法一:z =m i 1+i =m i (1-i )(1+i )(1-i )=m 2+m 2i ,z =m 2-m 2i ,z ·z =m 22=1,则正数m =2,故选A.法二:由题意知|z |=|m i||1+i|=|m |2,由z ·z =|z |2,得m 22=1,则正数m =2,故选A.9.已知a ,b ∈R ,i 是虚数单位,若(1+i)(1-b i)=a ,则ab 的值为________.解析:因为(1+i)(1-b i)=1+b +(1-b )i =a ,所以⎩⎪⎨⎪⎧ 1+b =a ,1-b =0.解得⎩⎪⎨⎪⎧b =1,a =2,所以a b =2.答案:210.复数|1+2i|+⎝⎛⎭⎪⎫1-3i 1+i 2=________.解析:原式=12+(2)2+(1-3i )2(1+i )2=3+-2-23i2i =3+i -3=i. 答案:i11.(2019·重庆调研)已知i 为虚数单位,复数z =1+3i 2+i ,复数|z |=________.解析:法一:因为z =1+3i 2+i =(1+3i )(2-i )(2+i )(2-i )=5+5i5=1+i ,所以|z |=12+12= 2.法二:|z |=⎪⎪⎪⎪⎪⎪1+3i 2+i =|1+3i||2+i|=105= 2.答案: 212.已知复数z =3+i(1-3i )2,z 是z 的共轭复数,则z ·z =________.解析:∵z =3+i (1-3i )2=3+i-2-23i=3+i -2(1+3i )=(3+i )(1-3i )-2(1+3i )(1-3i )=23-2i -8=-34+14i ,∴z ·z =|z |2=316+116=14. 答案:1413.计算:(1)(-1+i )(2+i )i 3;(2)(1+2i )2+3(1-i )2+i ;(3)1-i (1+i )2+1+i (1-i )2; (4)1-3i (3+i )2. 解:(1)(-1+i )(2+i )i 3=-3+i-i=-1-3i.(2)(1+2i )2+3(1-i )2+i =-3+4i +3-3i 2+i =i 2+i =i (2-i )5=15+25i.(3)1-i (1+i )2+1+i (1-i )2=1-i 2i +1+i -2i =1+i -2+-1+i2=-1. (4)1-3i (3+i )2=(3+i )(-i )(3+i )2=-i 3+i =(-i )(3-i )4=-14-34i.。
【新课标】高三数学二轮精品专题卷 复数及算法框图

高三数学二轮精品专题卷:复数及算法框图考试范围:复数及算法框图一、选择题(本大题共15小题,每小题5分,共75分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.32111ii i +-的值等于( ) A . 1 B .1-C .iD .i -2.执行下图所示的程序框图,输出结果是( ) A .5B .3C .2D .13.(理)已知复数z 满足i iz -=+121,其中i 是虚数单位,则复数z 的共轭复数为 ( ) A .i 21-B .i 21+C .i +2D .i -2(文)若i 是虚数单位,则复数12-i i的共轭复数是 ( ) A .i +1 B .i -1 C .i +-1 D .i --14.执行下图所示的程序框图,输出结果是( ) A .5 B .8C .13D .215.若复数z 满足i z i 41=-)(,则复数z 对应的点在复平面的( ) A .第一象限B .第二象限C .第三象限D .第四象限6.下图给出的是计算39151311+⋯+++的值的一个程序框图,其中判断框内应填入的条件是 ( )A .10>iB .10<iC .20>iD .20<i第2题图 第4题图 第6题图 7.若复数iia z -+=1,且03>zi ,则实数a 的值等于 ( )A .1B .1-C .21D .21-8.下面是一个算法的程序框图,当输入的x 值为7时,输出y 的结果恰好是1-,则处理框中的关系式是 ( ) A .3x y =B .x y -=2C .x y 2=D .1+=x y9.(理)已知∈b a ,R ,且复数∈++=biia z 1R ,则ab 等于 ( ) A .0B .1-C .2D .1(文)集合{}*-∈-==N n i i x x P n n ,|的子集的个数为 ( ) A .4B .8C .16D .无数个10.如下图,若输入的x 的值分别为3π和32π时,相应输出的y 的值分别为21,y y ,则 ( )A .21y y =B .21y y >C .21y y < D .无法确定11.若复数ia z 21-=是纯虚数,其中a 是实数,则=||z ( ) A .1B .2C .21 D .41 12.下图是统计高三年级2000名同学某次数学考试成绩的程序框图,若输出的结果是560,则这次考试数学分数不低于90分的同学的频率是 ( ) A .0.28B .0.38C .0.72D .0.62第8题图 第10题图 第12题图13.在复平面上的平行四边形ABCD 中,向量AC 、BD对应的复数分别为i 104+、i 86+-,则向量DA 对应的复数为 ( ) A .i 182+ B .i 91+C .i 182-D .i 91-14.运行列流程图,输出结果为( ) A .5B .3C .3-D .2-14题图15.(理)执行如图所示的程序框图,若输出的结果是10,则判断框内m 的取值范围是 ( ) A .(56,72] B .(72,90] C .(90,110] D .(56,90)(文)按如图所示的程序框图运算,若输出2=k ,则输入x 的取值范围是( ) A .],(2200942007 B .),[2200942007 C .),(2200942007 D .],[220094200715(文)图 15(理)图 二、填空题(本大题共15小题,每小题5分,共75分.把答案填写在题中横线上) 16.已知复数 300sin 600cos i z -=,则在复平面内,复数z1所对应的点在第 象限. 17.如下图,根据程序框图可知,输出的函数)(x f 的解析式为 .18.已知纯虚数z 满足i m z i +=+21)(,其中i 是虚数单位,则实数m 的值等于 . 19.如下图是计算3331021+⋯++的程序框图,图中的①、②分别是 和 .第17题图 第19题图 第20题图20.在流程图中(右上),若输出的函数)(x f 的函数值在区间],[3391内,则输入的实数x 的取值范围是 . 21.(理)已知∈b R 复数211+++i i b 的实部和虚部相等,则b 等于 . (文)已知复数z 的实部为2-,虚部为1,则225z i = .22.如下图是一个算法的程序框图,当输入x 的值为π433时,输出的y 的结果为 . 23.已知复数i n m z )(lg lg -=,其中i 是虚数单位,若复数z 在复平面内对应的点在直线x y =上,则mn 的值等于 ..24.阅读下面的程序框图,该程序输出的结果是 .22题图 24题图25.若复数)()(ai i z ++=212对应的点在复平面的第一象限,则实数a 的取值范围是 .26.如图所示的程序框图,若输入7=n ,则输出的n 值为 .第26题图27.若数列{}n a 满足n n a i a i i a )1()1(11+=-=+,,则=2011a . 28.如图是一个算法的程序框图,当输出结果为41时,请你写出输入的x 的的值 .第28题图29.设复数i a a z )2()4(2++-=,若02<z ,则实数a 的值为 . 30.(理)如图所示的流程图,输出的结果为 . (文)一个算法的程序框图如下,则其输出结果是 .30(理)图 30(文)图2012届专题卷数学专题五答案与解析1.【命题立意】本题考查虚数单位i 的性质及其运算.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)虚数单位i的性质:1234,1,,1i i i i i i ==-=-=;(2)复数的除法运算法则. 【答案】A 【解析】2311111111i i i i i i i -+=--+=-++=--. 2.【命题立意】本题考查对基本算法语句以及顺序结构的理解与运用.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法中的赋值语句;(2)算法中的输出语句.【答案】C 【解析】2352m n m n =→=→=→=.3.(理)【命题立意】本题考查复数的乘法运算以及共轭复数的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数乘法运算法则;(2)共轭复数的概念. 【答案】A 【解析】由112z i i+=-得2(1)122112z i i i i =--=+-=+,所以12z i =-. (文)【命题立意】本题考查复数的除法运算以及共轭复数的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数除法运算法则;(2)共轭复数的概念. 【答案】A 【解析】22(1)2211(1)(1)2i i i i i i i i +-+===---+-,故复数21ii -的共轭复数是1i +. 4.【命题立意】本题考查算法中的循环结构以及程序框图.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)赋值语句的含义;(2)循环结构的特点. 【答案】B 【解析】执行过程为:1,1,2x y z ===→1,2,3x y z ===→2,3,5x y z ===→3,5,8x y z ===→5,8,1310x y z ===>,输出8y =.5.【命题立意】本题考查复数除法运算以及复数的几何意义.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数的除法运算法则;(2)复数的几何意义.【答案】B 【解析】由于(1)4i z i -=,所以4221iz i i==-+-,因此复数z 对应的点在复平面的第二象限.6.【命题立意】本题考查对算法循环结构的理解与运用.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构的基本要求;(2)算法循环结构中的计数变量的赋值规则.【答案】C 【解析】式子11113539+++⋅⋅⋅+一共有20项,所以循环体应执行20次,当计数变量i 的值大于20时跳出循环,因此应填20>i .7.【命题立意】本题考查复数的运算以及复数的有关概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)分母实数化方法的运用;(2)若两个复数能够比较大小,它们都是实数.【答案】A 【解析】由于331(1)(1)1111222a i ai ai i a azi i i i i +--++-=⋅===+--,依题意得1010a a -=⎧⎨+>⎩,解得1a =.8.【命题立意】本题考查算法中的循环结构及其应用.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构的执行过程特点;(2)常见函数的性质.【答案】A 【解析】依题意,输入的x 值为7,执行4次循环体,x 的值变为1-,这时,如果输出y 的结果恰好是1-,则函数关系式为3y x =.9.(理)【命题立意】本题考查复数的相关概念除法运算、分母实数化方法、【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数时实数的充要条件;(2)分母实数化方法.【答案】D 【解析】2()(1)()(1)1(1)(1)1a i a i bi a b ab i z bi bi bi b ++-++-===++-+,由于R ∈z ,所以10ab -=,即1ab =.(文)【命题立意】本题考查虚数单位i 幂值的周期性以及集合子集的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)虚数单位i 幂值的周期性: 1234,1,,1i i i i i i ==-=-=;(2)若集合有m 个元素,则有2m 个子集. 【答案】B 【解析】当1,2,3,4n =时,2,0,2,0x i i =-,因此集合P 只有3个元素:2,2,0x i i =-,故有8个子集.10.【命题立意】本题考查算法条件分支结构与三角函数的求值.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)分支结构的运行流程;(2)正弦函数与余弦函数的求值.【答案】B 【解析】输入x 的值为3π时,输出112y =,输入x 的值为23π时,输出212y =-,因此有12y y >,选B .11.【命题立意】本题考查纯虚数的概念以及复数模的求解.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)分母实数化方法的应用;(2)纯虚数的概念;(3)复数模的计算公式. 【答案】C 【解析】由于221222(2)(2)44a i a z i a i a i a i a a +===+--+++,所以204a a =+,得0a =,这时12z i =,故1||2z =. 12.【命题立意】本题考查算法循环结构以及统计中频率的计算.[来源:金太阳新课标资源网 ]【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构的特点;(2)频率的计算公式. 【答案】C 【解析】根据流程图可知,输出结果为数学分数低于90分的同学的人数,因此这次考试数学分数不低于90分的同学的是20005601440-=,其频率为14400.722000=. 13.【命题立意】本题考查复数的几何意义以及复数与向量的关系.【思路点拨】解答本题需要掌握以下几个关键知识点:(1)复数的几何意义;(2)复数与向量的一一对应关系.【答案】D 【解析】设平行四边形对角线交于O 点,则11,22AO AC OD BD ==,即25,34A O i O D i =+=-+,又因为DA OA OD AO OD =-=-- ,所以向量DA 对应的复数为(25)(34)19DA i i i =----+=-,选D . 14.【命题立意】本题考查算法程序框图的理解与运用以及余弦定理的应用.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)理解流程图的执行过程;(2)利用余弦定理判断三角形是钝角三角形的方法.【答案】D 【解析】程序的运行过程为:2,4,5m a b ===,以2,4,5为三边的三角形是钝角三角形,1,4n m =-=,以4,4,5为三边的三角形不是钝角三角形,6m =,以6,4,5为三边的三角形不是钝角三角形,8m =,以8,4,5为三边的三角形是钝角三角形,2n =-,109m =>,输出2n =-. 15.(理)【命题立意】本题考查算法流程图的理解与不等式的解法.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法流程图的执行过程与特点;(2)建立不等式求参数范围.【答案】B 【解析】由于程序的运行结果是10,所以可得24681012141624681012141618mm +++++++<⎧⎨++++++++≥⎩,解得7290m <≤.(文)【命题立意】本题考查算法流程图的理解与不等式的解法.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法流程图的执行过程与特点;(2)建立不等式求参数范围.【答案】A 【解析】由于程序的运行结果是2k =,所以可得2120102(21)12010x x +≤⎧⎨++>⎩,解得2007200942x <≤. 16.【命题立意】本题考查复数的除法运算以及几何意义.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数的运算方法——分母实数化.(2)复数za bi =+在复平面内对应的点为(,)ab .【答案】三【解析】 300sin 600cos i z -=001cos600sin 3002zi =-=-,于是112z ==-,所以1z对应的点在第三象限.17.【命题立意】本题考查算法的条件分支结构以及分段函数问题.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法条件分支结构的特点;(2)分段函数的解析式应分段求解.【答案】22,10(),01x x x f x x x x ⎧+-<<=⎨≥≤-⎩或【解析】依题意,当()x h x >,即22x x x +<,10x -<<时,2()2f x x x =+;当()x h x ≤,即22x x x +≥,0x ≥或1x ≤-时,()f x x =.因此22,10(),01x x x f x x x x ⎧+-<<=⎨≥≤-⎩或.18.【命题立意】本题考查纯虚数的概念与复数的运算.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)一个复数为纯虚数,可设其为)0,(≠∈=b b bi z R ;(2)复数的运算.【答案】12-【解析】2(2)(1)(21)(12)(1)2122m i m i i m m ii z m i z i ++-++-+=+⇒===+,因为z 为纯虚数,所以12m =-.19.【命题立意】本题考查循环结构以及循环体的补充.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构中计数变量的赋值方法;(2)循环结构中累加变量的赋值方法. 【答案】3ss i =+ 1i i =+【解析】要补充的循环体应该由计数变量i 和累加变量s 构成,根据该算法的功能,应在①处填3ss i =+,②处填1i i =+.[来源:金太阳新课标资源网]20.【命题立意】本题考查算法的条件分支结构.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法的条件分支结构的特点;(2)已知分段函数的函数值求自变量值时应分段求解.【答案】1[2,]2--【解析】若[3,3]x ∉-,则1()1[9f x =∉不合题意,当[3,3]x ∈-时,1()3[9x f x =∈,解得1[2,]2x ∈--,此即为x 的取值范围.21.(理)【命题立意】本题考查复数的运算以及实部与虚部的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)分母实数化方法;(2)若复数),(R ∈+=b a bi a z ,则其实部与虚部分别为,a b .【答案】12-【解析】1()(1)1(1)(1)12(1)12(1)(1)22222b i b i i b b i b b i i i i ++-++-+-+=+=+=+++-,依题意有2122b b +-=,解得12b =-.(文)【命题立意】本题考查复数的运算以及实部与虚部的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数实部与虚部的概念;(2)复数的乘法与除法运算法则.【答案】43i -+【解析】依题意2z i =-+,则2225252525(34)43(2)34(34)(34)i i i i i i z i i i i +====-+-+--+. 22.【命题立意】本题考查算法流图以及三角函数的周期与求值问题.[来源: ]【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法循环结构;(2)正弦函数的最小正周期为2π.33sin(8)sin 44y πππ=-=. 23.【命题立意】本题考查复数的几何意义、对数运算.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数的几何意义;(2)对数的运算法则. 【答案】1【解析】依题意,复数z 在复平面内对应的点是(lg ,lg )m n -,它在直线y x =上,所以0lg lg =+n m ,即0)lg(=mn ,所以1=mn .24.【命题立意】本题考查算法的循环结构及其应用【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构中循环体的执行次数;(2)赋值语句的含义.【答案】729【解析】按照程序框图,可知最后输出结果为1999729s =⨯⨯⨯=. 25.【命题立意】本题考查复数的乘法运算以及复数几何意义.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)复数的乘法运算法则;(2)复数的几何意义.[来源: ]【答案】0a <【解析】2(1)(2)2(2)24z i ai i ai a i =++=+=-+,其对应的点在第一象限,则有20a ->,所以0a <.26.【命题立意】本题考查算法流程图以及幂函数的单调性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)循环结构的执行流程;(2)幂函数的单调性. 【答案】1-【解析】执行过程53175,()3,()1,()1,()n n f x x n f x x n f x x n f x x=→==→==→==→=-=在(0,)+∞单调递减,故输出1n =-.27.【命题立意】本题考查虚数单位i 的幂值的周期性与等比数列的定义及通项公式.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)等比数列的定义及通项公式;(2)虚数单位i 的幂值的周期性.【答案】i -【解析】由1(1)(1)n n i a i a +-=+得111n n a ii a i++==-,所以数列{}n a 是公比为i 的等比数列,于是20102010201120111()()a a i i i i i =⋅=⋅==-.28.【命题立意】本题考查算法条件分支结构以及分段函数的求值问题.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)条件分支结构的特点;(2)分类讨论解决分段函数求值问题. 【答案】2-,42【解析】令124x =,得2x =-,所以当输入的2x =-时,输出结果为14;令21log 4x =,得142x =,所以当输入的42=x 时,输出结果也为14;29.【命题立意】本题考查复数的运算以及纯虚数的概念.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)若一个复数的平方是负数,则它一定是纯虚数;(2)纯虚数的概念. 【答案】2【解析】由2z<0知z 一定为纯虚数,所以得:24020a a ⎧-=⎨+≠⎩,解得2a =.30.(理)【命题立意】本题考查算法流程图以及三角函数的周期性.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法的循环结构;(2)sin 3n π的值具有周期性.2320112012sin sin sin sin sin33333sπππππ=+++++的值,由于23456sin0,sin0 333333ππππππ======,所以23456sin sin sin sin sin sin0333333ππππππ+++++=,因此2320112012sin sin sin sin sin033533333sπππππ=+++++=⨯=(文)【命题立意】本题考查算法流程图与三角函数周期性与求值问题.【思路点拨】解答本题需要掌握以下几个关键的知识点:(1)算法循环结构;(2)cos2nπ的值具有周期性.【答案】0【解析】该算法的功能是计算式子232012cos cos cos cos2222pππππ=++++的值,由于234cos0,cos1,cos0,cos1,2222ππππ==-== ,所以(0101)5030p=-++⨯=.。
复数课件ppt免费

02
复数的应用
Chapter
电路分析中的应用
电路分析中,复数是一种常用的数学工具,用于描述交 流电路中的电压、电流和阻抗等参数。
通过使用复数表示,可以简化计算过程,方便分析和设 计电路。
复数在交流电路分析中的应用包括计算交流阻抗、交流 功率和交流电流等。
信号处理中的应用
在信号处理中,复数常用于表示和处 理信号,如频谱分析和滤波器设计等 。
复数在信号处理中的应用还包括数字 滤波器设计和数字信号处理算法的实 现等。
通过将信号表示为复数形式,可以方 便地进行信号的频域分析和处理,如 傅里叶变换和离散余弦变换等。
控制系统中的应用
在控制系统中,复数常用于描 述系统的传递函数和稳定性等 特性。
通过使用复数表示,可以方便 地分析系统的频率响应和稳定 性,以及设计控制系统的参数 。
实例
$2(cos frac{pi}{3} + i sin frac{pi}{3}) + 1(cos frac{pi}{4} + i sin frac{pi}{4}) = sqrt{3}(cos frac{7pi}{12} + i sin frac{7pi}{12})$。
指数形式的计算
定义
复数指数形式是 $re^{itheta}$,其中 $r$ 是模长,$theta$ 是辐角 。
复数课件ppt免费
目录
• 复数的基本概念 • 复数的应用 • 复数的计算方法 • 复数的历史发展 • 复数的扩展知识
01
复数的基本概念
Chapter
复数的定义
总结词
复数是由实部和虚部构成的数,通常表示为a+bi,其中a是实部,b是虚部,i 是虚数单位。
2012二轮6.5算法初步、复数

2012二轮专题六:概率与统计、推理与证明、算法初步、复数第五讲算法初步、复数【考纲透析】1.算法的含义、程序框图(1)了解算法的含义,了解算法的思想;(2)理解程序框图的三种基本逻辑结构:顺序、条件分支、循环。
2.基本算法语句理解几种基本算法语句的含义3.复数的概念(1)理解复数的基本概念;(2)理解复数相等的充要条件;(3)了解复数的代数表示法及其几何意义。
4.复数的四则运算(1)了解复数代数形式的加、减运算的几何意义;(2)会进行复数代数形式的四则运算。
【要点突破】要点考向1:程序(算法)框图考情聚焦:1.程序(算法)框图是新课标新增内容,也是近几年高考的热点之一;2.多以选择题、填空题的形式考查,属容易题。
考向链接:1.解答有关程序(算法)框图问题,首先要读懂程序(算法)框图,要熟练掌握程序(算法)框图的三个基本结构;2.循环结构常常用在一些有规律的科学计算中,如累加求和,累乘求积,多次输入等。
利用循环结构表示算法:第一要选择准确的表示累计的变量,第二要注意在哪一步结束循环。
解答循环结构的程序(算法)框图,最好的方法是执行完整每一次循环,防止执行程序不彻底,造成错误。
例1:(2010·湖南高考理科·T4)如图是求222…+100的值的程序框图,则正整数123+++2n=.【命题立意】从自然语言过渡到框图语言,能训练学生开阔的视野和更为严谨的逻辑思维能力.【思路点拨】框图→循环结构→当循环【规范解答】i=1, s=s+i2=12;i=2,s=12+22;…;i=100,s=222…+100,∴n=100+++2123【答案】100【方法技巧】框图→结构→注意关节点:条件结构的条件,循环结构的分类,是当循环还是直到型循环. 简单随机抽样方法更好.要点考向2:复数的相关概念及复数的几何意义考情聚焦:1.复数的相关概念及复数的几何意义是高考重点考查的内容; 2.以选择题或填空题的形式呈现,属容易题。
二轮复习算法与复数学案

算法与复数【学习目标】1.了解复数中的有关概念,掌握复数的四则运算.从以往的考查来看,近几年的高考都考查了复数,考题主要是以填空题的形式出现,难度都不大.2. 了解算法的概念、流程图、基本算法语句.近几年高考都考了算法,主要考查的内容是流程图,考题主要是以填空题的形式出现,难度不是很大.【学习重难点】学习重点:复数的运算,算法中的循环结构以及简单应用 学习难点:复数的运算,算法中的循环结构以及简单应用复数:1已知i 是虚数单位,若i 1zi3-=+,则z 的共轭复数为 A 1-2i B 2-4i C i 222- D 1+2i2复数ii i z )1)(1(-+=在复平面上所对应的点Z 位于A .实轴上B .虚轴上C .第一象限D .第二象限352i=- A.2i - B.2i + C.12i + D. 12i -(A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限5复数1+i1i=- (A )i - (B )i (C )1i + (D )1i -6i 是虚数单位,计算41ii+=+_________. 7设复数1ii 2ix y -=++,其中,x y ∈R ,则x y +=______.8复数2ii+在复平面内对应的点的坐标是____________.9. 若复数a 2-3a +2+(a -1)i 是纯虚数,则实数a 的值为________.10.设复数z 满足(1+i)z =2,其中i 为虚数单位,则z =____________.11已知复数z 1=m +2i ,z 2=3-4i ,若z 1z 2为实数,则实数m = .12若复数z 满足zi =2+i(i 是虚数单位),则|z|=__________.算法:1. 执行右边的程序框图,则输出的S 值等于A.91817161+++ B. 9181716151++++C. 10191817161++++D. 1019181716151+++++(A )16 (B )12 (C )8 (D )74.执行如图所示的程序框图,如果输入2,2a b ==,那么输出的a 值为______.5 执行如图所示的程序框图,输出的x 值为(A )85 (B )2912(C )53 (D )138。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高15级复习专题——复数及算法
1.(2013北京)在复平面内,复数(2-i)2对应的点位于( )
A.第一象限
B. 第二象限
C.第三象限
D. 第四象限
2.(2013安徽)如图所示,程序框图(算法流程图)的输出结果是( )
(A ) 16 (B )2524 (C )34 (D )1112
y x
D B A
O C
(2题)) (3题)) (4题)
3.(2013北京)执行如图所示的程序框图,输出的S 值为 A.1 B.
23 C.1321
D.610987 4.(2013四川)如图,在复平面内,点A 表示复数z ,则图中表示z 的共轭复数的点是( ) 5.(2013全国新课标)若复数z 满足(34)|43|i z i -=+,则z 的虚部为 ( )
A.4-
B.45-
C.4
D.45
6.(2013浙江)已知复数512i z i
=
+(i 是虚数单位),则_________z = 7.(2014山东)某程序框图如图所示,若该程序运行后输出的值是5
9,则 ( ) A.4=a B.5=a C. 6=a D.7=a 开始
是
否 0,1i S == 2121S S S +=+
1i i =+ 2
i ≥输出S
结束
否是1
,0,1===T S k 开始
N 输入k
T T =1+=k k T
S S +=?N k >S
输出结束
8.(2014浙江)执行如题(8)图所示的程序框图,如果输出3s =,那么判断框内应填入的条件是()
A . 6k ≤
B .7k ≤
C .8k ≤
D .9k ≤
9.(2014新课标1)运行如下程序框图,如果输入的[1,3]t ∈-,则输出s 属于
A.[3,4]- B .[5,2]- C.[4,3]- D.[2,5]-
10.(2014新课标2)执行右面的程序框图,如果输入的10N =,那么输出的S =
(A )1111+2310+
++…… (B )1111+2310+++……!!!
(C )111+2311+++…… (D )11+2311+++……!!!
(10题)
开始
S =1,k =1
k >a ?
S =S +1k (k +1)
k =k+1
输出S
结束
是 否
(第7题图)
复数及算法答案
1、D
2、D
3、C
4、B
5、D
6、√5
7、A
8、B
9、A 10、B。