克劳斯法-工艺介绍.

合集下载

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法是一种常用的硫磺回收工艺技术,该技术利用硫磺的垂直遗传区分进行回收和提纯。

本文通过对克劳斯法硫磺回收工艺技术的现状及发展趋势进行分析,从而探讨其在未来的应用前景。

克劳斯法硫磺回收工艺技术的现状在于其具有高效、经济和环境友好等优点。

通过该技术,硫磺可以从含硫气体中高效回收,减少了硫磺资源的浪费。

该技术不需要使用其他化学试剂,避免了对环境的污染,符合可持续发展的要求。

克劳斯法硫磺回收工艺技术也存在一些问题和挑战,主要包括以下几个方面。

该技术在处理高硫含量的气体时存在回收率低的问题,需要进一步优化回收工艺。

克劳斯法在工业应用中需要高温和高压条件下进行操作,对设备和材料的要求较高,需要进一步改进和提高技术。

克劳斯法硫磺回收工艺技术的应用范围有限,目前主要用于石油和天然气开采中的气体处理和硫磺回收。

针对以上问题和挑战,克劳斯法硫磺回收工艺技术的发展趋势主要包括以下几个方面。

通过改进回收工艺,提高其对高硫含量气体的回收率,提高工艺的经济性和效率。

可以采用加催化剂等措施来提高回收效率。

利用新型材料和设备,降低工艺的操作温度和压力,提高工艺的安全性和稳定性。

还可以采用催化剂或吸附材料来提高回收效果。

扩大克劳斯法硫磺回收工艺技术的应用领域,将其应用于更多的行业和领域,提高其市场竞争力。

克劳斯法硫磺回收工艺技术在未来具有较大的发展潜力。

随着对能源和环保要求的不断提高,硫磺回收技术将成为重要的研究和应用领域。

通过改进工艺和提高回收效率,能够更好地保护硫磺资源,减少能源消耗和环境污染,推动可持续发展。

未来的研究应该围绕提高回收效率、降低操作条件、拓宽应用领域等方面展开,为克劳斯法硫磺回收工艺技术的发展做出贡献。

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法是一种常用的硫磺回收工艺技术,主要用于焦化企业的硫磺资源回收利用。

随着环保意识的不断提高和能源资源的日益紧缺,硫磺回收技术得到了广泛关注和应用。

本文将对克劳斯法硫磺回收工艺技术的现状和发展趋势进行介绍和分析。

克劳斯法是一种基于氧化还原反应的硫磺回收工艺技术,其原理基本上是将焦化煤气中的二氧化硫还原成硫化氢,再经过反应器和吸收器处理,最终得到高纯度的硫磺。

克劳斯法硫磺回收工艺技术具有硫磺回收率高、产品质量好、操作稳定等优点,因此得到了广泛的应用。

目前,国内外焦化企业在硫磺回收方面都在积极引进和应用克劳斯法技术。

特别是在我国,随着《大气污染防治行动计划》的实施,环保压力日益增大,使得硫磺回收技术得到了更广泛的应用和关注。

许多焦化企业已经或正在进行硫磺回收工艺技术改造,以适应环保政策的要求。

克劳斯法硫磺回收工艺技术在技术改造和优化方面也取得了一系列的进展。

通过增加反应器和吸收器的容积,优化反应条件等手段,可以提高硫磺回收率和产品质量,降低生产成本,实现资源的更好利用。

1. 技术创新和优化随着环保要求的不断提高,克劳斯法硫磺回收工艺技术将不断进行技术改造和优化,以满足环保要求和提高经济效益。

未来,克劳斯法硫磺回收工艺技术可能会进一步提高硫磺回收率,减少废水和废气排放,提高产品质量,降低生产成本。

2. 节能减排随着我国能源资源的日益紧缺,节能减排将成为未来克劳斯法硫磺回收工艺技术发展的一个重要趋势。

通过采用新的节能技术和设备,优化工艺流程和操作条件,可以有效降低能源消耗,减少废气排放,实现可持续发展。

3. 自动化和智能化随着信息技术的不断发展,克劳斯法硫磺回收工艺技术将朝着自动化和智能化方向发展。

通过引入先进的控制系统和设备,实现生产过程的智能化监控和调节,可以提高生产效率,降低人工成本,提高产品质量和安全性。

4. 成套化和集成化未来,克劳斯法硫磺回收工艺技术可能会向成套化和集成化方向发展。

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法硫磺回收工艺技术是一种用于去除燃煤电厂或其他工业过程中产生的二氧化硫(SO2)污染物的常见技术。

该技术通过将SO2氧化为二氧化硫(SO3),然后与石灰石反应生成石膏或硫酸钙,从而达到回收和利用二氧化硫的目的。

克劳斯法硫磺回收工艺技术在减少大气污染和资源回收方面具有重要意义,因此广泛应用于燃煤电厂和其他工业领域。

以下是该技术的现状和发展趋势的讨论。

目前,克劳斯法硫磺回收工艺技术已经成熟并得到了广泛应用。

该技术在全球范围内的燃煤电厂中得到了广泛采用,可以使其排放的二氧化硫浓度低于国家和地方的排放标准。

该技术还可以回收和利用废去除废气中的二氧化硫,使其转化为有价值的石膏或硫酸钙。

这种资源化利用有助于减少对天然石膏矿石的需求,降低原材料的开采和使用,同时还带来了经济效益。

克劳斯法硫磺回收工艺技术还存在一些挑战和需要解决的问题。

一方面,该技术对原料的要求较高,需要使用高纯度的石灰石。

该技术所需的设备投资和运营成本较高,对厂区的占地面积和能源消耗也有较高的要求。

由于氧化过程中产生的副产物二氧化硫具有毒性和腐蚀性,需要进行安全处理和储存。

在提高工艺效率、降低成本和改善副产物处理等方面有进一步的研究和创新空间。

未来,克劳斯法硫磺回收工艺技术在以下几个方面有望得到进一步发展。

随着环保要求的不断提高,对二氧化硫排放控制的严格要求将推动技术的改进和升级。

改进氧化剂的选择和氧化反应条件的优化,以提高氧化效率和减少不必要的副产物。

通过改进石膏或硫酸钙的利用方式,使其能够进一步应用于土壤改良、建材制备、水泥生产等方面。

可以探索将克劳斯法硫磺回收工艺技术与其他气体污染物治理技术相结合,实现多污染物协同治理的目标。

在技术的发展过程中,应继续加强研究和开发工作,提高技术的稳定性和可靠性。

还需要加强政策和法规的支持,制定更为严格的排放标准和环境保护要求,推动克劳斯法硫磺回收工艺技术的市场应用和推广。

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势1. 克劳斯法硫磺回收原理克劳斯法是一种将含硫污水中的硫酸盐还原成硫磺的化学过程。

其原理是通过还原反应,使硫酸盐转化为硫醇,并进一步转化为元素硫。

克劳斯法将含硫污水中的硫酸盐转化为硫磺,同时释放出二氧化碳和水。

这种方法简单、原理清晰,对硫磺回收效果良好。

目前,克劳斯法硫磺回收工艺技术在化工、冶金等行业得到了广泛应用。

在化肥生产过程中,硫磺是必不可少的原料,而化肥生产废水中常含有大量硫酸盐,采用克劳斯法可以将硫酸盐回收为硫磺,节约了资源并减少了对环境的污染。

在冶金行业,由于冶炼过程中废气中含有大量硫化氢,采用克劳斯法可以将硫化氢转化为硫磺,实现了硫磺的回收。

克劳斯法硫磺回收工艺技术具有技术成熟、工艺简单、回收效率高的特点。

在实际应用中,该技术被广泛应用,并取得了显著的经济和环保效益。

克劳斯法硫磺回收工艺技术成为了当前硫磺回收的主要技术之一。

1. 技术改进方向目前,虽然克劳斯法硫磺回收工艺技术已经相对成熟,但仍然存在一些问题亟待解决。

现有的克劳斯法硫磺回收工艺技术存在能耗高、产物纯度较低、设备运行稳定性等方面的问题。

未来的发展方向主要包括降低能耗、提高产物纯度、改善设备运行稳定性等方面。

2. 配套设备的研发克劳斯法硫磺回收工艺技术需要配套的设备进行生产实施,例如还原反应器、脱硫器、结晶器等。

未来的发展趋势是研发更加高效、节能、环保的配套设备,以满足克劳斯法硫磺回收工艺技术的需求。

3. 与其他技术的结合应用随着科学技术的不断发展,克劳斯法硫磺回收工艺技术将与其他技术相结合,以期达到更好的效果。

可以将克劳斯法与生物技术相结合,利用微生物对硫酸盐进行生物降解,进而进一步提高硫磺回收效率。

还可以将克劳斯法与化学物理技术相结合,以达到降低产物纯度、提高能效等方面的目标。

4. 环保化发展随着社会对环保意识的不断提高,环保化已成为各行业的发展趋势。

克劳斯法硫磺回收工艺技术的发展趋势将更加注重环保化,努力达到减少废物排放、减少资源消耗等目标。

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势随着工业化进程的不断深入,硫磺资源的开发和利用已经成为全球性的热点话题。

硫磺是一种非常重要的化工原料,在化肥、农药、橡胶、化工等多个领域都有着广泛的应用。

大量的工业生产过程中会产生硫磺废气,如果不进行合理的处理和回收,不仅会对环境造成严重的污染,还会浪费大量的资源。

硫磺的回收和再利用技术的研究和开发成为了当今工业界的重要课题之一。

在硫磺回收技术中,克劳斯法硫磺回收工艺技术是一种非常有效的方法。

克劳斯法是一种使用空气中氧气将二氧化硫氧化为三氧化硫,再进一步还原为硫磺的工艺方法。

这种方法在硫磺的回收过程中具有诸多优势,如能够高效回收硫磺、减少排放污染物等。

克劳斯法硫磺回收工艺技术已经在工业生产中得到了广泛的应用。

目前,克劳斯法硫磺回收工艺技术在全球范围内得到了越来越多的关注和应用,其技术现状和发展趋势备受瞩目。

现在,本文将从技术现状和未来发展趋势两个方面入手,对克劳斯法硫磺回收工艺技术进行深入的分析和探讨。

1. 技术原理及流程克劳斯法硫磺回收工艺技术的原理是利用雷电产生的电场和静电作用来促进空气中的氧气与二氧化硫发生氧化反应,生成三氧化硫。

然后,利用氢气将三氧化硫还原为硫磺。

具体的流程包括以下几个步骤:(1)将二氧化硫气体通入反应器中,利用雷电产生的静电场促进二氧化硫与空气中的氧气发生反应生成三氧化硫。

(2)将生成的三氧化硫与氢气在高温条件下发生还原反应,生成硫磺和水蒸气。

(3)通过冷却和凝结,将硫磺和水蒸气分离成为液态硫磺和液态水。

2. 技术优势克劳斯法硫磺回收工艺技术具有以下几个方面的优势:(1)高效回收:该工艺技术能够高效、快速地将二氧化硫转化为硫磺,回收率较高。

(2)减少污染:该工艺技术的产物中不含有硫化物和氮氧化物等污染物,对环境污染小。

(3)资源综合利用:回收的硫磺可以再次应用于化肥、农药等领域,实现资源的综合利用。

3. 应用现状克劳斯法硫磺回收工艺技术已经在一些工业生产中得到了广泛的应用。

克劳斯法-工艺介绍..

克劳斯法-工艺介绍..

克劳斯法回收硫磺CPEE天津分公司2012.1.20克劳斯法硫回收工艺一、工艺方法及原理1、常用硫回收工艺(1) 液相直接氧化工艺有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。

液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。

(2) 固定床催化氧化工艺硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。

Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。

Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。

2. 克劳斯硫回收工艺特点常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。

其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。

但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。

3、克劳斯法制硫基本原理克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。

首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。

克劳斯法硫回收工艺培训课件

克劳斯法硫回收工艺培训课件

7、液硫储槽 包括盘管和容器两部分 。 四、影响操作的因素 1、原料气中H2S含量 原料气中H2S含量高可增加硫回收率和降 低装置投资。
上游脱硫装置有效降低酸气中CO2,对改 善克劳斯装置原料气质量非常有利。
2、原料气和过程气中杂质组分含量
1)CO2
原料气中一般含有CO2,它不仅起稀释作 用,也会和H2S在炉内反应生成COS、CS2, 这两种作用都将导致硫回收率降低。当原 料气中CO2 从3.6%上升至43.5%,随尾气排 放的硫量将增加52.2%。
4、一二段换热器、一二三段冷凝器
换热器冷凝器的作用是把转化器生成的元 素硫冷凝成液体,同时回收热量。
5、一二三段液硫捕集器
立式包括容器、盘管、丝网、波纹管,功 能是从冷凝器出口尽可能回收液硫和硫雾 沫,捕集效果好坏对硫产量影响至关重要。
6、液硫封
立式 包括夹套、容器两部分,通过建立液 硫液位,利用液硫压力封住系统中工艺气 体,防止串出系统,造成危害。
2、废热锅炉
从反应器出口气流中回收热量并发生 蒸汽,同时使过程气温度降至下游设备所 要求的温度并冷凝回收硫。
3、一二三段转化器
转化器的功能是使过程气中的H2S和 SO2在床层上继续克劳斯反应生成元素硫, 同时使过程气中COS、CS2等有机硫化物在 催化剂床层上水解为H2S和CO2,主要反应 在一级反应器中进行,一级反应器实际空 速远远大于二、三级,考虑有机物水解要 求,一级转化器出口应控制在310~340℃, 由于各级冷凝分离了大量产物硫,也不存 在有机物水解问题,二、三级转化器在较 低温度下操作,可获得较高转化率。
二、原材料及产品主要技术规格:
1、 原材料技术规格
克劳斯催化剂主要成分为氧化钛,此 催化剂不需要还原,升温后即可使用。型 号为LYTS-01TiO2 LYTS-811,是白色氧化 铝催化剂,堆密度~0.7g/cm3,一次装填量 30m3。物理性质:外形尺寸直径4~6mm,比 表面≥300m2/g,孔容≥0.40ml/g,堆密度 ≥0.65kg/l,抗压碎强度>140N/粒,磨耗率 <0.3%,催化剂寿命在3年左右。

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势

克劳斯法硫磺回收工艺技术现状及发展趋势克劳斯法硫磺回收工艺技术是一种基于烟气脱硝过程中产生的氨气和二氧化硫反应,将二氧化硫转化为硫磺的环保技术。

该技术能够有效地减少二氧化硫排放,同时实现对硫磺的回收利用,具有经济性和环保性的双重优势。

本文将介绍该技术的现状及发展趋势。

一、技术原理克劳斯法硫磺回收工艺技术的原理是将烟气中的氨气通过与二氧化硫反应,生成硫磺和水。

反应产物的固体硫磺可以收集进行后续利用,而水则通过水处理工艺排放。

该技术的反应原理如下:2NH3 + 3SO2 → 2NS + 3H2O此反应中,氨气是还原剂,二氧化硫则是氧化剂,二者在适当的温度和催化剂存在的情况下,会发生反应生成硫磺和水。

该反应的温度范围一般在200-280℃之间,催化剂一般是金属催化剂,例如铝、铜、钯等。

二、技术现状目前,克劳斯法硫磺回收工艺技术已经在一些国家被广泛应用。

在中国,该技术也已经在一些大型污染源进行了应用和推广。

以煤电行业为例,河北、山东等地的一些电厂已经成功采用该技术进行烟气治理和硫磺回收。

此外,该技术在钢铁、石化、印染和纸浆等行业也有一定的应用和研究。

三、发展趋势1.技术改进和提升随着技术的不断发展,克劳斯法硫磺回收工艺技术也不断进行改进和提升。

例如,研究人员正在研究利用新型催化剂和增加反应温度对该技术进行改进,以提高硫磺回收率和降低催化剂使用量。

2.开发应用范围克劳斯法硫磺回收工艺技术不仅可以应用于煤电、石化、钢铁等行业,还可以应用于废气处理和工业锅炉烟气处理等领域。

此外,该技术可以和其他技术进行联合应用,例如与湿法脱硫技术结合,以进一步提高治理效果。

3.扩大市场需求四、结论克劳斯法硫磺回收工艺技术是一种环保技术,可以有效减少二氧化硫排放,实现硫磺的回收和利用。

目前该技术已经在一些国家和地区得到应用和推广,并且未来还有很大的发展空间。

随着人们对环保技术需求的不断增加,克劳斯法硫磺回收工艺技术将会更加广泛地应用于各个行业和领域。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

克劳斯法回收硫磺CPEE天津分公司2012.1.20克劳斯法硫回收工艺一、工艺方法及原理1、常用硫回收工艺(1) 液相直接氧化工艺有代表性的液相直接氧化工艺有:ADA法和改良ADA法脱硫、拷胶法脱硫、氨水液相催化法脱等。

液相直接氧化工艺适用于硫的“粗脱”,如果要求高的硫回收率和达到排放标准的尾气,宜采用固定床催化氧化工艺或生物法硫回收工艺。

(2) 固定床催化氧化工艺硫回收率较高的Claus工艺是固定床催化氧化硫回收工艺的代表。

Claus硫回收装置一般都配有相应的尾气处理单元,这些先进的尾气处理单元或与硫回收装置组合为一个整体装置,或单独成为一个后续装置。

Claus硫回收工艺及尾气处理方式种类繁多,但基本是在Claus硫回收技术基础上发展起来的,主要有:SCOT 工艺、SuperClaus工艺、Clinsulf工艺、Sulfreen工艺、MCRC工艺等。

2. 克劳斯硫回收工艺特点常规Claus工艺是目前炼厂气、天然气加工副产酸性气体及其它含H2S 气体回收硫的主要方法。

其特点是:流程简单、设备少、占地少、投资省、回收硫磺纯度高。

但是由于受化学平衡的限制,两级催化转化的常规Claus工艺硫回收率为90-95%,三级转化也只能达到95-98%,随着人们环保意识的日益增强和环保标准的提高,常规Claus工艺的尾气中硫化物的排放量已不能满足现行环保标准的要求,降低硫化物排放量和提高硫回收率已迫在眉睫。

一般克劳斯尾气吸收要经过尾气焚烧炉,通过吸收塔,在吸收塔内用石灰乳溶液或稀氨水吸收,生成亚硫酸氢钙或亚硫酸氢铵,通过向溶液中通空气,转化为石膏或硫酸铵,达到无害处理,我公司硫回收尾气送至锅炉燃烧并脱硫后排放。

3、克劳斯法制硫基本原理克劳斯硫回收装置用来处理低温甲醇洗的酸性气体,使酸性气中的H2S转变为单质硫。

首先在燃烧炉内三分之一的H2S与氧燃烧,生产SO2,然后剩余的H2S与生成的SO2在催化剂的作用下,进行克劳斯反应生成硫磺。

其主要反应式为:H2S+ 3/2O2= SO2+H2O+519.2kJ2H2S+ SO2=3S+2 H2O +93kJ由于酸气中除H2S外,通常含有CO2、H2O、烃类等化学反应十分复杂,伴有多种副反应发生。

克劳斯法的工艺流程有三种:(1)部分燃烧法(2)分流法(3)燃硫法本装置采用分流法:将三分之一的酸性气体通入燃烧炉,加入空气使其燃烧生成SO2,而其余三分之二酸性气走旁路,绕过燃烧室,与燃烧后的气体汇合进入催化剂床层反应,这种可处理H2S含量为35%左右的酸性气体,并采用三段转化,三级冷凝工艺流程,该法回收硫的纯度较高(99.8%)。

三、原材料及产品主要技术规格:1、原材料技术规格克劳斯催化剂主要成分为氧化钛,此催化剂不需要还原,升温后即可使用。

型号为L YTS-01TiO2 LYTS-811,是白色氧化铝催化剂,堆密度~0.7g/cm3,一次装填量30m3。

物理性质:外形尺寸直径4~6mm,比表面≥300m2/g,孔容≥0.40ml/g,堆密度≥0.65kg/l,抗压碎强度>140N/粒,磨耗率<0.3%,催化剂寿命在3年左右。

2、原材料消耗量3、产品技术规格4、动力消耗及消耗量*消耗定额以每吨硫磺计四、装置布置及主要设备由于液态硫的特殊性,对产生液硫的设备均设置在EL5.000平面上,以便于液硫的流动,其余设备根据高差要求,布置在不同平面上。

整个装置占地约600m2。

1、酸气燃烧炉Φ2600×8526 δ=14 V=170m3 设计温度1400 ℃设计压力0.06MP 卧式是克劳斯法制硫工艺中最重要的设备。

在此1/3体积的H2S与空气燃烧生成SO2,保证过程气中H2S:SO2摩尔比为2:1,同时烃类燃烧转化为CO2等惰性组分,并或多或少生成元素硫。

1)火焰温度燃烧炉温度必须保持在920℃以上,否则火焰不能稳定燃烧,最好反应温度在1250~1300左右。

过高设备、耐火材料选择困难,并生成多种氮、硫氧化副产物,导致下游催化剂硫酸盐化而失活。

炉温同H2S浓度密切相关,一般低于40%必须采用分流法。

2)花墙使过程气有一个稳定且充分接触的反应空间,同时使气流均匀进入废热锅炉。

3)炉内停留时间高温克劳斯反应一般在1s内即可完成,受原料气含量、炉内混合均匀程度、燃烧室结构等影响,停留时间一般在1~2.5s。

4)火嘴使酸气和空气等气体有效混合均匀提供一个提供一个使杂质和H2S能够完全燃烧的稳定火焰。

2、废热锅炉Φ45×3.5×60000 n=97 F=119m2 设计温度管程300~1000℃壳程190℃设计压力管程0.06MP 壳程0.77MP 汽包DN800×6000 卧式带汽包从反应器出口气流中回收热量并发生蒸汽,同时使过程气温度降至下游设备所要求的温度并冷凝回收硫。

3、一二三段转化器F1200×7000 ф3800×9882 V=170m3 设计温度390℃设计压力0.06MP 卧式内部用隔板隔成三段,触媒装填量30m3, 每段装填量约8~10m3转化器的功能是使过程气中的H2S和SO2在床层上继续克劳斯反应生成元素硫,同时使过程气中COS、CS2等有机硫化物在催化剂床层上水解为H2S和CO2,主要反应在一级反应器中进行,一级反应器实际空速远远大于二、三级,考虑有机物水解要求,一级转化器出口应控制在310~340℃,由于各级冷凝分离了大量产物硫,也不存在有机物水解问题,二、三级转化器在较低温度下操作,可获得较高转化率。

4、一二段换热器、一二三段冷凝器卧式列管换热器、冷凝器一段换热器:F1300×6619 F=159m2 Φ45×3×4000 n=289 设计温度管程280℃壳程230℃设计压力0.06MP二段换热器:F1400×8689 F=269m2 Φ45×3×6000 n=323 设计温度管程380℃壳程145℃设计压力0.05MP一段冷凝器:F1100×8539 F=284m2 Φ38×3×6000 n=403 设计温度管程315℃壳程145℃设计压力管程0.05MP 壳程1、43MP二段冷凝器:F1000×8279 F=222m2 Φ38×3×6000 n=315 设计温度管程220℃壳程165℃设计压力管程0.05MP 壳程1、43MP三段冷凝器:F1000×8279 F=222m2 Φ38×3×6000 n=315 设计温度管程260℃壳程165℃设计压力管程0.05MP 壳程1、43MP换热器冷凝器的作用是把转化器生成的元素硫冷凝成液体,同时回收热量。

5、一二三段液硫捕集器立式包括容器、盘管、丝网、波纹管一二三段液硫捕集器:F1200×4163 V=3.84m3 设计温度170℃设计压力容器0.06MP 盘管0.7MP功能是从冷凝器出口尽可能回收液硫和硫雾沫,捕集效果好坏对硫产量影响至关重要。

6、液硫封立式包括夹套、容器两部分F1100×6×3600 V=0.57/2.81m3 设计温度夹套147℃容器160℃设计压力夹套0.3MP 容器常压通过建立液硫液位,利用液硫压力封住系统中工艺气体,防止串出系统,造成危害。

7、液硫储槽包括盘管和容器两部分F2500×8×2500 立式V=12.28m3 设计温度夹套160℃容器160℃设计压力夹套0.3MP 容器常压8、定型设备J61501A、B 空气鼓风机71m3/h 80kpa 132kwJ61503A、B 尾气风机211m3/h 升压15kpa 90kwJ61502A、B 液硫泵 1.24m3/h H=40m 7.5kw硫磺造粒机(成套)含液硫过滤单元,气动球阀,针形调节阀处理量2t/h 9.99kw12930×1210×18600五、工艺流程1、主要工艺流程来自低温甲醇洗的富H2S气体(35%、3871Nm3/h,30 ℃,0.05MPa)进入本装置后分为两部分,一股为总量的1/3去酸气燃烧炉(B61501)与空气鼓风机(J61501)送来的空气一起进行完全燃烧,燃烧后的气体先先于脱盐水换热降温再进入废锅进行余热回收,用来产生0.65MPa低压饱和蒸汽,然后与另一部分气体(总量2/3)混合后温度约为230℃,进入一段换热气(C61502)与来自液硫捕集器(F61501)的低温气体进行换热,这时会有一部分硫冷凝下来,再进入一段的冷凝器(C61503)用低压锅炉给水进一步冷却至160℃左右,使硫继续冷凝通过液硫捕集器(F61501)将硫雾滴捕集后,进入换热器(C61502)将温度升至反应适宜的温度225℃后,进入反应器(B61501)二段进行克劳斯反应,反应后气体经过二段换热器(C61504)与从液硫捕集器(F61502)来的低温气体换热,再经二段冷凝器(C61505)用锅炉水冷却至150℃左右,经液硫捕集器(F61502)分离液硫,由二段换热器(C61504)升温至215℃后进入反应器(B61501)三段再次进行克劳斯反应。

从反应器(B61501)三段出来的气体245℃依次进三段冷凝器(C61506)冷却至150℃和液硫捕集器(F61503)冷凝分离其中的液硫,分离液硫后的尾气由尾气风机(J61503)加压后排往锅炉装置进一步处理。

各级液硫捕集器与换热器冷凝下来的液态硫磺汇入液硫封(F61504)中,正常情况下由液硫封溢流管线CLS-61507溢流至液硫储槽(F61505),再由液硫泵(J61502)送往造粒机(L61501),将液态硫磺用冷却水冷却成固态粒状硫磺作为硫磺产品送出。

液硫流程气相流程2、原料气和过程气中杂质组分含量1)CO2原料气中一般含有CO2,它不仅起稀释作用,也会和H2S在炉内反应生成COS、CS2,这两种作用都将导致硫回收率降低。

当原料气中CO2 从3.6%上升至43.5%,随尾气排放的硫量将增加52.2%。

2)烃类及其他有机物主要影响是提高了反应炉温度和废热锅炉热负荷,同时增加了空气消耗量,在空气不足时,相对摩尔质量较高烃类和醇胺类溶剂将在高温下与硫反应生成焦油,严重影响催化剂活性,此外过多烃类存在也会增加反应炉内COS、CS2生成量,影响转化率,一般要求烃类以CH4计不超过2~4%。

3)水蒸气水蒸气是惰性气体,同时是克劳斯反应产物,它的存在能抑制反应,降低反应物的分压,从而降低总转化率。

温度、含水率和转化率关系4)NH3产生多硫化铵及N的氧化物,造成堵塞、腐蚀和催化剂中毒。

相关文档
最新文档