克劳斯法硫回收工艺实例
克劳斯法脱硫工艺的应用

克劳斯法脱硫工艺的应用随着含硫原油和天然气等资源的大量开发,含硫原料气和废气的处理和资源化利用是当前化工生产研究的一个重要方向。
干法脱硫和湿法脱硫是酸气脱硫的重要方法。
其中,克劳斯法处理含硫酸气不仅能够满足当前环境保护的需要,还能从其中回收硫磺,实现对硫的资源化利用。
本文主要介绍了传统克劳斯和改进克劳斯工艺的应用,并对其发展前景进行展望。
标签:硫磺回收;克劳斯法;脱硫克劳斯法是当前处理含硫酸气中较为成熟和先进的方法。
克劳斯法广泛应用于煤、石油、天然气的加工和含硫化氢废气的处理过程,对煤、天然气等化工能源进行脱硫是为了达到生产和生活的要求,对含硫废气的处理是为了满足相关环保法律的要求,减少对环境的污染和破坏。
同时,克劳斯法回收的硫磺资源可以用来生产硫酸或高附加值的含硫有机物。
进入21世纪以来,随着环保效益的重视,克劳斯法在工艺路线的选择和反应催化过程转化率的提高又有了很大的进步。
由于2017年7月1日开始实施新的排放标准,要求每立方米的克劳斯尾气中的二氧化硫含量不高于100mg,势必会推进克劳斯工艺的技术改造和发展。
.1 改良克劳斯工艺20世纪30年代,德国的法本公司在原型克劳斯工艺的基础上进行了改进,将克劳斯工艺分为两段反应:热反应段和催化反应段。
改进克劳斯工艺解决了原型克劳斯工艺中催化反應器温度难以控制,空速很低的问题,炉中反应热通过废热锅炉回收,实现热量的回收利用。
改良克劳斯工艺路线:第一阶段,含硫化氢酸气与一定量的空气通入燃烧炉中,使酸气中三分之一的硫化氢转化为二氧化硫,同时使酸气中的烃类转化为二氧化碳。
要想在燃烧炉中实现稳定的生产,燃烧炉的反应温度必须在920摄氏度以上。
并且在高温反应阶段,温度越高,从动力学和热力学上都有利于硫化氢转化为硫磺转化率的提高。
经过燃烧炉,硫化氢的理论转化率可达到60%—70%。
第二阶段,进过燃烧炉的含硫酸气经过废热锅炉回收热量,进入冷凝器,使硫蒸气冷凝为液硫,从冷凝器下部排出。
克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势1. 克劳斯法硫磺回收原理克劳斯法是一种将含硫污水中的硫酸盐还原成硫磺的化学过程。
其原理是通过还原反应,使硫酸盐转化为硫醇,并进一步转化为元素硫。
克劳斯法将含硫污水中的硫酸盐转化为硫磺,同时释放出二氧化碳和水。
这种方法简单、原理清晰,对硫磺回收效果良好。
目前,克劳斯法硫磺回收工艺技术在化工、冶金等行业得到了广泛应用。
在化肥生产过程中,硫磺是必不可少的原料,而化肥生产废水中常含有大量硫酸盐,采用克劳斯法可以将硫酸盐回收为硫磺,节约了资源并减少了对环境的污染。
在冶金行业,由于冶炼过程中废气中含有大量硫化氢,采用克劳斯法可以将硫化氢转化为硫磺,实现了硫磺的回收。
克劳斯法硫磺回收工艺技术具有技术成熟、工艺简单、回收效率高的特点。
在实际应用中,该技术被广泛应用,并取得了显著的经济和环保效益。
克劳斯法硫磺回收工艺技术成为了当前硫磺回收的主要技术之一。
1. 技术改进方向目前,虽然克劳斯法硫磺回收工艺技术已经相对成熟,但仍然存在一些问题亟待解决。
现有的克劳斯法硫磺回收工艺技术存在能耗高、产物纯度较低、设备运行稳定性等方面的问题。
未来的发展方向主要包括降低能耗、提高产物纯度、改善设备运行稳定性等方面。
2. 配套设备的研发克劳斯法硫磺回收工艺技术需要配套的设备进行生产实施,例如还原反应器、脱硫器、结晶器等。
未来的发展趋势是研发更加高效、节能、环保的配套设备,以满足克劳斯法硫磺回收工艺技术的需求。
3. 与其他技术的结合应用随着科学技术的不断发展,克劳斯法硫磺回收工艺技术将与其他技术相结合,以期达到更好的效果。
可以将克劳斯法与生物技术相结合,利用微生物对硫酸盐进行生物降解,进而进一步提高硫磺回收效率。
还可以将克劳斯法与化学物理技术相结合,以达到降低产物纯度、提高能效等方面的目标。
4. 环保化发展随着社会对环保意识的不断提高,环保化已成为各行业的发展趋势。
克劳斯法硫磺回收工艺技术的发展趋势将更加注重环保化,努力达到减少废物排放、减少资源消耗等目标。
克劳斯硫回收工艺细节剖析

4 3 其 它 .
5 结语
通过 计算 分 析表 明 : 只有 综 合 考 虑能 耗 和 投 资 等 因素 , 虑所 分离 物系 的具体 特性 、 考 投资 与经
营等因素 , 并结合生产条件和要求 , 才能找到最
1 燃料气
兖矿 国宏公 司采 用 的燃 料 气 为 液化 石 油 气 , 而其 它化 工 企 业 采 用 甲 醇合 成 系 统 产 生 的 弛放
矿国宏公司) 运行情况却不够理想 , 故障频发, 甚 至导致停车。同样的工艺却出现了不同的运行情 况, 故对全系统进行了仔细分析 。
4 2 综合 比较 .
小氮肥
第3 卷 9
第 1期 1
21 年 1 月 01 1
5
析 克 劳 斯硫 回收 艺 细 节 剖 工
刘 学武 李春 莲
( 山东兖矿集团国宏4 _有限责任公司 邹城 23 1 ) Lv _ 75 2
目前 , 劳斯 硫 回收 工艺 在 各 化 工 企业 的运 克 行情 况不 尽相 同。 比如 , 山东 淄博齐 鲁石 化公 司 、 山东 兖矿 国泰 公 司 的运 行 情 况非 常稳 定 , 在 山 而 东兖 矿集 团 国宏 化 工 有 限责 任公 司 ( 以下 简 称 兖
不含杂质 , 若将其用作预精馏塔的萃取水 , 则可节 约 大量 的脱 盐水 。如 果 由于废水 循环 而导致 的高
沸 点杂 质 的积 累对 产 品 质量 造 成 影 响 , 以通 过 可
和回收塔的操作参数 , 寻求到最优化点。
调节补充新鲜水的水量来抑制系统中高沸点物质 的积 累 , 既节 约用 水又 利于 环保 。总体 而 言 , 四塔
硫磺回收工艺介绍

目录第一章总论 (3)1.1项目背景 (3)1.2硫磺性质及用途 (4)第二章工艺技术选择 (4)2.1克劳斯工艺 (4)2。
1.1MCRC工艺 (4)2.1.2CPS硫横回收工艺 (5)2。
1。
3超级克劳斯工艺 (6)2。
1.4三级克劳斯工艺 (8)2.2尾气处理工艺 (9)2。
2。
1碱洗尾气处理工艺 (9)2。
2.2加氢还原吸收工艺 (13)2。
3尾气焚烧部分 (13)2。
4液硫脱气 (14)第三章超级克劳斯硫磺回收工艺 (15)3.1工艺方案 (15)3。
2工艺技术特点 (15)3。
3工艺流程叙述 (15)3.3.1制硫部分 (15)3.3。
2催化反应段 (15)3.3.3部分氧化反应段 (16)3。
3。
4碱洗尾气处理工艺 (17)3。
3.5工艺流程图 (17)3。
4反应原理 (18)3.4.2制硫部分一、二级转化器内发生的反应: (18)3。
4。
3尾气处理系统中 (19)3。
5物料平衡 (19)3.6克劳斯催化剂 (20)3。
6。
1催化剂的发展 (20)3.6.2催化剂的选择 (21)3.7主要设备 (21)3.7.1反应器 (21)3.7.2硫冷凝器 (22)3。
7。
3主火嘴及反应炉 (22)3。
7。
4焚烧炉 (22)3。
7.5废热锅炉 (22)3.7。
6酸性气分液罐 (23)3。
8影响Claus硫磺回收装置操作的主要因素 (23)3。
9影响克劳斯反应的因素 (24)第四章工艺过程中出现的故障及措施 (26)4.1酸性气含烃超标 (26)4。
2系统压降升高 (27)4。
3阀门易坏 (28)4。
4设备腐蚀严重 (28)第一章总论1。
1项目背景自从本世纪30年代改良克劳斯法实现工业化以后,以含H2S酸性气为原料的回收硫生产得到了迅速发展,特别是50年代以来开采和加工了大量的含硫原油和天然气,工业上普遍采用克劳斯过程回收元素硫.经近半个世纪的演变,克劳斯法在催化剂研制、自控仪表应用、材质和防腐技术改善等方面取得了很大的进展,但在工艺技术方面,基本设计变化不大,普遍采用的仍然是直流式或分流式工艺.由于受反应温度下化学反应平衡的限制,即使在设备和操作条件良好的情况下,使用活性好的催化剂和三级转化工艺,克劳斯法硫的回收率最高也只能达到97%左右,其余的H2S、气态硫和硫化物即相当于装置处理量的3%~4%的硫,最后都以SO的形式排入大气,严重地污染了环境.2随着社会经济的不断发展,世界可供原油正在重质化,高含硫、高含金属原油所占份额也越来越大,迫使炼油厂商不断地开发新的技术,对重质原油进行深度加工。
克劳斯法硫磺回收工艺技术探讨

斯炉内进行燃烧,使硫化氢与氧气发生氧化反应生成二氧化硫,之后,二氧化硫在催化剂的作用下和没有发生燃烧反应的硫化氢气体发生催化反应,最终生成硫磺。
在传统克劳斯法的基础上,工作人员经过对其反应流程的优化,形成了超优克劳斯法。
超优克劳斯法充分利用了现代的技术和工艺,基于热力学平衡角度对传统克劳斯法进行优化,主要涉及到发展新型的催化剂、选择使用富氧燃烧技术等。
这些新的工艺和技术的使用,使超优克劳斯法硫磺回收工艺对于硫元素的回收率大大提升。
通过相关实践结果,可以表明,采用超优克劳斯法硫磺回收工艺对硫的回收率能够达到99.4%以上。
这大大降低了石油化工生产对环境造成的污染。
超优克劳斯法通常由一个高温段以及三个反应段所共同组成。
高温段的设备主要有硫化氢燃烧炉以及废热锅炉,硫化氢在燃烧炉内发生氧化反应生成二氧化硫,在所有二氧化硫中大约有三分之一的硫化氢会发生反应。
剩下的硫化氢会和生成的二氧化硫在催化剂的作用下生成硫磺。
其化学反应方程式为:2H 2S + SO 2→3S + 2H 2O 。
之后,会继续进行加氢催化反应。
二氧化硫会在该反应段被尾气中的氢气与一氧化碳还原为单质硫和硫化氢。
最后,在最后一个反应段向反应器中通入过量的空气,以便于使剩余的硫化氢全部发生氧化反应,最终生成水和单质硫。
超优克劳斯法硫磺回收工艺的核心对尾气中的二氧化硫进行加氢还原反应,使其生成硫化氢,之后又运用过量的氧气使硫化氢发生反应生成单质硫。
和常规克劳斯法尾气处理工艺的主要区别是,超优克劳斯法硫磺回收工艺的加氢过程不需要单独的制氢过程,而是利用反应本身所产生的氢气就能够实现,且不需要对过程气进行升温或者降温过程;另外,尾气中的硫化氢也不需要再使用溶剂进行吸收,优化和改造成本相对较低,具有较高的经济价值。
3 克劳斯法硫磺回收工艺的优势(1)在石油化工生产硫回收过程中,克劳斯法硫磺回收工艺具有工艺简便、操作简单、成本较低等优势,且该反应的化学稳定性相对较高。
克劳斯法-工艺介绍..

克劳斯法回收硫磺CPEE天津分公司2012.1.20克劳斯法硫回收工艺一、工艺方法及原理1、常用硫回收工艺(1) 液相直接氧化工艺有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。
液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。
(2) 固定床催化氧化工艺硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。
Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。
Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。
2. 克劳斯硫回收工艺特点常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。
其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。
但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。
一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。
3、克劳斯法制硫基本原理克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。
首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。
超级克劳斯硫磺回收工艺及应用

超级克劳斯硫磺回收工艺及应用摘要:克劳斯硫磺回收工艺自20世纪30年代实现工业化后,已经广泛用于合成氨和甲醇原料气生产、炼厂气加工、天然气净化等煤、石油、天然气的加工过程中。
克劳斯工艺具有流程简单、操作灵活、回收硫磺纯度高(质量分数可达99.8%)、投资费用低、环境及规模效益显著等特点,产品硫磺可作为生产硫酸的一种硫资源,也可作其它部门的化工原料。
本文对超级克劳斯硫磺回收工艺及应用进行了分析探讨,仅供参考。
关键词:硫磺回收;超级克劳斯;工艺一、超级克劳斯硫磺回收工艺从石油,石化、冶金、化肥等行业含H2S等硫化物的酸性气中回收利用硫,根据工艺流程选择和当地产品销路情况,产品可以制成硫磺或硫酸。
对含(一)、S酸性气体的处理,用H2S制取硫磺,工业生产中多采用固定床催化氧化,典型的方法有克劳斯工艺。
利用克劳斯装置净化尾气中的硫化物回收硫磺工艺已得到了迅速发展,其具体工艺流程有20多种,主要有传统克劳斯工艺,低温克劳斯工艺、超级克劳斯(SuperClaus)工艺,带有SCOT尾气处理的克劳斯工艺等。
其中超级克劳斯工艺是在两级普通克劳斯转化之后,第三级改用选择性氧化催化剂,将H2S直接氧化成元素硫,传统克劳斯工艺要求H2S/SO2摩尔比值为2的条件下进行,而此种工艺却维持选择性氧化催化段在富H2S条件下举行,一改以往单纯增加级数来提高H2S的回收率的方法。
超级克劳斯工艺改变了以往单纯提高H2S和SO2反应进程的方法,在传统克劳斯转化的最后一级转化段使用新型选择性氧化催化剂,由此来改进克劳斯工艺的硫回收技术。
在通入过量空气的情况下,超级克劳斯工艺可将来自克劳斯段最后一级过程气中剩余的H2S选择性地氧化为单质硫。
超级克劳斯反应器出口的过程气(含有非常少量的H2S)进入深冷器中,将过程气中的硫磺最大限度地捕集下来,从而将硫磺回收率提高到99%以上。
超级克劳斯工艺流程图见下图。
二、技术特点1、操作灵活方便由于超级克劳斯工艺采用过量空气操作,从而产生较少的SO2,因此对空气的控制要求不是很严格,不要求精确控制H2S和SO2的比例,而是将最后一级克劳斯转化器出口过程气中H2S体积分数控制在0.6%~1.5%,因此可以采用简单的流量控制回路,使操作灵活方便、弹性范围大,操作下限可以达到15%;超级克劳斯催化剂具有良好的热稳定性、化学稳定性和机械强度,有害物质排放少,催化剂使用寿命长达8~10年;过程气中高浓度水含量不会影响H2S的转化率,装置运行平稳可靠,维修方便,非计划性停车时间少于1%。
克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法硫磺回收工艺技术是一种基于烟气脱硝过程中产生的氨气和二氧化硫反应,将二氧化硫转化为硫磺的环保技术。
该技术能够有效地减少二氧化硫排放,同时实现对硫磺的回收利用,具有经济性和环保性的双重优势。
本文将介绍该技术的现状及发展趋势。
一、技术原理克劳斯法硫磺回收工艺技术的原理是将烟气中的氨气通过与二氧化硫反应,生成硫磺和水。
反应产物的固体硫磺可以收集进行后续利用,而水则通过水处理工艺排放。
该技术的反应原理如下:2NH3 + 3SO2 → 2NS + 3H2O此反应中,氨气是还原剂,二氧化硫则是氧化剂,二者在适当的温度和催化剂存在的情况下,会发生反应生成硫磺和水。
该反应的温度范围一般在200-280℃之间,催化剂一般是金属催化剂,例如铝、铜、钯等。
二、技术现状目前,克劳斯法硫磺回收工艺技术已经在一些国家被广泛应用。
在中国,该技术也已经在一些大型污染源进行了应用和推广。
以煤电行业为例,河北、山东等地的一些电厂已经成功采用该技术进行烟气治理和硫磺回收。
此外,该技术在钢铁、石化、印染和纸浆等行业也有一定的应用和研究。
三、发展趋势1.技术改进和提升随着技术的不断发展,克劳斯法硫磺回收工艺技术也不断进行改进和提升。
例如,研究人员正在研究利用新型催化剂和增加反应温度对该技术进行改进,以提高硫磺回收率和降低催化剂使用量。
2.开发应用范围克劳斯法硫磺回收工艺技术不仅可以应用于煤电、石化、钢铁等行业,还可以应用于废气处理和工业锅炉烟气处理等领域。
此外,该技术可以和其他技术进行联合应用,例如与湿法脱硫技术结合,以进一步提高治理效果。
3.扩大市场需求四、结论克劳斯法硫磺回收工艺技术是一种环保技术,可以有效减少二氧化硫排放,实现硫磺的回收和利用。
目前该技术已经在一些国家和地区得到应用和推广,并且未来还有很大的发展空间。
随着人们对环保技术需求的不断增加,克劳斯法硫磺回收工艺技术将会更加广泛地应用于各个行业和领域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 克劳斯法硫回收工艺 一、工艺要求 三高无烟煤:元素分析含硫3.3% 造气:121332Nm3含硫化氢1.11% 含COS0.12% 约17克/Nm3 低温甲醇洗:净化气含硫0.1ppm 送出H2S含量为35%左右的酸性气体3871Nm3。 本岗位主要任务是回收低温甲醇洗含硫CO2尾气中的H2S组份,通过该装置回收,制成颗粒状硫磺。同时将尾气送到锅炉燃烧,使排放废气达到国家排放标准,本装置的正常硫磺产量约为16160吨/年。 二、工艺方法 1、常用硫回收工艺 (1) 液相直接氧化工艺 有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。 液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。 (2) 固定床催化氧化工艺 硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。 2. 克劳斯硫回收工艺特点 常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S气体回收硫的主要方法。其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。 2
一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。 3、克劳斯法制硫基本原理 克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。 其主要反应式为: H2S+ 3/2O2= SO2+H2O+519.2kJ 2H2S+ SO2=3S+2 H2O +93kJ 由于酸气中除H2S外,通常含有CO2、H2O、烃类等化学反应十分复杂,伴有多种副反应发生。 克劳斯法的工艺流程有三种: (1) 部分燃烧法(2)分流法(3)燃硫法
原料气中H2S含量,% 工艺方法 原料气中H2S含量50%以上, 部分燃烧法 原料气中H2S含量40~50% 带预热部分燃烧法 原料气中H2S含量25~40% 分流法 原料气中H2S含量15~25% 带预热分流法 原料气中H2S含量15%以下, 直接氧化法及其他处理贫酸气方法 (2)分流法 本装置采用分流法:将三分之一的酸性气体通入燃烧炉,加入空气使其燃烧生成SO2,而其余三分之二酸性气走旁路,绕过燃烧室,与燃烧后的气体汇合进入催化剂床层反应,这种可处理H2S含量为35%左右的酸性气体,并采用三段转化,三级冷凝工艺流程,该法回收硫的纯度较高(99.8%)。
三、原材料及产品主要技术规格: 1、 原材料技术规格
序号 名称 规格
1 酸性气
H2S 35.0% CO2 61.54% COS 3.25%,甲醇0.21% 0.05MP(G)
28~30℃ 3
2 煤层气
C194.517% CO2 0.301% C2 0.01% N2 3.812% O2 1.356% 0.028MP(a)
28℃ 克劳斯催化剂主要成分为氧化钛,此催化剂不需要还原,升温后即可使用。型号为LYTS-01TiO2 LYTS-811,是白色氧化铝催化剂,堆密度~0.7g/cm3,一次装填量30m3。物理性质:外形尺寸直径4~6mm,比表面≥300m2/g,孔容≥0.40ml/g,堆密度≥0.65kg/l,抗压碎强度>140N/粒,磨耗率<0.3%,催化剂寿命在3年左右。 2、原材料消耗量 序号 名称规格 单位 消耗 定额 消耗量 备注 小时 年
1 酸性气总硫35.0% 0.05MP(g) Nm3/hr 1916 3871 3.1x107
2 燃料气C1,H2等 Nm3/hr 200(max) 间
断 3、 产品技术规格
序号 名称及规格 单位 消耗 定额 产 量 备 注 小时 年
1 低压蒸汽 158℃ 0.6MPa(a) 吨 1.31 2.64 21120 连续
2 硫磺 S 99.8% 吨 2.02 16160 连续
4、动力消耗及消耗量 序号 名称及规格 单位 消耗 定额 消 耗 量 备 注
小时 年
1 循环冷却水 (△t=8-10℃) 0.5MPa m3 9.9 20 160000
2 低压锅炉给水 1.3MPa105℃ t 9.8 26.3 210400 进装置
低压锅炉给水 1.2MPa140℃ t 8.46 23.6 188800 出装置 4
序号 名称及规格 单位 消耗 定额 消 耗 量 备 注
小时 年 3 脱盐水 0.5MPa 40℃ t 6.1 7.85 62800 进装置
脱盐水 0.5MPa 90℃ t 6.1 7.85 62800 出装置 4 电380V kwh 89.8 181.5 1.45X106 5 低压氮气 0.5 MPa(g) m3 200 最大
6 仪表空气 0.45 MPa(g) m3 100 最大
*消耗定额以每吨硫磺计 四、装置布置及主要设备 由于液态硫的特殊性,对产生液硫的设备均设置在EL5.000平面上,以便于液硫的流动,其余设备根据高差要求,布置在不同平面上。整个装置占地约600m2。 1、酸气燃烧炉 Φ2600×8526 δ=14 V=170m3 设计温度1400 ℃ 设计压力 0.06MP 卧式 是克劳斯法制硫工艺中最重要的设备。在此1/3体积的H2S与空气燃烧生成SO2,保证过程气中H2S:SO2摩尔比为2:1,同时烃类燃烧转化为CO2等惰性组分,并或多或少生成元素硫。 1)火焰温度 燃烧炉温度必须保持在920℃以上,否则火焰不能稳定燃烧,最好反应温度在1250~1300左右。过高设备、耐火材料选择困难,并生成多种氮、硫氧化副产物,导致下游催化剂硫酸盐化而失活。 炉温同H2S浓度密切相关,一般低于40%必须采用分流法。 2)花墙 使过程气有一个稳定且充分接触的反应空间,同时使气流均匀进入废热锅炉。 3)炉内停留时间 高温克劳斯反应一般在1s内即可完成,受原料气含量、炉内混合均匀程度、燃烧室结构等影响,停留时间一般在1~2.5s。 5
4)火嘴 使酸气和空气等气体有效混合均匀提供一个提供一个使杂质和H2S能够完全燃烧的稳定火焰。 2、废热锅炉 Φ45×3.5×60000 n=97 F=119m2 设计温度 管程300~1000℃ 壳程 190℃ 设计压力 管程0.06MP 壳程0.77MP 汽包 DN800×6000 卧式带汽包 从反应器出口气流中回收热量并发生蒸汽,同时使过程气温度降至下游设备所要求的温度并冷凝回收硫。 3、一二三段转化器 F1200×7000 ф3800×9882 V=170m3 设计温度390℃ 设计压力0.06MP 卧式内部用隔板隔成三段, 触媒装填量30m3, 每段装填量约8~10m3 转化器的功能是使过程气中的H2S和SO2在床层上继续克劳斯反应生成元素硫,同时使过程气中COS、CS2等有机硫化物在催化剂床层上水解为H2S和CO2,主要反应在一级反应器中进行,一级反应器实际空速远远大于二、三级,考虑有机物水解要求,一级转化器出口应控制在310~340℃,由于各级冷凝分离了大量产物硫,也不存在有机物水解问题,二、三级转化器在较低温度下操作,可获得较高转化率。 4、一二段换热器、一二三段冷凝器 卧式列管换热器、冷凝器 一段换热器:F1300×6619 F=159m2 Φ45×3×4000 n=289 设计温度 管程 280℃ 壳程 230℃ 设计压力 0.06MP 二段换热器:F1400×8689 F=269m2 Φ45×3×6000 n=323 设计温度 管程 380℃ 壳程 145℃ 设计压力 0.05MP 一段冷凝器: F1100×8539 F=284m2 Φ38×3×6000 n=403 设计温度 管程 315℃ 壳程145℃ 设计压力 管程 0.05MP 壳程 1、43MP 二段冷凝器: 6
F1000×8279 F=222m2 Φ38×3×6000 n=315 设计温度 管程 220℃ 壳程165℃ 设计压力 管程0.05MP 壳程1、43MP 三段冷凝器: F1000×8279 F=222m2 Φ38×3×6000 n=315 设计温度 管程 260℃ 壳程165℃ 设计压力 管程0.05MP 壳程1、43MP 换热器冷凝器的作用是把转化器生成的元素硫冷凝成液体,同时回收热量。 5、一二三段液硫捕集器 立式包括容器、盘管、丝网、波纹管 一二三段液硫捕集器:F1200×4163 V=3.84m3 设计温度 170℃ 设计压力 容器0.06MP 盘管0.7MP 功能是从冷凝器出口尽可能回收液硫和硫雾沫,捕集效果好坏对硫产量影响至关重要。 6、液硫封 立式 包括夹套、容器两部分 F1100×6×3600 V=0.57/2.81m3 设计温度 夹套147℃ 容器160℃ 设计压力 夹套0.3MP 容器常压 通过建立液硫液位,利用液硫压力封住系统中工艺气体,防止串出系统,造成危害。 7、液硫储槽 包括盘管和容器两部分 F2500×8×2500 立式 V=12.28m3 设计温度 夹套160℃ 容器160℃ 设计压力 夹套0.3MP 容器常压 8、定型设备 J61501A、B 空气鼓风机71m3/h 80kpa 132kw J61503A、B 尾气风机211m3/h 升压15kpa 90kw J61502A、B 液硫泵 1.24m3/h H=40m 7.5kw 硫磺造粒机(成套) 含液硫过滤单元,气动球阀,针形调节阀 处理量2t/h 9.99kw 12930×1210×18600 五、工艺流程 1、主要工艺流程