贵阳市普通中学 2016—2017 学年度第一学期期末监测考试试题及答案
2016-2017学年贵州省贵阳市高一(上)期末数学试卷与解析word

2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=log0.70.8∈(0,1);y2=log1.10.9<0;y3=1.10.9>1,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称赠送初中数学几何模型【模型五】垂直弦模型:图形特征:运用举例:1.已知A、B、C、D是⊙O上的四个点.(1)如图1,若∠ADC=∠BCD=90°,AD=CD,求证AC⊥BD;(2)如图2,若AC⊥BD,垂足为E,AB=2,DC=4,求⊙O的半径.O DAB CEAOD CB2.如图,已知四边形ABCD内接于⊙O,对角线AC⊥BD于P,设⊙O的半径是2。
2016-2017年贵州省贵阳市初三上学期期末数学试卷及答案

2016-2017学年贵州省贵阳市初三上学期期末数学试卷一、选择题(每小题3分,共30分)1.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球2.(3分)关于x的一元二次方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.5B.﹣5C.1D.﹣13.(3分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A.B.C.D.4.(3分)一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6B.9C.10D.155.(3分)下列各点不在反比例函数y=上的是()A.(3,4)B.(﹣3,﹣4)C.(6,﹣2)D.(﹣6,﹣2)6.(3分)如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为点C,则AC:CB为()A.1:3B.1:4C.1:5D.1:67.(3分)小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B. ①③C.③④D. ②④8.(3分)如图所示电路,任意闭合两个开关,能使灯L2亮起来的概率是()A.B.C.D.9.(3分)如图,是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k3>k1>k2C.k2>k3>k1D.k3>k2>k1 10.(3分)如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么矩形ABCD 的面积是()A.9cm2B.16cm2C.21cm2D.24cm2二、填空题(每小题4分,共20分)11.(4分)方程3x2﹣5x=0的二次项系数是.12.(4分)如图所示,此时的影子是在下(太阳光或灯光)的影子,理由是.13.(4分)在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k的值为.14.(4分)小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.15.(4分)如图,在平行四边形ABCD中,EF∥AB交AD于E交BD于F,DE:EA=3:4,EF=6,则CD的长为.三、解答题(满分50分)16.(5分)如图,已知△ABC,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).17.(8分)一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:摸球总次数1020306090120180240330450210132430375882110150“和为8“出现的频数0.200.500.430.400.330.310.320.340.330.33“和为8“出现的频率解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表或画树状图的方法说明理由.18.(7分)如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x是多少?(精确到0.1)19.(7分)已知,如图,AC⊥BC,BD⊥BC,AC>BC>BD.(1)请你添加一个条件,使△ABC相似于△CDB,你添加的条件是;(2)若DB=3,BC=4,在(1)的条件下,求AC的长度.20.(8分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD 延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.21.(7分)如图,在平面直角坐标系中,一次函数y=2x+2与x轴y轴分别交于点A,B与反比例函数y=在第一象限交于点C.(1)写出点A,B,C的坐标.(2)过x轴上的点D(3,0)作平行于y轴的直线l分别与直线AB和反比例函数y=交于点P,Q求△APQ的面积.22.(8分)对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=度,∠D=度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形ABCD”中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.2016-2017学年贵州省贵阳市初三上学期期末数学试卷参考答案与试题解析一、选择题(每小题3分,共30分)1.(3分)某几何体的主视图和左视图如图所示,则该几何体可能是()A.长方体B.圆锥C.正方体D.球【解答】解:A、长方体的主视图和左视图均为矩形,符合题意;B、圆锥的主视图和左视图均为等腰三角形,不符合题意;C、正方体的主视图和左视图均为正方形,不符合题意;D、球的主视图和左视图均为圆,不符合题意;故选:A.2.(3分)关于x的一元二次方程3x2﹣2x+m=0的一个根是﹣1,则m的值为()A.5B.﹣5C.1D.﹣1【解答】解:把x=﹣1代入方程得3+2+m=0,解得m=﹣5.故选:B.3.(3分)已知AC为矩形ABCD的对角线,则图中∠1与∠2一定不相等的是()A.B.C.D.【解答】解:A、对顶角相等,A一定相等,故A不符合题意;B、不确定,可能相等,也可能不相等,故B不符合题意;C、不确定,可能相等,也可能不相等,故C不符合题意;D、一定不相等,因为∠1=∠ACD,∠2>∠ACD,故D符合题意.故选:D.4.(3分)一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是()A.6B.9C.10D.15【解答】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴=,解得:x=9.故选:B.5.(3分)下列各点不在反比例函数y=上的是()A.(3,4)B.(﹣3,﹣4)C.(6,﹣2)D.(﹣6,﹣2)【解答】解:A、∵x=3时,y==4,∴此点在反比例函数的图象上,故本选项不符合题意;B、∵x=﹣3时,y=﹣=﹣4,∴此点在反比例函数的图象上,故本选项不符合题意;C、∵x=6时,y==2≠﹣2,∴此点不在反比例函数的图象上,故本选项符合题意;D、∵x=﹣6时,y=﹣=﹣2,∴此点在反比例函数的图象上,故本选项不符合题意.故选:C.6.(3分)如图,在6×6的正方形网格中,连接两格点A,B,线段AB与网格线的交点为点C,则AC:CB为()A.1:3B.1:4C.1:5D.1:6【解答】解:如图,∵CD∥BE,∴==.故选:C.7.(3分)小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是()A.①②B. ①③C.③④D. ②④【解答】解:∵只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点,∴带①③两块碎玻璃,就可以确定平行四边形的大小.故选:B.8.(3分)如图所示电路,任意闭合两个开关,能使灯L2亮起来的概率是()A.B.C.D.【解答】解:根据题意画树状图如下:∵共有6种情况,能使灯L2亮起来的情况有4种,∴能使灯L2亮起来的概率是=,故选:C.9.(3分)如图,是三个反比例函数y=,y=,y=在x轴上方的图象,由此观察得到k1、k2、k3的大小关系为()A.k1>k2>k3B.k3>k1>k2C.k2>k3>k1D.k3>k2>k1【解答】解:读图可知:三个反比例函数y=的图象在第二象限;故k1<0;y=,y=在第一象限;且y=y=的图象距原点较远,故有:k3<k2;综合可得:k2>k3>k1.故选:C.10.(3分)如图,矩形ABCD的周长是20cm,以AB,AD为边向外作正方形ABEF 和正方形ADGH,若正方形ABEF和ADGH的面积之和为68cm2,那么矩形ABCD 的面积是()A.9cm2B.16cm2C.21cm2D.24cm2【解答】解:设AB=x,AD=y,∵正方形ABEF和ADGH的面积之和为68cm2∴x2+y2=68,∵矩形ABCD的周长是20cm∴2(x+y)=20,∵(x+y)2=x2+2xy+y2,∴100=68+2xy,∴xy=16,∴矩形ABCD的面积为:xy=16故选:B.二、填空题(每小题4分,共20分)11.(4分)方程3x2﹣5x=0的二次项系数是3.【解答】解:方程3x2﹣5x=0的二次项系数是3,故答案为:3.12.(4分)如图所示,此时的影子是在太阳光下(太阳光或灯光)的影子,理由是通过作图发现相应的直线是平行关系.【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子,理由是:通过作图发现相应的直线是平行关系.13.(4分)在平面直角坐标系中,直线y=x+1与反比例函数y=的图象的一个交点A(a,2),则k的值为2.【解答】解:当y=x+1=2时,x=1,∴点A的坐标为(1,2).∵点A(1,2)在反比例函数y=的图象上,∴k=1×2=2.故答案为:2.14.(4分)小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每人每次从每组中抽出一张,两张牌的数字之积为2的概率为.【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的和为3的有2种,所以概率=,故答案为:.15.(4分)如图,在平行四边形ABCD中,EF∥AB交AD于E交BD于F,DE:EA=3:4,EF=6,则CD的长为14.【解答】解:∵DE:EA=3:4,∴DE:DA=3:7,∵EF∥AB,∴△DEF∽△DAB,∴∴,AB=14,∴CD=AB=14故答案为:14三、解答题(满分50分)16.(5分)如图,已知△ABC,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).【解答】解:如图,△A′B′C′即为所求作三角形.17.(8分)一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:摸球总次数1020306090120180240330450210132430375882110150“和为8“出现的频数0.200.500.430.400.330.310.320.340.330.33“和为8“出现的频率解答下列问题:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是.(2)如果摸出这两个小球上数字之和为9的概率是,那么x的值可以取7吗?请用列表或画树状图的方法说明理由.【解答】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是,故出现“和为8”的概率是;故答案为:(2)假设x=7,则P(和为9)=≠,所以,x的值不能为7.18.(7分)如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x是多少?(精确到0.1)【解答】解:根据题意得:4×πx2=×20×15,解得:x1≈6.9,x2≈﹣6.9(舍去).答:每个扇形的半径大约是6.9m.19.(7分)已知,如图,AC⊥BC,BD⊥BC,AC>BC>BD.(1)请你添加一个条件,使△ABC相似于△CDB,你添加的条件是∠A=∠DCB;(2)若DB=3,BC=4,在(1)的条件下,求AC的长度.【解答】解:(1)∵AC⊥BC,BD⊥BC,∴∠ACB=∠CBD,∴可以添加的条件是∠A=∠DCB.故答案为:∠A=∠DCB;(2)∵△ABC∽△CDB,DB=3,BC=4,∴=,即=,解得AC=.20.(8分)如图,已知平行四边形ABCD中,对角线AC,BD交于点O,E是BD 延长线上的点,且△ACE是等边三角形.(1)求证:四边形ABCD是菱形;(2)若∠AED=2∠EAD,求证:四边形ABCD是正方形.【解答】证明:(1)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO⊥AC(三线合一),即AC⊥BD,∴四边形ABCD是菱形(对角线互相垂直的平行四边形是菱形).(2)∵四边形ABCD是平行四边形,∴AO=CO.又∵△ACE是等边三角形,∴EO平分∠AEC(三线合一),∴∠AED=∠AEC=×60°=30°,又∵∠AED=2∠EAD∴∠EAD=15°,∴∠ADO=∠DAE+∠DEA=15°+30°=45°(三角形的一一个外角等于和它外角不相邻的两内角之和),∵四边形ABCD是菱形,∴∠ADC=2∠ADO=90°,∴平行四边形ABCD是正方形.21.(7分)如图,在平面直角坐标系中,一次函数y=2x+2与x轴y轴分别交于点A,B与反比例函数y=在第一象限交于点C.(1)写出点A,B,C的坐标.(2)过x轴上的点D(3,0)作平行于y轴的直线l分别与直线AB和反比例函数y=交于点P,Q求△APQ的面积.【解答】解:(1)当y=2x+2=0时,x=﹣1,∴点A的坐标为(﹣1,0);当x=0时,y=2x+2=2,∴点B的坐标为(0,2);联立两函数解析式成方程组,,解得:或,∴点C的坐标为(1,4).(2)当x=3时,y=2x+2=8,∴点P的坐标为(3,8);当x=3时,y==,∴点Q的坐标为(3,).∴PQ=8﹣=,AD=3﹣(﹣1)=4,=PQ•AD=××4=.∴S△APQ22.(8分)对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”.(1)已知:如图1,四边形ABCD是“等对角四边形”,∠A≠∠C,∠A=70°,∠B=80°.则∠C=130度,∠D=80度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD”(如图2),其中∠ABC=∠ADC,AB=AD,此时她发现CB=CD成立.请你证明此结论;(3)已知:在“等对角四边形ABCD”中,∠DAB=60°,∠ABC=90°,AB=5,AD=4.求对角线AC的长.【解答】(1)解:∵四边形ABCD是“等对角四边形”,∠A≠∠C,∴∠D=∠B=80°,∴∠C=360°﹣∠A﹣∠B﹣∠D=360°﹣70°﹣80°﹣80°=130°;故答案为:130,80;(2)证明:如图2所示,连接BD,∵AB=AD,∴∠ABD=∠ADB,∵∠ABC=∠ADC,∴∠ABC﹣∠ABD=∠ADC﹣∠ADB,∴∠CBD=∠CDB,∴CB=CD;(3)解:分两种情况:①当∠ADC=∠ABC=90°时,延长AD,BC相交于点E,如图3所示:∵∠ABC=90°,∠DAB=60°,AB=5,∴∠E=30°,∴AE=2AB=10,∴DE=AE﹣AD=10﹣4═6,∵∠EDC=90°,∠E=30°,∴CD=2,∴AC===2;②当∠BCD=∠DAB=60°时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示:则∠AMD=90°,四边形BNDM是矩形,∵∠DAB=60°,∴∠ADM=30°,∴AM=AD=2,∴DM=2∴BM=AB﹣AM=5﹣2=3,∵四边形BNDM是矩形,∴DN=BM=3,BN=DM=2,∵∠BCD=60°,∴CN=,∴BC=CN+BN=3,∴AC==2;综上所述:AC的长为2或2.。
贵阳市普通中学2016——2017学年度第一学期期末监测考试试卷

贵阳市普通中学2016——2017学年度第一学期期末监测考试试卷九年级化学考生注意:①考试时间为120分钟,满分100分。
②请将答案填写到答题卡对应位置。
相对原子质量:1-H 12-C 14-N 16-O 32-S 5.35-Cl 39-K40-a C 40-Ar 55-Mn 64-u C一、选择题(本题包含12小题,每题只有一个正确答案)1.2016年12月6日中国外交部举行了题为“开放的中国,多彩的贵州,风行天下”的贵州全球推介活动。
期中特别推介了贵州的“大生态”,下列做法与大生态不相符的是( )A. 尽量少用一次性餐具B.选择公共交通出行C.田间焚烧秸秆D.寻找新能源取代化石燃料2. 随着神州十一号成功着陆,中国航天员创造了在天宫二号空间实验室工作生活33天的新纪录,在飞船舱中需提供给航天员呼吸的气体是( )A.氧气B.氮气C.二氧化碳D.稀有气体3.贵州富硒茶是较好的保健饮品,这里的“硒”指的是( )A.单质B.原子C.分子D.元素4.物质的性质决定物质的用途,下列物质的用途利用其化学性质的是( )A.干冰用作制冷剂B.木炭用作燃料C.石墨作电极D.金刚石用来切割大理石5.下列实验操作不符合规范要求的是( )6.化学是在分子、原子的层次上研究物质的。
对生活中的下列现象解释错误的是( )A.好酒不怕巷子深——分子在不断运动B.热胀冷缩——分子的大小随温度的改变而改变C.汽车轮胎中可压入大量空气——分子间有间隔D.天然气(CH 4)燃烧生成2CO 和O H 2——化学变化中,分子可以再分。
7. 中国科研团队证实了天然铀单质的存在,用于核电工业的一种铀元素在周期表的相关信息如图随时,下列说法错误的是( )A.铀的元符号是UB.铀原子的质子数为92C.铀元素的相对原子质量为238.0D.铀原子的中子数为928. 市售加碘盐是在食盐中加入一定量的碘酸钾(3KIO )在碘酸钾中碘元素的化合价是( )A. +2B.+3C.+4D.+59. 室内起火时,如果打开门窗,火反而会烧的更旺,是因为( )A. 降低了可燃物的着火点B.提高了可燃物的着火点C.补充了氧气使火烧的更旺D.增加了可燃物使火烧的更旺10. 维生素C (686O H C )主要存在于蔬菜、水果中,它能促进人体生长发育,增强人体对疾病的抵抗力。
贵州省贵阳市普通中学2017届九年级物理上学期期末测试卷

贵阳市普通中学2016—2017学年度第一学期期末监测考试试卷九年级物理一、选择题(每小题都只有一个正确答案,每小题3分,共24分)1.如图所示的几种家用电器,其中主要利用电流热效应特点来工作的是()2.“霜降”是农历二十四节气之一,它含有天气渐冷、初霜出现的意思.霜真是从天而“降”吗?经历了物态变化的学习,请判断霜的出现使因为空气中的水蒸气发生了下列哪种物态变化所致()A.熔化B.凝固C.凝华D.液化3.热传递和做功可以改变物体的内能,如图所示的几种生活现象,其中哪个情景改变物体内能的方式与另外三个是不同的()4.如图所示,将塑料笔尾在头发上摩擦几下后用细线悬挂起来,笔静止后,用带负电的橡胶板靠近笔尾,观察到笔尾远离橡胶板转动,由此可知摩擦后的熟料笔尾()A.带负电B.带正电C.不带电D.失去电子5.家庭的安全用电越来越受到人们的重视,为了确保用电安全,下列情景中做法得当的是()A.多个大功率用电器可以同时共用一个接线板工作B.用测电笔辨别火线和零线时,必须用手接触笔尾金属体C.若大功率用电器的电源线发热,应及时用毛巾等物品裹住以免造成火灾D.可以用湿抹布擦拭正在工作的白炽灯泡6.2015年10月,85岁的科学家屠哟哟因创制新型抗疟药——青蒿素而成为首位荣获诺贝尔生理学或医学奖的中国人.据了解青蒿素在高温下易失去活性,为了从溶液中提取青蒿素,她提出用乙醚(常温下呈液态)低温提取,这是因为乙醚具有()A.较小的密度B.较小的比热容C.较低的燃点D.较低的沸点7.如图所示,将“6V 3W”的灯泡L1和“6V 6W”的灯泡L2并联接在电压恒为6V的电源上,下列关于该电路分析正确的是()A.若只闭合开关S,电流表的示数为1AB.若同时闭合开关S、S1,两灯均不能正常发光C.若同时闭合开关S、S1,L1比L2要暗些D.若先闭合开关S,电流表示数为I1;再闭合开关S1,电流表示数为I2,则I1:I2=1:28.如图所示电路,电源电压保持不变,闭合开关S,当滑动变阻器的滑片P从图示位置向左移动过程中(不考虑灯丝电阻的变化)()A.灯泡L的亮度逐渐变暗B.电流表的示数逐渐减小C.电压表的示数逐渐增大D.电路消耗的总功率逐渐减小二、填空题(每空2分,共20分)9.温度是影响液体蒸发快慢的重要因素之一.同一杯水,在夏天比冬天蒸发得快,这是因为温度越高,分子运动得就越.10.清晨,草叶上常挂有晶莹的露珠,这是因为夜间温度比较低,空气中的水蒸气遇冷形成水珠附着在草叶上;随着阳光的照射,这些露珠又会慢慢消失,这是因为露珠发生了的缘故.(两空均填写物态变化的名称)11.2016年11月3日,长征五号运载火箭在文昌航天发射场升空,这标志着中国火箭运载能力进入国际先进行列.据了解该火箭主要使用液态氢作为燃料,这是因为液态氢的大,燃烧时可以释放出更多的能转化为火箭的机械能.12.如图所示电路,电源电压3V保持不变,电阻R1=10Ω,R2=5Ω,当闭合开关S后,电压表示数为V.13.如图所示是电路元件甲和乙电流随电压变化关系的图像,若将甲和乙并联在电压恒为2V的电源上,则干路电流为A;若将它们串联在电压恒为3V的电源上,它们消耗的总功率是W.14.如图所示的电路中,电源电压保持不变,定值电阻R1和滑动变阻器R2串联,闭合开关S,将滑动变阻器的滑片P置于最右端时,电路中的电流为0.1A,R2两端的电压为10V,则滑动变阻器的最大阻值R2= Ω;将滑片P置于某处时,电路中的电流为0.3A,R2两端的电压为6V,这一过程中R1消耗的电功率变化了W.三、简答题(每题3分,共9分)15.随着冬季来临,我市日用电量急剧攀升,为缓解能源过度消耗,我们每位居民都应该树立节约能源的观念.请你从身边开始,谈谈节约用电随手可做的两件小事.16.烈日炎炎的夏季,室外游泳池的地面热得烫脚,而池中的水却非常凉爽,请你用所学物理知识解释产生这一现象的原因.17.小豫买了一台“220V 2000W”的电炉,商家配送了一个如图所示标有“220V 6A”字样的插线板.若仅用电炉连接该插线板使用会带来哪些安全隐患?请你举出两点并说明理由.四、作图题(每题2分,共8分)18.请用笔画线代替导线将图中的实物电路连接完整.要求:小灯泡L1和L2并联;电流表测量通过小灯泡L1的电流.(不考虑电表量程的选择)19.如图所示是家庭中带开关的电源插座板.当开关闭合时,三孔插座正常通电;当开关断开时,插座立即断电.20.两个带电小球水平向右移动,当它们运动到带正电荷的静止圆球附近,两小球的运动方向都随即发生了改变,其运动轨迹如图所示.请你在两个小球上分别标出它们所带的电荷种类.21.用酒精灯给质量、初温一定的水加热至沸腾一段时间,其温度随时间变化的大致关系图像如图所示.若其他条件不变,增加水质量的同时增大页面上方的气压.请在图中画出此种情况下水在相同的过程中温度随时间变化的大致关系图像.五、实验与科学探究题(22题8分,23题8分,24题9分,共25分)22.如图所示,分别是小明和小芳探究“冰熔化特点”的实验装置,请回答下列问题:(1)为了使试管中的冰受热均匀,他们需要去找一些颗粒较(选填:“大”或“小”)的纯冰.(2)小明正确组装好实验器材后,刚点燃酒精灯加热时(如图甲所示),他观察到温度计的示数是℃.(3)实验完成后,小明根据实验数据绘制了冰熔化过程中温度随时间变化关系的图像(如图所示),分析图像可知:①当对冰加热到第4分钟时,试管内的物质处于态(选填:“固”、“液”或“固液混合”);②冰在熔化过程中持续热量(选填:“吸收”或“放出”),但温度保持不变.(4)小芳用相同的酒精灯对桶质量的冰加热(如图乙所示),实验结束后她根据数据绘制了如图所示的温度随时间变化大致关系的图像,根据图像可知,冰熔化时温度不断上升,于是小芳认为:冰没有固定熔点,属于非晶体.小芳的这一实验过程得出的观点是否可信?,依据是.23.在“测量小灯泡的电功率”实验中,电源电压恒为3V,小灯泡上标有“2.5V”字样.(1)按如图所示电路接线,闭合开关后,发现小灯泡不亮,电流表示数为0,电压表示数接近3V,造成这一现象的原因可能是小灯泡发生了故障.(2)排除故障后,多次移动滑动变阻器的滑片,分别记录下多组电流值和电压值,实验数据如上表所示,则可计算出小灯泡的额定功率是W.(3)根据表格数据分析:当灯泡两端电压增大时,电压表与电流表的示数的比值(选填:“变大”、“变小”或“不变”),导致这一结果的原因是.24.小光提出“在串联电路中,电流从电源正极流出后,每流过一个用电器电流值将会减小”的猜想.实验室中有如下器材:电源、开关、小灯泡2只、电流表2只、导线若干,小光利用上述器材来探究串联电路中电流的特点以验证自己的猜想.(1)小光设计了如图所示的两灯串联电路,请你将两只电流表正确接入该电路中,使两灯均能发光并符合小光的实验目的.(2)小光按重新设计的电路图连接电路元件,当接完最后一根导线时,两个小灯泡就发光了,请你指出他连接实物电路时的不规范之处:.(3)实验中按照电流流向,若第一只电流表和第二只电流表的示数分别如图甲、乙所示,小光根据电流表的指针偏转情况肯定了自己的猜想是正确的.你认为这可信吗?,理由是.(4)若实验中小灯泡L1比L2亮,能否通过灯泡量度判断通过L1的电流大于通过L2的电流.请你用所学物理知识分析说明:.六、综合应用题(25题6分,26题8分,共14分)25.如图所示电路,电源电压U=6V,定值电阻R1=12Ω.闭合开关S,电流表的示数为2A,请计算回答下列问题:(1)通过定值电阻R1的电流;(2)定值电阻R2的阻值;(3)通电1min,整个电路消耗的电能.26.如图所示的电路中,电源电压不变.定值电阻R0的阻值为5Ω,小灯泡L上标有“6V 4.5W”字样(不考虑温度对灯丝电阻的影响).请计算回答下列问题:(1)小灯泡的电阻;(2)当开关S接1,滑动变阻器的滑片P置于b端时,定值电阻R0消耗的电功率为12.8W.求电源电压;(3)当开关S接2,将滑动变阻器的滑片P置于a端时,小灯泡消耗的电功率为1.28W,求滑动变阻器的最大阻值.。
贵阳市普通中学-2016—2017-学年度第一学期期末监测考试试题及答案

九年级物理第1页(共6页)贵阳市普通中学2016—2017学年度第一学期期末监测考试试卷九年级物理同学们请注竜:1. 本试卷共6页,満分100分,签题时间120分钟.考试形式为闭卷.2. 答案一律写在答题卡上,在试卷上答题视为无效.3. 可以使用科学计算彩.4・下面提供的部分公式供円学们选用.一.选择题(毎小題都只有一个答案正确,请将答题卡上正确答案的序号按要求涂黑c 每 小題3分.共24分)1.如图I 所示的几种家用电器,其中主要利用电流热效应特点来工作的足2・ “霜降”是农历二十四节气之一,它含有天气渐冷.初霜出现的意思。
霜真避从天而“降”吗?经历了物态变化的学习,请判断霜的出现是因为空气中的水蒸气发生了下列哪 种物态变化所致 A ・熔化B.離固C.凝华D.裁化3.热传递和做功均可改变物体的内能。
如图2所示的几种生活现狡,其中哪个情毀改变 物体内能的方式与另外三个是不同的 P = F RW = UItB.电炉图 1RA.电视机B.暖风使房何温度升A.铁锅热得烫手C.棉被陋得热乎乎D.搓手取暖九年级物理第2页(共6页)4. 如图3所示,将塑料笔笔尾在头发上摩擦几下后用细线悬挂起来。
笔静止后,用带负电的橡胶棒靠近笔尾,观察到笔尾远离橡胶棒转动.由此可知摩擦后的塑料笔尾A.带负电B.带正电C.不带电D.失去电子5. 家庭的安全用电越来越受到人们的塑视.为了确保用电安全,下列情景中做法得当的是A・多个大功率用电器可以同时共用一个接线板工作B. 用测电笔辨别火线和零线时,必须用手接触笔尾金属体C. 若大功率用电器的电源线发热,应及时用毛巾等物品裹住以免适成火灾D. 可以用湿抹布擦拭正在工作的白炽灯泡6. 2015年10月,85岁的科学家屠呦呦因创制新型抗疟药一青蒿素而成为首位荣获诺贝尔生理学或医学奖的中国人。
据了解青离索在高温下易失去活性,为了从溶液中提取青蒿素,她提出用乙駐(常温下呈液态)低温提取,这是因为乙駐具有A. 较小的密度B.较小的比热容C.较低的燃点D.较低的沸点7.如图4所示,将“6V3W”的灯泡Li和“6V6W”的灯泡b并联接在电压恒为6V的电源上.下列关于该电路分析正确的是A. 若只闭合开关S,电流表的示数为1AB. 若同时闭合开关S、Si,两灯均不能正常发光C. 若同时闭合开关S、Si,Li比L2要暗些D. 若先闭合开关S,电流表示数为力:再闭合开关Si,电流表示数为乙,则图47i :A=1 : 28. 如图5所示电路,电源电压保持不变,闭合开关S・当滑动变阻Q I Q器的滑片尸从图示位置向左移动过程中(不考虑灯丝电阻的变化)A.灯泡L的亮度逐渐变暗B・电流表的示数逐渐减小C. 电压表的示数逐渐增大D.电路消耗的总功率逐渐减小L>T I一~上呂二、填空题(每空2分,共20分)图59. 温度足影响液体蒸发快慢的重要因索之一.同一杯水,衽夏天比冬天蒸发得快,这是因为温度越高,分子运动得就越 ____________ ・10. 清晨,草叶上常挂有晶莹的需珠,这是因为夜间温度较低,空气中的水蒸气遇冷____________ 形成水珠附着在草叶上;随着阳光的照射,这些諜珠又会慢慢消失,这是因为露珠发生了____________ 的缘故。
2016-2017学年贵州省贵阳市九年级(上)期末数学试卷

2016-2017学年贵州省贵阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1. 某几何体的主视图和左视图如图所示,则该几何体可能是( )A.长方体B.圆锥C.正方体D.球2. 关于x 的一元二次方程3x 2−2x +m =0的一个根是−1,则m 的值为( ) A.5 B.−5C.1D.−13. 已知AC 为矩形ABCD 的对角线,则图中∠1与∠2一定不相等的是( )A.B.C. D.4. 一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,则该三角形的最短边是( ) A.6 B.9 C.10 D.155. 下列各点不在反比例函数y =12x上的是( )A.(3, 4)B.(−3, −4)C.(6, −2)D.(−6, −2)6. 如图,在6×6的正方形网格中,连接两格点A ,B ,线段AB 与网格线的交点为点C ,则AC:CB 为( )A.1:3B.1:4C.1:5D.1:67. 小敏不慎将一块矩形玻璃打碎成如图的四块,为了能在商店配到一块与原来相同的矩形玻璃,他带了两块碎玻璃,其编号应该是( )A.①②B.①③C.③④D.②④8. 如图所示电路,任意闭合两个开关,能使灯L 2亮起来的概率是( )A.12B.13C.23D.159. 如图,是三个反比例函数y=k1x,y =k 2x,y =k 3x在x 轴上方的图象,由此观察得到k 1,k 2,k 3的大小关系为( )A.k 1>k 2>k 3B.k 3>k 1>k 2C.k 2>k 3>k 1D.k 3>k 2>k 110. 如图,矩形ABCD 的周长是20cm ,以AB ,AD 为边向外作正方形ABEF 和正方形ADGH ,若正方形ABEF 和ADGH 的面积之和为68cm 2,那么矩形ABCD 的面积是( )A.9cm 2B.16cm 2C.21cm 2D.24cm 2二、填空题(每小题4分,共20分)方程3x 2−5x =0的二次项系数是________.如图所示,此时的影子是在________下(太阳光或灯光)的影子,理由是________.在平面直角坐标系中,直线y =x +1与反比例函数y =kx 的图象的一个交点A(a, 2),则k 的值为________.小明和小花在玩纸牌游戏,有两组牌,每组各有两张,分别标有数字1,2,每天每次从每组中抽出一张,两张牌的数字之积为2的概率为________.如图,在平行四边形ABCD 中,EF // AB 交AD 于E 交BD 于F ,DE:EA =3:4,EF =6,则CD 的长为________.三、解答题(满分50分)如图,已知△ABC ,利用尺规作出一个新三角形,使新三角形与△ABC 对应线段比为2:1(不写作法,保留作图痕迹).一只不透明的袋子中装有4个质地,大小均相同的小球,这些小球分别标有3,4,5,x ,甲,乙两人每次同时从袋中各随机取出1个小球,并计算两个小球数字之和.记录后将小球放回袋中搅匀.进行重复实验,实验数据如表:(1)如果实验继续进行下去,根据上表提供数据,出现和为8的频率将稳定在它的概率附近,估计出现和为8的概率是多少.(2)如果摸出这两个小球上数字之和为9的概率是13,那么x 的值可以取7吗?请用列表或画树状图的方法说明理由.如图所示,某小区计划在一块长20米,宽15米的矩形荒地上建造一个花园,使得花园所占面积为荒地面积的一半,其中花园每个角上的扇形都相同,则每个扇形的半径x 是多少?(精确到0.1)已知,如图,AC ⊥BC ,BD ⊥BC ,AC >BC >BD .(1)请你添加一个条件,使△ABC 相似于△CDB ,你添加的条件是________;(2)若DB =3,BC =4,在(1)的条件下,求AC 的长度.如图,已知平行四边形ABCD 中,对角线AC ,BD 交于点O ,E 是BD 延长线上的点,且△ACE 是等边三角形.(1)求证:四边形ABCD 是菱形;(2)若∠AED =2∠EAD ,求证:四边形ABCD 是正方形.如图,在平面直角坐标系中,一次函数y =2x +2与x 轴,y 轴分别交于点A ,B ,与反比例函数y=4x 在第一象限交于点C .(1)写出点A ,B ,C 的坐标.(2)过x 轴上的点D(3, 0)作平行于y 轴的直线l 分别与直线AB 和反比例函数y =4x 交于点P ,Q ,求△APQ 的面积.对某一种四边形给出如下定义:有一组对角相等而另一组对角不相等的凸四边形叫做“等对角四边形”. (1)已知:如图1,四边形ABCD 是“等对角四边形”,∠A ≠∠C ,∠A =70∘,∠B =80∘.则∠C =________度,∠D =________度.(2)在探究“等对角四边形”性质时:小红画了一个“等对角四边形ABCD ”(如图2),其中∠ABC =∠ADC ,AB =AD ,此时她发现CB =CD 成立.请你证明此结论;(3)已知:在“等对角四边形ABCD ”中,∠DAB =60∘,∠ABC =90∘,AB =5,AD =4.求对角线AC 的长.参考答案与试题解析2016-2017学年贵州省贵阳市九年级(上)期末数学试卷一、选择题(每小题3分,共30分)1.【答案】A【考点】由三视图判断几何体【解析】根据常见几何体的三视图确定即可得.【解答】解:A,长方体的主视图和左视图均为矩形,符合题意;B,圆锥的主视图和左视图均为等腰三角形,不符合题意;C,正方体的主视图和左视图均为正方形,不符合题意;D,球的主视图和左视图均为圆,不符合题意.故选A.2.【答案】B【考点】一元二次方程的解【解析】根据一元二次方程的解的定义把x=−1代入方法得到关于m的一次方程,然后解一次方程即可.【解答】解:把x=−1代入方程得3+2+m=0,解得m=−5.故选B.3.【答案】D【考点】三角形的外角性质矩形的性质【解析】根据矩形的性质,逐一进行判断即可求解.【解答】解:A,对顶角相等,A一定相等,故A不符合题意;B,不确定,可能相等,也可能不相等,故B不符合题意;C,不确定,可能相等,也可能不相等,故C不符合题意;D,一定不相等,因为∠1=∠ACD,∠2>∠ACD,故D符合题意.故选D.4. 【答案】B【考点】相似三角形的性质【解析】首先设与它相似的三角形的最短边的长为x,然后根据相似三角形的对应边成比例,即可得方程x3=217,解此方程即可求得答案.【解答】解:设与它相似的三角形的最短边的长为x,∵一个三角形三边的长分别为3,5,7,另一个与它相似的三角形的最长边是21,∴x3=217,解得:x=9.故选B.5.【答案】C【考点】反比例函数图象上点的坐标特征【解析】分别把各点坐标代入反比例函数的解析式进行检验即可.【解答】解:A,∵x=3时,y=123=4,∴此点在反比例函数的图象上,故本选项不符合题意;B,∵x=−3时,y=−123=−4,∴此点在反比例函数的图象上,故本选项不符合题意;C,∵x=6时,y=126=2≠−2,∴此点不在反比例函数的图象上,故本选项符合题意;D,∵x=−6时,y=−126=−2,∴此点在反比例函数的图象上,故本选项不符合题意.故选C.6.【答案】C【考点】平行线分线段成比例【解析】构建如图所示的图形,利用平行线分线段成比例得到ACCB=ADDE=15.【解答】解:如图,∵ CD // BE , ∴ ACCB =ADDE =15. 故选C . 7.【答案】 B【考点】 矩形的性质全等三角形的应用【解析】确定有关平行四边形,关键是确定平行四边形的四个顶点,由此即可解决问题. 【解答】解:∵ 只有①③两块角的两边互相平行,且中间部分相联,角的两边的延长线的交点就是平行四边形的顶点, ∴ 带①③两块碎玻璃,就可以确定平行四边形的大小. 故选B . 8.【答案】 C【考点】列表法与树状图法 【解析】先根据题意画出树状图,得出共有6种情况,再根据能使灯L 2亮起来的情况有4种,即可得出能使灯L 2亮起来的概率. 【解答】解:根据题意画树状图如下:∵ 共有6种情况,能使灯L 2亮起来的情况有4种, ∴ 能使灯L 2亮起来的概率是46=23. 故选C . 9.【答案】 C【考点】反比例函数的图象 【解析】根据反比例函数图象上点的坐标特点可得k =xy ,进而可分析k 1、k 2、k 3的大小关系. 【解答】解:读图可知:三个反比例函数y =k 1x的图象在第二象限;故k 1<0;y =k 2x,y =k 3x在第一象限;且y =k 2x,的图象距原点较远,故有:k 3<k 2;综合可得:k 2>k 3>k 1. 故选C . 10.【答案】 B【考点】 正方形的性质 矩形的性质【解析】设AB =x ,AD =y ,根据题意列出方程x 2+y 2=68,2(x +y)=20,利用完全平方公式即可求出xy 的值. 【解答】解:设AB =x ,AD =y ,∵ 正方形ABEF 和ADGH 的面积之和为68cm 2, ∴ x 2+y 2=68.∵ 矩形ABCD 的周长是20cm , ∴ 2(x +y)=20.∵ (x +y)2=x 2+2xy +y 2, ∴ 100=68+2xy , ∴ xy =16,∴ 矩形ABCD 的面积为:xy =16. 故选B .二、填空题(每小题4分,共20分) 【答案】 3【考点】一元二次方程的一般形式 一元二次方程的定义【解析】先找出方程的二次项,再找出项的系数即可. 【解答】解:方程3x 2−5x =0的二次项为3x 2,二次项系数是3.故答案为:3. 【答案】太阳光,通过作图发现相应的直线是平行关系 【考点】 平行投影 【解析】连接两个实物顶点与像的对应顶点,得到的两条直线平行可得为太阳光下的投影. 【解答】解:此时的影子是在太阳光下(太阳光或灯光)的影子, 理由是:通过作图发现相应的直线是平行关系.故答案为:太阳光;通过作图发现相应的直线是平行关系. 【答案】 2【考点】函数的综合性问题 【解析】将y =2代入y =x +1中求出x 值,进而即可得出点A 的坐标,由点A 的坐标利用反比例函数图象上点的坐标特征即可求出k 值,此题得解. 【解答】解:当y =x +1=2时,x =a =1, ∴ 点A 的坐标为(1, 2).∵ 点A(1, 2)在反比例函数y =kx 的图象上,∴ k =1×2=2. 故答案为:2. 【答案】12【考点】列表法与树状图法 【解析】先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率. 【解答】解:画树形图得:由树状图可知共有2×2=4种可能,两张牌的积为2的有2种, 所以概率24=12. 故答案为:12.【答案】 14【考点】相似三角形的性质与判定平行四边形的性质 【解析】由于DE:EA =3:4,所以DE:DA =3:7,又因为EF // AB ,所以△DEF ∽△DAB ,所以DEDA =EFAB ,从而可求出AB 的长度. 【解答】解:∵ DE:EA =3:4, ∴ DE:DA =3:7. ∵ EF // AB ,∴ △DEF ∼△DAB , ∴DE DA =EF AB,∴ 37=6AB,∴ AB =14,∴ CD =AB =14. 故答案为:14.三、解答题(满分50分)【答案】解:如图,△A′B′C′即为所求作三角形.【考点】作图-相似变换 【解析】平面内任取一点O ,作射线AO 、BO 、CO ,再射线上分别截取OA′=2OA 、OB′=2OB 、OC′=2OC ,顺次连接A′、B′、C′即可得. 【解答】解:如图,△A′B′C′即为所求作三角形.【答案】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是33100, 故出现“和为8”的概率是33100.(2)假设x =7,则P (和为9)=16≠13,所以,x 的值不能为7.【考点】利用频率估计概率 列表法与树状图法【解析】(1)利用频率估计概率结合表格中数据得出答案即可;(2)假设x =7,根据题意先列出树状图,得出和为9的概率,再与13进行比较,即可得出答案. 【解答】解:(1)根据随着实验的次数不断增加,出现“和为8”的频率是33100, 故出现“和为8”的概率是33100.(2)假设x =7,则P (和为9)=16≠13,所以,x 的值不能为7. 【答案】解:根据题意得:4×14πx 2=12×20×15,解得:x 1≈6.9,x 2≈−6.9(舍去). 答:每个扇形的半径为6.9米. 【考点】一元二次方程的应用一元二次方程的应用--几何图形面积问题【解析】根据4个扇形的面积是长方形荒地面积的一半即可得出关于x 的一元二次方程,解之即可得出结论. 【解答】解:根据题意得:4×14πx 2=12×20×15,解得:x 1≈6.9,x 2≈−6.9(舍去). 答:每个扇形的半径为6.9米. 【答案】 ∠A =∠DCB(2)∵ △ABC ∼△CDB ,DB =3,BC =4,∴AC BC=BC DB,即AC4=43, 解得AC =163.【考点】相似三角形的判定 【解析】(1)根据相似三角形的判定定理即可得出结论; (2)根据相似三角形的性质即可得出结论. 【解答】解:(1)∵ AC ⊥BC ,BD ⊥BC , ∴ ∠ACB =∠CBD , 又∠A =∠DCB , ∴ △ABC ∼△CDB .∴ 可以添加的条件是∠A =∠DCB . 故答案为:∠A =∠DCB .(2)∵ △ABC ∼△CDB ,DB =3,BC =4, ∴ ACBC =BCDB , 即AC 4=43,解得AC =163.【答案】证明:(1)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO ⊥AC (三线合一),即AC ⊥BD ,∴ 四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形). (2)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO 平分∠AEC (三线合一), ∴ ∠AED =12∠AEC =12×60∘=30∘, 又∵ ∠AED =2∠EAD ∴ ∠EAD =15∘,∴ ∠ADO =∠DAE +∠DEA =15∘+30∘=45∘(三角形的一一个外角等于和它外角不相邻的两内角之和), ∵ 四边形ABCD 是菱形, ∴ ∠ADC =2∠ADO =90∘, ∴ 平行四边形ABCD 是正方形. 【考点】 正方形的判定 菱形的判定 平行四边形的性质【解析】(1)根据对角线互相垂直的平行四边形是菱形.由题意易得△AOE ≅△COE ,∴ ∠AOE =∠COE =90∘,∴ BE ⊥AC ,∴ 四边形ABCD 是菱形;(2)根据有一个角是90∘的菱形是正方形.由题意易得∠ADO =∠DAE +∠DEA =15∘+30∘=45∘,∵ 四边形ABCD 是菱形,∴ ∠ADC =2∠ADO =90∘,∴ 四边形ABCD 是正方形. 【解答】证明:(1)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO ⊥AC (三线合一),即AC ⊥BD ,∴ 四边形ABCD 是菱形(对角线互相垂直的平行四边形是菱形). (2)∵ 四边形ABCD 是平行四边形, ∴ AO =CO .又∵ △ACE 是等边三角形, ∴ EO 平分∠AEC (三线合一), ∴ ∠AED =12∠AEC =12×60∘=30∘,又∵ ∠AED =2∠EAD ∴ ∠EAD =15∘,∴ ∠ADO =∠DAE +∠DEA =15∘+30∘=45∘(三角形的一一个外角等于和它外角不相邻的两内角之和), ∵ 四边形ABCD 是菱形, ∴ ∠ADC =2∠ADO =90∘, ∴ 平行四边形ABCD 是正方形. 【答案】解:(1)当y =2x +2=0时,, ∴ 点A 的坐标为(−1, 0); 当x =0时,y =2x +2=2, ∴ 点B 的坐标为(0, 2);联立两函数解析式成方程组, {y =2x +2,y =4x,解得:{x 1=−2,y 1=−2,或{x 2=1,y 2=4.∴ 点C 的坐标为(1, 4).(2)当x =3时,y =2x +2=8,∴ 点P 的坐标为(3, 8); 当x =3时,y =4x=43,∴ 点Q 的坐标为(3, 43). ∴ PQ =8−43=203,AD =3−(−1)=4,∴ S △APQ =12PQ ⋅AD =12×203×4=403.【考点】函数的综合性问题 【解析】(1)分别将x =0、y =0代入y =2x +2中求出与之对应的y 、x 的值,由此即可得出点B 、A 的坐标,再联立两函数解析式成方程组,解之取其正值即可得出点C 的坐标;(2)将x =3分别代入一次函数和反比例函数解析式中求出y 值,由此即可得出点P 、Q 的坐标,进而即可得出PQ 的长度,由点A 、D 的坐标即可得出线段AD 的长度,再利用三角形的面积公式即可求出△APQ 的面积. 【解答】解:(1)当y =2x +2=0时,, ∴ 点A 的坐标为(−1, 0); 当x =0时,y =2x +2=2, ∴ 点B 的坐标为(0, 2);联立两函数解析式成方程组, {y =2x +2,y =4x,解得:{x 1=−2,y 1=−2,或{x 2=1,y 2=4.∴ 点C 的坐标为(1, 4).(2)当x =3时,y =2x +2=8, ∴ 点P 的坐标为(3, 8); 当x =3时,y =4x=43,∴ 点Q 的坐标为(3, 43).∴ PQ =8−43=203,AD =3−(−1)=4,∴ S △APQ =12PQ ⋅AD =12×203×4=403.【答案】130,80(2)证明:如图2所示,连接BD ,∵ AB =AD , ∴ ∠ABD =∠ADB .∵ ∠ABC =∠ADC ,∴ ∠ABC −∠ABD =∠ADC −∠ADB , ∴ ∠CBD =∠CDB , ∴ CB =CD .(3)分两种情况:①当∠ADC =∠ABC =90∘时,延长AD ,BC 相交于点E ,如图所示.∵ ∠ABC =90∘,∠DAB =60∘,AB =5, ∴ ∠E =30∘,∴ AE =2AB =10,∴ DE =AE −AD =10−4=6 ∵ ∠EDC=90∘,∠E=30∘, ∴ CD =2√3,∴ AC =√AD 2+CD 2=√42+(2√3)2=2√7.②当∠BCD =∠DAB =60∘时,过点D 作DM ⊥AB 于点M ,DN ⊥BC 于点N ,如图4所示,则∠AMD =90∘,四边形BNDM 是矩形, ∵ ∠DAB =60∘, ∴ ∠ADM =30∘,∴ AM =12AD =2,∴ DM =2√3,∴ BM =AB −AM =5−2=3, ∴ 四边形BNDM 是矩形,∴ DN =BM =3,BN =DM =2√3, ∵ ∠BCD =60∘,∴ CN =√3,∴ BC =CN +BN =3√3, ∴ AC =√52+(3√3)2=2√13. 综上,AC 为2√13或2√7. 【考点】 四边形综合题 【解析】过点CCE ⊥AB 于点E ,交BD 于点M′点M 作M′N ⊥BC 于′,则CE 即M +M 的最小再根据BC4√2,∠ABC5∘BD 分∠AB 可知BCE 是等腰角三角形,由锐角角函数的定义即可出E 的长. 【解答】(1)解:∵ 四边形1是“等对角四边形”,∠A ≠∠C , ∴ ∠D =∠B =80∘,∴ ∠C =360∘−∠A −∠B −∠D =360∘−70∘−80∘−80∘=130∘. 故答案为:130;80.(2)证明:如图2所示,连接BD ,∵ AB =AD , ∴ ∠ABD =∠ADB . ∵ ∠ABC =∠ADC ,∴ ∠ABC −∠ABD =∠ADC −∠ADB , ∴ ∠CBD =∠CDB , ∴ CB =CD .(3)分两种情况:①当∠ADC =∠ABC =90∘时,延长AD ,BC 相交于点E ,如图所示.∵ ∠ABC =90∘,∠DAB =60∘,AB =5,∴ ∠E=30∘,∴ AE=2AB=10,∴ DE=AE−AD=10−4=6∵ ∠EDC=90∘,∠E=30∘,∴ CD=2√3,∴ AC=√AD2+CD2=√42+(2√3)2=2√7.②当∠BCD=∠DAB=60∘时,过点D作DM⊥AB于点M,DN⊥BC于点N,如图4所示,则∠AMD=90∘,四边形BNDM是矩形,∵ ∠DAB=60∘,∴ ∠ADM=30∘,∴ AM=1AD=2,2∴ DM=2√3,∴ BM=AB−AM=5−2=3,∴ 四边形BNDM是矩形,∴ DN=BM=3,BN=DM=2√3,∵ ∠BCD=60∘,∴ CN=√3,∴ BC=CN+BN=3√3,∴ AC=√52+(3√3)2=2√13.综上,AC为2√13或2√7.。
20162017学年贵州省贵阳市高一(上)期末数学试卷

2016-2017学年贵州省贵阳市高一(上)期末数学试卷一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y26.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.27.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f(x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有名同学参赛.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=.13.(4分)已知,那么=.14.(4分)计算(lg2)2+lg2•lg50+lg25=.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B=;②若B={1,2},则A ∩B=.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;(4)由函数y=可知f(﹣x)=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.2016-2017学年贵州省贵阳市高一(上)期末数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.(4分)已知集合A={0,1,2},B={2,3},则集合A∪B=()A.{1,2,3}B.{0,1,2,3}C.{2}D.{0,1,3}【解答】解:∵集合A={0,1,2},B={2,3},则集合A∪B={0,1,2,3},故选:B.2.(4分)化简÷(b)(a>0,b>0)结果为()A.a B.b C.D.【解答】解:原式==a,故选:A3.(4分)正弦函数f(x)=sinx图象的一条对称轴是()A.x=0 B.C.D.x=π【解答】解:f(x)=sinx图象的一条对称轴为+kπ,k∈Z,∴当k=0时,函数的对称轴为,故选:C.4.(4分)下列函数中,既是偶函数又存在零点的是()A.f(x)=sinx B.f(x)=x2+1 C.f(x)=lnx D.f(x)=cosx【解答】解:对于A,是奇函数;对于B,是偶函数,不存在零点;对于C,非奇非偶函数;对于D,既是偶函数又存在零点.故选:D.5.(4分)设y1=log0.70.8,y2=log1.10.9,y3=1.10.9,则有()A.y3>y1>y2B.y2>y1>y3C.y1>y2>y3D.y1>y3>y2【解答】解:y1=,1);y2=;y3=,可得y3>y1>y2.故选:A.6.(4分)已知正方形ABCD的边长为1,则•=()A.1 B.C.D.2【解答】解:.故选A.7.(4分)如果cos(π+A)=﹣,那么sin(+A)的值是()A.B.C.D.【解答】解:由题意可得:,根据诱导公式可得cosA=,所以=cosA=,故选B.8.(4分)要得到函数y=sin(2x+)的图象,只需将函数y=sin2x的图象()A.向左平移个单位B.向左平移个单位C.向右平移个单位D.向右平移个单位【解答】解:由于函数y=sin(2x+)=sin2(x+),∴将函数y=sin2x的图象向左平移个单位长度,可得函数y=sin(2x+)的图象,故选:B9.(4分)函数y=f(x)在区间上的简图如图所示,则函数y=f(x)的解析式可以是()A.f(x)=sin(2x+)B.f(x)=sin(2x﹣)C.f(x)=sin(x+)D.f(x)=sin(x﹣)【解答】解:由图象知A=1,∵=,∴T=π,∴ω=2,∴函数的解析式是y=sin(2x+φ)∵函数的图象过()∴0=sin(2×+φ)∴φ=kπ﹣,∴φ=﹣∴函数的解析式是y=sin(2x﹣)故选B.10.(4分)对于函数f(x),如果存在非零常数T,使得当x取定义域内的每一个值时,都有f(x+T)=f(x),那么函数f(x)就叫做周期函数,已知函数y=f (x)(x∈R)满足f(x+2)=f(x),且x∈[﹣1,1]时,f(x)=x2,则y=f(x)与y=log5x的图象的交点个数为()A.3 B.4 C.5 D.6【解答】解:∵函数y=f(x)(x∈R)满足f(x+2)=f(x),∴f(x)是周期为2的周期性函数,又x∈[﹣1,1]时,f(x)=x2.根据函数的周期性画出图形,如图,由图可得y=f(x)与y=log5x的图象有4个交点故选:B.二、填空题(共5小题,每小题4分,满分20分)11.(4分)学校先举办了一次田径运动会,某班有8名同学参赛,又举办了一次球类运动会,该班有12名同学参赛,两次运动会都参赛的有3人.两次运动会中,这个班共有17名同学参赛.【解答】解:设A={x|x是参加田径运动会比赛的学生},B={x|x是参加球类运动会比赛的学生},A∩B={x|x是两次运动会都参加比赛的学生},A∪B={x|x是参加所有比赛的学生}.因此card(A∪B)=card(A)+card(B)﹣card(A∩B)=8+12﹣3=17.故两次运动会中,这个班共有17名同学参赛.故答案为:17.12.(4分)溶液酸碱度是通过pH值刻画的,pH值的计算公式为pH=﹣lg[H+],其中[H+]表示溶液中氢离子的浓度,单位是摩尔/升,纯净水中氢离子的浓度为[H+]=10﹣7摩尔/升,则纯净水的pH=7.【解答】解:由题意可得:该溶液的PH值为﹣lg10﹣7=7故答案为:713.(4分)已知,那么=.【解答】解:因为,所以||=.故答案为.14.(4分)计算(lg2)2+lg2•lg50+lg25=2.【解答】解:原式=2 lg5+lg2•(1+lg5)+(lg2)2=2 lg5+lg2(1+lg5+lg2)=2 lg5+2 lg2=2;故答案为2.15.(4分)设A,B是非空的集合,如果按某一个确定的对应关系f,使对于集合A中的任意一个元素x,在集合中B都有唯一确定的元素y与之对应,那么就称对应f:A→B为从集合A到集合B的一个映射,设f:x→是从集合A到集合B的一个映射.①若A={0,1,2},则A∩B={0,1} ;②若B={1,2},则A∩B={1}或∅.【解答】解:①根据题意,A={0,1,2},通过对应关系f:x→,B={0,1,},所以A∩B={0,1};②根据题意,B={1,2}时,过对应关系f:x→,得A={1}或{4}或{1,4};所以A∩B={1}或∅.故答案为:{0,1},{1}或∅.三、解答题(共4小题,满分32分)16.(8分)已知向量=(1,0),=(1,1),=(﹣1,1).(Ⅰ)λ为何值时,+λ与垂直?(Ⅱ)若(m+n)∥,求的值.【解答】解:(Ⅰ)∵向量=(1,0),=(1,1),=(﹣1,1).∴=(1+λ,λ),∵+λ与垂直,∴()•=1+λ+0=0,解得λ=﹣1,∴λ=1时,+λ与垂直.(Ⅱ)∵=(m,0)+(n,n)=(m+n,n),又(m+n)∥,∴(m+n)×1﹣(﹣1×n)=0,∴=﹣2.∴若(m+n)∥,则=﹣2.17.(8分)已知函数f(x)=x﹣.(Ⅰ)判断f(x)的奇偶性;(Ⅱ)用函数单调性的定义证明:f(x)在(0,+∞)上是增函数.【解答】解:(Ⅰ)函数f(x)=x﹣的定义域是D=(﹣∞,0)∪(0,+∞),任取x∈D,则﹣x∈D,且f(﹣x)=﹣x﹣=﹣(x﹣)=﹣f(x),∴f(x)是定义域上的奇函数;(Ⅱ)证明:设x1,x2∈(0,+∞),且x1<x2,则f(x1)﹣f(x2)=(x1﹣)﹣(x2﹣)=(x1﹣x2)+(﹣)=;∵0<x1<x2,∴x1x2>0,x1﹣x2<0,x1x2+1>0,∴<0,即f(x1)<f(x2),∴f(x)在(0,+∞)上是增函数.18.(8分)已知函数f(x)=sin2+sin cos.(Ⅰ)求f(x)的最小正周期;(Ⅱ)若x∈[,π],求f(x)的最大值与最小值.【解答】解:(Ⅰ)函数f(x)=sin2+sin cos=+sinx=sinx﹣cosx+=sin(x﹣)+,由T==2π,知f(x)的最小正周期是2π;(Ⅱ)由f(x)=sin(x﹣)+,且x∈[,π],∴≤x﹣≤,∴≤sin(x﹣)≤1,∴1≤sin(x﹣)+≤,∴当x=时,f(x)取得最大值,x=π时,f(x)取得最小值1.19.(8分)已知函数f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数.(Ⅰ)求a的值;(Ⅱ)若关于x的方程|f(x)•(2x+1)|=m有1个实根,求实数m的取值范围.【解答】解:(Ⅰ)∵f(x)=1﹣(a>0且a≠1)是定义在R上的奇函数,∴f(0)=0,即1﹣=0,∴a=2;(Ⅱ)设h(x)=|f(x)•(2x+1)|,g(x)=m,如图所示,m=0或m≥1,两函数图象有一个交点,∴关于x的方程|f(x)•(2x+1)|=m有1个实根时,实数m的取值范围是m=0或m≥1.四、阅读与探究(共1小题,满分8分)20.(8分)阅读下面材料,尝试类比探究函数y=x2﹣的图象,写出图象特征,并根据你得到的结论,尝试猜测作出函数对应的图象.阅读材料:我国著名数学家华罗庚先生曾说:数缺形时少直观,形少数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来琢磨函数的图象的特征.我们来看一个应用函数的特征研究对应图象形状的例子.对于函数y=,我们可以通过表达式来研究它的图象和性质,如:(1)在函数y=中,由x≠0,可以推测出,对应的图象不经过y轴,即图象与y轴不相交;由y≠0,可以推测出,对应的图象不经过x轴,即图象与x轴不相交.(2)在函数y=中,当x>0时y>0;当x<0时y<0,可以推测出,对应的图象只能在第一、三象限;(3)在函数y=中,若x∈(0,+∞)则y>0,且当x逐渐增大时y逐渐减小,可以推测出,对应的图象越向右越靠近x轴;若x∈(﹣∞,0),则y<0,且当x逐渐减小时y逐渐增大,可以推测出,对应的图象越向左越靠近x轴;百度文库- 让每个人平等地提升自我!(4)由函数y=可知f(﹣x )=﹣f(x),即y=是奇函数,可以推测出,对应的图象关于原点对称.结合以上性质,逐步才想出函数y=对应的图象,如图所示,在这样的研究中,我们既用到了从特殊到一般的思想,由用到了分类讨论的思想,既进行了静态(特殊点)的研究,又进行了动态(趋势性)的思考.让我们享受数学研究的过程,传播研究数学的成果.【解答】解:(1)在y=x2﹣中,x≠0,可以推测出:对应的图象不经过y轴,即与y轴不相交,(2)令y=0,即x2﹣=0,解得x=±1,可以推测出,对应的图象与x相交,交点坐标为(1,0)和(﹣1,0),(3)在y=x2﹣中,当0<x<1时,>1>x2,则y<0,当x>1时,<1<x2,则y>0,可以推测出:对应的图象在区间(0,1)上图象在x轴的下方,在区间(1,+∞)上图象在x 轴的上方,(4)在y=x2﹣中,若x∈(0,+∞),则当x逐渐增大时逐渐减小,x2﹣,逐渐增大,即y逐渐增大,所以原函数在(0,+∞)是增函数,可以推测出:对应的图象越向右逐渐升高,是单调递增的趋势,(5)由函数y=x2﹣可知f(﹣x)=f(x),即函数为偶函数,可以推测出:对应的图象关于y轴对称11。
2016-2017学年贵州省贵阳市高三(上)期末数学试卷(文科)

2016-2017学年贵州省贵阳市高三(上)期末数学试卷(文科)一.选择题1.设P={x|x<1},Q={x|x2<1},则()A.P⊆Q B.Q⊆P C.P⊆∁R Q D.Q⊆∁R P【答案】B【分值】5分【解析】由Q中不等式解得:﹣1<x<1,即Q={x|﹣1<x<1},∴∁R Q={x|x≤﹣1或x≥1},∵P={x|x<1},∴Q⊆P,【解题思路】求出Q中不等式的解集确定出Q,利用子集与补集的定义判断【考查方向】本题主要考查了子集与补集运算【易错点】子集与补集的运算2.复数(i﹣1﹣i)3的虚部为()A.8i B.﹣8i C.8D.﹣8【答案】C【分值】5分【解析】∵(i﹣1﹣i)3=,∴复数(i﹣1﹣i)3的虚部为8【解题思路】利用复数代数形式的乘除运算得答案【考查方向】本题主要考查了复数的乘除运算,虚数的概念【易错点】复数的乘除运算3.等差数列{a n}的前n项和为S n,且a3+a9=16,则S11=()A.88B.48C.96D.176【答案】A【分值】5分【解析】∵等差数列{a n}中,a3+a9=16,∴S11===88【解题思路】利用等差数列的性质、等差数列的前n项和公式计算【考查方向】本题主要考查了等差数列的性质,等差数列的前n项和公式【易错点】等差数列的性质的运用4.已知,则()A.c>a>b B.b>a>c C.b>a>c D.a>c>b【答案】D【分值】5分【解析】解:∵=,0<log41<log43.6<log44=1,,y=5x是增函数,∴a>c>b.【解题思路】化为同底的指数,利用对数函数、指数函数的单调性判断【考查方向】本题主要考查了比较数的大小对数函数、指数函数的单调性【易错点】对数函数、指数函数的单调性5.设向量=(1,x﹣1),=(x+1,3),则“x=2”是“∥”的()A.充分但不必要条件B.必要但不充分条件C.充要条件D.既不充分也不必要条件【答案】A【分值】5分【解析】依题意,∥⇔3﹣(x﹣1)(x+1)=0⇔x=±2,所以“x=2”是“∥”的充分但不必要条件【解题思路】利用向量共线的充要条件求出的充要条件,利用充要条件的定义判断出“x=2”是的充分但不必要条件【考查方向】本题主要考查了向量共线及充要条件的判定【易错点】充要条件的判定6.已知角θ的始边与x轴的非负半轴重合,终边过点M(﹣3,4),则cos2θ的值为()A.B.C.D.【答案】A【分值】5分【解析】∵角θ的终边经过点P(﹣3,4),∴x=﹣3,y=4,r=|OP|=5,∴sinθ==,则cos2θ=1﹣2sin2θ=﹣【解题思路】由三角函数的定义,求出sinθ,利用二倍角公式计算【考查方向】本题主要考查了三角函数的定义,二倍角公式【易错点】三角函数的定义7.一个几何体的三视图如图所示,其中正视图是边长为2的等边三角形,俯视图为正六边形,则该几何体的体积是()A.B.1C.2D.【答案】D【分值】5分【解析】由三视图可知几何体是正六棱锥,底面边长为1,侧棱长为2,该几何体的体积:=【解题思路】由三视图知该几何体是正六棱锥,用体积公式求解【考查方向】本题主要考查了三视图、体积公式【易错点】三视图与实物图之间的关系8.双曲线的两条渐近线将平面划分为“上、下、左、右”四个区域(不含边界),若点(2,1)在“右”区域内,则双曲线离心率e的取值范围是()A.B.C.D.【答案】B【分值】5分【解析】解:双曲线的一条渐近线方程为:y=x,∵点(2,1)在“右”区域内,∴×2>1,即,∴e==>,则双曲线离心率e的取值范围是(,+∞)【解题思路】先求出双曲线的一条渐近线方程,再由点在“右”区域内,得出不等式,求得出双曲线离心率的取值范围【考查方向】本题主要考查了双曲线的简单性质、不等式(组)与平面区域的关系【易错点】不等式(组)与平面区域的关系9.三棱锥P﹣ABC的四个顶点都在体积为的球的表面上,底面ABC所在的小圆面积为16π,则该三棱锥的高的最大值为()A.4B.6C.8D.10【答案】C【分值】5分【解析】设球的半径为R,由球的体积公式得:πR3=,∴R=5.又设小圆半径为r,则πr2=16π,∴r=4.显然,当三棱锥的高过球心O时,取得最大值;由OO1==3,所以高PO1=PO+OO1=5+3=8【解题思路】由球的体积求得球的半径;由小圆面积求得小圆的半径;三棱锥高的最大值应过球心,求出解答【考查方向】本题主要考查了的体积求半径,由圆的面积求半径,勾股定理【易错点】几何体的性质10.已知的最小正周期为π,若其图象向左平移个单位后关于y轴对称,则()A.B.C.D.【答案】D【分值】5分【解析】∵函数的周期是π,∴=π,∴ω=2,∵函数的图象向左平移个单位后得到y=sin(2x++φ)的图象关于y轴对称,∴+φ=kπ+,k∈Z.∵|φ|<,解得φ=﹣.∴ω=2,φ=﹣.【解题思路】利用函数的周期求出ω,然后根据函数的平移法则求出函数的图象平移后的函数,然后由已知的图象关于Y轴对称,求出φ【考查方向】本题主要考查了y=Asin(ωx+ϕ)的图象和性质【易错点】三角函数的左右平移x上的变化量11.正项等比数列{a n}中,存在两项a m、a n使得=4a1,且a6=a5+2a4,则的最小值是()A.B.2C.D.【答案】A【分值】5分【解析】在等比数列中,∵a6=a5+2a4,∴,即q2﹣q﹣2=0,解得q=2或q=﹣1(舍去),∵=4a 1,∴,即2m+n﹣2=16=24,∴m+n﹣2=4,即m+n=6,∴,∴=()=,当且仅当,即n=2m时取等号【解题思路】由a6=a5+2a4,求出公比q,由=4a1,确定m,n的关系,然后利用基本不等式即可求出则的最小值【考查方向】本题主要考查了等比数列的运算性质以及基本不等式的应用【易错点】基本不等式成立的条件12.已知函数,若|f(x)|≥ax﹣1恒成立,则实数a的取值范围是()A.(﹣∞,﹣6] B.[﹣6,0] C.(﹣∞,﹣1] D.[﹣1,0]【答案】B【分值】5分【解析】由题意,|f(x)|≥ax﹣1恒成立,等价于y=ax﹣1始终在y=|f(x)|的下方,即直线夹在与y=|﹣x2+4x|=x2﹣4x(x≤0)相切的直线,和y=﹣1之间,所以转化为求切线斜率.由,可得x2﹣(4+a)x+1=0①,令△=(4+a)2﹣4=0,解得a=﹣6或a=﹣2,a=﹣6时,x=﹣1成立;a=﹣2时,x=1不成立,∴实数a的取值范围是[﹣6,0].【解题思路】|f(x)|≥ax﹣1恒成立,等价于y=ax﹣1图像始终在y=|f(x)|图像的下方,即直线夹在与y=|﹣x2+4x|=x2﹣4x(x≤0)相切的直线,和y=﹣1之间,所以转化为求切线斜率.【考查方向】本题主要考查了分段函数,恒成立问题【易错点】将不等式转化为图像问题二.填空题13.某高校有正教授120人,副教授100人,讲师80人,助教60人,现用分层抽样的方法从以上所有老师中抽取一个容量为n的样本,已知从讲师中抽取人数为16人,那么n= .【答案】72【分值】5分【解析】每个个体被抽到的概率为=,则n=(120+100+80+60)×=72【解题思路】先求出每个个体被抽到的概率,用总体数量乘以每个个体被抽到的概率就等于容量n的值【考查方向】本题主要考查了分层抽样【易错点】分层抽样的比例14.辗转相除法,又名欧几里得算法,乃求两个正整数之最大公因子的算法.它是已知最古老的算法,在中国则可以追溯至东汉出现的《九章算术》,图中的程序框图所表述的算法就是欧几里得辗转相除法,若输入a=5280,b=12155,则输出的b= .【答案】55【分值】5分【解析】解:a=5280,b=12155,a除以b的余数是1595,此时a=5280,b=1595,a除以b的余数是495,此时a=1595,b=495,a除以b的余数是110,此时a=495,b=110,a除以b的余数是55,此时a=110,b=55,a除以b的余数是0,退出程序,输出结果为55【解题思路】列举,当判断框条件成立时,循环结束【考查方向】本题主要考查了程序框图中的循环结构【易错点】循环结构条件成立的判断15.过抛物线y2=4x的焦点且倾斜角为60°的直线被圆截得的弦长是.【答案】37【分值】5分【解析】∵抛物线y2=4x的焦点F(1,0),∴过抛物线y2=4x的焦点且倾斜角为60°的直线方程为:y=tan60°(x﹣1),即,∵圆的圆心(2,﹣2),半径r=4,∴圆心(2,﹣2)到直线的距离:d==,∴弦长L=2=2=【解题思路】由抛物线的焦点坐标求出直线方程,再求出圆的圆心的半径,利用点到直线的距离公式求出圆心到直线的距离,由此能求出弦长【考查方向】本题主要考查了直线与圆相交的弦长的求法【易错点】圆的弦长的求法16.若点P(a,b)在函数y=﹣x2+3lnx的图象上,点Q(c,d)在函数y=x+2的图象上,则|PQ|的最小值为.【答案】22【分值】5分【解析】设直线y=x+m与曲线y=﹣x2+3lnx相切于P(x0,y0),由函数y=﹣x2+3lnx,∴y′=﹣2x+,令﹣2x0+=1,又x0>0,解得x0=1.∴y0=﹣1+3ln1=﹣1,可得切点P(1,﹣1).代入﹣1=1+m,解得m=﹣2.可得与直线y=x+2平行且与曲线y=﹣x2+3lnx相切的直线y=x﹣2.而两条平行线y=x+2与y=x﹣2的距离d=2【解题思路】由几何意义知,最小值为与直线y=x+2平行且与曲线y=﹣x2+3lnx相切的切点到直线的距离【考查方向】本题主要考查了导数的几何意义、切线的方程【易错点】导数的几何意义三.解答题17.在△ABC中,内角A、B、C的对边长分别为a,b,c,若b2+c2﹣a2=bc(1)求角A的大小;【答案】60°【分值】4分【解析】因为b2+c2﹣a2=bc,所以cosA==,由0°<A<180°得A=60°【考查方向】本题主要考查了余弦定理【易错点】余弦定理【解题思路】由余弦定理求出cosA的值,由角的范围求出A (2)若,求BC边上的中线AM的最大值.【答案】3 2【分值】6分【解析】在ABC中,A=60°,a=,由余弦定理得,a2=b2+c2﹣2bccosA,化简得,b2+c2﹣bc=3,则b2+c2=bc+3,且b2+c2=bc+3≥2bc,得bc≤3,(当且仅当b=c时取等号)在ABC中,cosB=,在ABM中,M是BC的中点,由余弦定理得,AM2=AB2+BM2﹣2•AB•BM•cosB=c2+﹣2•c••===,则AM≤,所以中线AM的最大值是【考查方向】本题主要考查了余弦定理,以及基本不等式求最值【易错点】基本不等式求最值【解题思路】在ABC中用余弦定理表示出a2,化简后得b2+c2=bc+3,由基本不等式得bc≤3,由余弦定理表示出cosB,在ABM中由余弦定理表示出AM2,化简后可求出AM的最大值18.2016年3月31日贵州省第十二届人民代表大会常务委员会第二十一次会议通过的《贵州省人口与计划生育条例》全面开放二孩政策.为了了解人们对于贵州省新颁布的“生育二孩放开”政策的热度,现在某市进行调查,对[5,65]岁的人群随机抽取了n人,得到如下统计表和各年龄段抽取人数频率分布直方图:分组支持“生育二孩”人数占本组的频率[5,15)40.8[15,25)5p[2,35)120.8[35,45)80.8[45,55)20.4[55,65)10.2(1)求n,p的值;【答案】n=50;p=0.5【分值】5分【解析】(1)[5,15)年龄段抽取的人数为=5,频率为0.010×10=0.1,∴n==50,第二组的频率为0.2,人数为10,则p==0.5【考查方向】本题主要考查了频率分布直方图,概率的计算【易错点】频率分布直方图【解题思路】求出样本容量,第二组的频率为0.2,人数为10,即可求出概率(2)根据以上统计数据填下面2×2列联表,并根据列联表的独立性检验,能否有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系?参考数据:P(K2≥k)0.0500.0100.001 k3.8416.63510.828年龄不低于45岁的人数年龄低于45岁的人数合计支持不支持合计【答案】没有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系【分值】5分【解析】根据以上统计数据填2×2列联表,求出K2,与临界值比较,即可得出结论.【解答】解:(1)[5,15)年龄段抽取的人数为=5,频率为0.010×10=0.1,∴n==50,第二组的频率为0.2,人数为10,则p==0.5;(2)2×2列联表如下年龄不低于45岁的人数年龄低于45岁的人数合计支持32932不支持71118合计104050计算K2=≈6.27<7.635,因此没有99%的把握认为以45岁为分界点对“生育二孩放开”政策的支持度有关系【考查方向】本题主要考查了独立性检验的应用问题【易错点】独立性检验的应用问题【解题思路】根据统计数据填2×2列联表,求出K2,与临界值比较,即可得出结论19.如图所示,该几何体是一个由直三棱柱ADE﹣BCF和一个正四棱锥P﹣ABCD组合而成,AD⊥AF,AE=AD=2(1)证明:平面P AD⊥平面ABFE;【答案】详见解析【分值】6分【解析】证明:(1)直三棱柱ADE﹣BCF中,∵AB⊥平面ADE,∴AB⊥AD,又AD⊥AF,∴AD⊥平面ABFE,AD⊂平面P AD,∴平面P AD⊥平面ABFE….(6分)【考查方向】本题主要考查了线面垂直的性质与判定,面面垂直的判定【易错点】面面垂直的判断【解题思路】证明AD⊥平面ABFE,再证明平面P AD⊥平面ABFE(2)若正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,求正四棱锥P﹣ABCD的高.【答案】2【分值】6分【解析】解:(2)连结BD与AC交于点O,连结PO,∵正四棱锥P﹣ABCD,∴PO⊥平面ABCD,又∵直三棱柱ADE﹣BCF,∴AB⊥AE,且有AD⊥平面ABEF,∴AD⊥AE,∴AE⊥平面ABCD,则PO∥AE,∵AE⊂平面ABEF,∴PO∥平面ABEF,则P到平面ABEF的距离等于O到平面ABEF的距离,又∵O为BD中点,∴O到平面ABEF的距离为=1,∴P到平面ABF的距离为d=1,∴=,设正四棱锥P﹣ABCD的高为h,∵正四棱锥P﹣ABCD的体积是三棱锥P﹣ABF体积的4倍,∴=4V P﹣ABF=,解得h=2,∴正四棱锥P﹣ABCD的高为2【考查方向】本题主要考查了正四棱棱的高的求解【易错点】P到平面ABEF的距离转化为O到平面ABEF的距离【解题思路】连结BD与AC交于点O,连结PO,推导出P到平面ABEF的距离等于O到平面ABEF的距离,从而P到平面ABF的距离为d=1,由此能求出正四棱锥P﹣ABCD的高20.设椭圆C1的中心和抛物线C2的顶点均为原点O,C1、C2的焦点均在x轴上,在C1、C2上各取两个点,将其坐标记录于表格中:x3﹣24y0﹣4(1)求C1、C2的标准方程;【答案】C2的方程为:y2=4x;C1的方程为:【分值】6分【解析】解:(1)设椭圆C1的方程为:(a>b>0),抛物线C2的方程为:y 2=2px(p≠0),从已知中所给四点的坐标可得:点(﹣2,0)一定在椭圆上,∴(4,﹣4),(3,﹣2)两点一定在抛物线上,∴2p=4,即抛物线C2的方程为:y2=4x,把点(﹣2,0)(),代入椭圆C1的方程为:(a>b>0),得:a2=4,b2=3,∴椭圆C1的方程为:.【考查方向】本题主要考查了椭圆方程的求法和抛物线方程的求法【易错点】椭圆方程和抛物线方程的求法【解题思路】设椭圆C1的方程为:(a>b>0),抛物线C 2的方程为:y2=2px(p≠0),从已知中所给四点的坐标可得:点(﹣2,0)一定在椭圆上,(4,﹣4),(3,﹣2)点一定在抛物线上,解方程可得答案(2)过C 2的焦点F作斜率为k的直线l,与C 2交于A、B 两点,若l与C1交于C、D两点,若,求直线l的方程【答案】直线l的方程为:y=或y=【分值】6分【解析】(2)∵抛物线C2:y 2=4x的焦点F(1,0),设l:x=ty+1(t≠0),联立方程组消元得:y2﹣4ty﹣4=0,∴△=16t2+16>0,|AB|==4(t2+1);联立方程组得(3t2+4)y2+6ty﹣9=0,∴△=36t2+36(3t2+4)>0,|CD|=;由=,解得t=±故直线l的方程为:y=或y=.【考查方向】本题主要考查了直线方程的求法,直线与圆锥曲线相交弦长问题【易错点】直线与圆锥曲线相交弦长问题【解题思路】设直线方程与抛物线联立方程组解决弦长问题21.已知函数(1)求f(x)的单调区间;【答案】增区间为(0,1),减区间为(1,+∞)【分值】3分【解析】解:(1)函数的导数为f′(x)=﹣=,x>0,当x>1时,f′(x)<0,f(x)递减;当0<x<1时,f′(x)>0,f(x)递增.则f(x)的增区间为(0,1),减区间为(1,+∞)【考查方向】本题主要考查了利用导数求函数的单调区间【易错点】用导数求函数的单调区间注意定义域【解题思路】求出f(x)的导数,解导数大于0,得增区间;解导数小于0,得减区间,(2)求函数f(x)在上的最大值和最小值;【答案】最大值0,最小值为2﹣e【分值】4分【解析】由(1)可得f(x)在x=1处取得极大值,且为最大值0,又f()=1﹣e﹣ln=2﹣e,f(e)=1﹣﹣lne=﹣,2﹣e<﹣,可得f(x)的最小值为2﹣e【考查方向】本题主要考查了利用导数求函数的最值【易错点】导数求函数的最值【解题思路】由(1)可得f(x)的最大值,再计算端点处的函数值,比较,可得最小值(3)求证:.【答案】详见解析【分值】5分【解析】证明:要证,即证lne2﹣lnx≤1+,即为2﹣lnx≤1+,即有1﹣lnx﹣≤0.设g(x)=1﹣lnx﹣,g′(x)=﹣+=,当x>1时,f′(x)<0,f(x)递减;当0<x<1时,f′(x)>0,f(x)递增.可得g(x)在x=1处取得极大值,且为最大值0.可得g(x)≤0,即有1﹣lnx﹣≤0.故原不等式成立【考查方向】本题主要考查了利用导数构造函数证明不等式【易错点】构造函数【解题思路】运用分析法证明,转化为证明1﹣lnx﹣≤0.设g(x)=1﹣lnx﹣,求出导数和单调区间,可得极值,也为最值,即可得证22.在直角坐标系xOy中,曲线C1的参数方程为(其中t为参数),以坐标原点O为极点,x轴的非负半轴为极轴建立极坐标系,曲线C2的极坐标方程为ρ=2sinθ(1)求曲线C1的普通方程和C2的直角坐标方程;【答案】C1的普通方程为:(x﹣4)2+(y﹣5)2=9;C2的直角坐标方程为:x2+y2=2y【分值】5分【解析】解:(1)由曲线C1的参数方程为(其中t为参数),可得曲线C1的普通方程为:(x﹣4)2+(y﹣5)2=9,由曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,将ρ2=x2+y2,y=ρsinθ代入得:C2的直角坐标方程为:x2+y2=2y,配方为x2+(y﹣1)2=1.【考查方向】本题主要考查了极坐标与直角坐标方程的互化、参数方程化为普通方程【易错点】极坐标与直角坐标方程的互化、参数方程化为普通方程【解题思路】曲线C1的参数方程为(其中t为参数),消去参数t可得普通方程.曲线C2的极坐标方程为ρ=2sinθ,即ρ2=2ρsinθ,利用ρ2=x2+y2,y=ρsinθ,即可化为直角坐标方程(2)若A、B分别为曲线C1,C2上的动点,求当|AB|取最小值时△AOB的面积.-【答案】22【分值】5分【解析】(2)解:当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,由(1)得:C1(4,5),C2(0,1),∴=1,故直线C1C2的方程为:x﹣y+1=0,∴点O到直线C1C2的距离d==,又∵|AB|=|C1C2|﹣1﹣3=4﹣4,故△AOB的面积S=2﹣【考查方向】本题主要考查了三角形面积公式、点到直线的距离公式【易错点】三角形面积公式【解题思路】当A,B,C1,C2四点共线,且A,B在线段C1C2上时,|AB|取最小值,求出|AB|长,及原点到直线的距离,可得此时△AOB的面积23.已知|x+2|+|6﹣x|≥k恒成立(1)求实数k的最大值;【答案】8【分值】5分【解析】解:(1)|x+2|+|6﹣x|≥k恒成立;设g(x)=|x+2|+|6﹣x|,则g(x)min≥k.又|x+2|+|6﹣x|≥|(x+2)+(6﹣x)|=8,当且仅当﹣2≤x≤6时,g(x)min=8所以k≤8.即实数k的最大值为8,【考查方向】本题主要考查了绝对值不等式的性质【易错点】绝对值不等式的性质【解题思路】由|x+2|+|6﹣x|≥m恒成立,设函数g(x)=||x+2|+|6﹣x||,利用绝对值不等式的性质求出其最小值(2)若实数k的最大值为n,正数a,b满足,求7a+4b的最小值.【答案】9 4【分值】5分【解析】(2)由(1)可知,n=8,∴,即,有由于a,b均为正数,所以7a+4b=(7a+4b)•()=[(5a+b)+(2a+3b)]•()=[5+]≥(5+4)=,所以4a+3b的最小值是.【考查方向】本题主要考查了基本不等式求最值【易错点】基本不等式求最值【解题思路】由(1)知n=8,变形,利用基本不等式的性质求出最小值。