最新版北师版初中数学知识点总结(新)

合集下载

(完整版)北师大版初中数学知识点汇总(最全)

(完整版)北师大版初中数学知识点汇总(最全)

※统计图的特点:
折线统计图:能够清晰地反映同一事物在不同时期的变化情况。
条形统计图:能够清晰地反映每个项目的具体数目及之间的大小关系。
扇形统计图:能够清晰地表示各部分在总体中所占的百分比及各部分之间的大小关系
名称 图形
表示方法
端点
长度
直线
l
A
B
直线 AB( 或 BA) 直线l
无端点
无法度量
射线
O
M
射线 OM
1个
无法度量
4
l
线段 AB( 或 BA)
线段
2个
可度量长度
A
B
线段 l
※2. 直线公理 : 经过两点有且只有一条直线 .
二. 比较线段的长短
※1. 线段公理 : 两点间线段最短 ; 两之间线段的长度叫做这两点之间的距离 .
去乘括号里的每一项以达到去括号的目的。
※注意:
①去括号时,要连同括号前面的符号一起去掉;
②去括号时,首先要弄清楚括号前是“ +”号还是“-”号;
③改变符号时,各项都变号;不改变符号时,各项都不变号。
第四章 平面图形及位置关系
一. 线段、射线、直线
※1. 正确理解直线、射线、线段的概念以及它们的区别:
※乘方的运算性质:
①正数的任何次幂都是正数;
②负数的奇次幂是负数,负数的偶次幂是正数;
③任何数的偶数次幂都是非负数;
④1的任何次幂都得 1, 0 的任何次幂都得 0;
⑤-1 的偶次幂得 1;-1 的奇次幂得 -1 ;
⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。
※有理数混合运算法则:①先算乘方 , 再算乘除 , 最后算加减。

北师大七年级数学知识点归纳总结

北师大七年级数学知识点归纳总结

北师大七年级数学知识点归纳总结一、有理数。

1. 有理数的概念。

- 整数和分数统称为有理数。

整数包括正整数、0、负整数;分数包括有限小数和无限循环小数。

例如:5是正整数,属于有理数; - 3是负整数,是有理数;0.25是有限小数,可化为(1)/(4),是分数,也是有理数;0.3̇是无限循环小数,可化为(1)/(3),是有理数。

2. 数轴。

- 规定了原点、正方向和单位长度的直线叫做数轴。

- 数轴上的点与有理数一一对应(所有的有理数都可以用数轴上的点表示,但数轴上的点不都表示有理数,还可能表示无理数)。

- 例如:在数轴上表示2,就是在原点右边距离原点2个单位长度的点;表示-1.5,就是在原点左边距离原点1.5个单位长度的点。

3. 相反数。

- 只有符号不同的两个数叫做互为相反数。

0的相反数是0。

- 若a与b互为相反数,则a + b=0,反之也成立。

例如:3与-3互为相反数,5+(-5) = 0。

4. 绝对值。

- 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作| a|。

- 正数的绝对值是它本身,负数的绝对值是它的相反数,0的绝对值是0。

即当a>0时,| a|=a;当a = 0时,| a|=0;当a<0时,| a|=-a。

例如:| 5| = 5,| - 3|=3。

5. 有理数的大小比较。

- 正数大于0,0大于负数,正数大于负数。

- 两个负数比较大小,绝对值大的反而小。

例如:5>0,0>-2,5>-2;| -3| = 3,| -5| = 5,因为3<5,所以-3>-5。

6. 有理数的加减法。

- 同号两数相加,取相同的符号,并把绝对值相加。

例如:3 + 5=8,(-2)+(-3)=-(2 + 3)=-5。

- 异号两数相加,绝对值相等时和为0(互为相反数的两数相加得0);绝对值不等时,取绝对值较大的数的符号,并用较大的绝对值减去较小的绝对值。

例如:5+(-3)=2,(-5)+3=-2。

北师大版七下数学知识点总结

北师大版七下数学知识点总结

北师大版七下数学知识点总结北师大版七年级下册数学知识点总结。

一、整式的乘除。

1. 同底数幂的乘法。

- 法则:a^m· a^n=a^m + n(m、n为正整数)。

例如2^3×2^4=2^3 + 4=2^7。

- 推广:a^m· a^n· a^p=a^m + n+p(m、n、p为正整数)。

2. 幂的乘方。

- 法则:(a^m)^n=a^mn(m、n为正整数)。

例如(3^2)^3=3^2×3=3^6。

3. 积的乘方。

- 法则:(ab)^n=a^nb^n(n为正整数)。

例如(2×3)^2=2^2×3^2=4×9 = 36。

4. 同底数幂的除法。

- 法则:a^m÷ a^n=a^m - n(a≠0,m、n为正整数且m>n)。

例如5^6÷5^3=5^6 - 3=5^3。

- 零指数幂:a^0=1(a≠0)。

- 负整数指数幂:a^-p=(1)/(a^p)(a≠0,p为正整数)。

5. 整式的乘法。

- 单项式乘单项式:系数相乘,同底数幂相乘。

例如3x^2·2x^3=(3×2)x^2 + 3=6x^5。

- 单项式乘多项式:m(a + b)=ma+mb。

例如2x(x + 3)=2x^2+6x。

- 多项式乘多项式:(a + b)(c + d)=ac+ad+bc+bd。

例如(x + 2)(x+3)=x^2+3x+2x + 6=x^2+5x + 6。

6. 整式的除法。

- 单项式除以单项式:系数相除,同底数幂相除。

例如6x^5÷2x^3=(6÷2)x^5 - 3=3x^2。

- 多项式除以单项式:(a + b)÷ m=(a)/(m)+(b)/(m)。

例如(4x^2+2x)÷2x =4x^2÷2x+2x÷2x = 2x + 1。

二、相交线与平行线。

1. 相交线。

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结

北师大版初中数学各册章节知识点总结北师大版初中数学共有七册,分别是七年级上、七年级下、八年级上、八年级下、九年级上、九年级下和九年级卷子。

每册都包含了多个章节,每个章节都有相应的知识点。

下面将对北师大版初中数学各册章节的知识点进行总结。

一、七年级上册1.数学的初步认识数学的基本概念、数学语言和思维方法等。

2.整数的认识正整数、负整数和零的认识、整数的绝对值和相反数、加法和减法运算、整数的乘法和除法运算等。

3.有理数的认识有理数的概念、有理数的比较、有理数的加减法和乘除法运算等。

4.线段的认识线段的起点、终点和长度、线段的比较、线段的加减运算等。

5.分数的认识分数的概念、分数的比较、分数的加减法和乘除法运算、分数的化简和约分等。

6.几何图形平面上的直线、射线、线段和角的概念、平面图形的分类和特征等。

二、七年级下册1.倍数和公倍数倍数的概念、找规律求倍数、公倍数的概念和求法、最小公倍数的概念和求法等。

2.小数的认识小数的概念、小数的读法和写法、小数的四则运算、小数的比较、小数和分数的相互转换等。

3.分数与小数的运算分数和小数的加减法、乘法和除法运算等。

4.百分数百分数的概念、百分数的读法和写法、百分数和分数、小数的相互转换等。

5.比例和比例的应用比例的概念、比例的简便计算、比例的应用等。

6.数据的收集、整理和分析数据的收集方式、数据的整理和分析方法等。

三、八年级上册1.方程与代数式代数式的概念、方程的概念、一元一次方程的解法、方程和代数式的应用等。

2.平面直角坐标系平面直角坐标系的引入、坐标的确定和表示、平面图形的表示和判断等。

3.平行四边形和三角形平行四边形的性质、三角形的性质和分类、等腰三角形和等边三角形等。

4.几何变换平移、旋转和翻转的概念、几何图形的变换规则和性质等。

5.二次根式二次根式的概念和性质、二次根式的运算、二次根式的应用等。

6.立体图形立体图形的基本概念、立体图形的展开图和体积等。

北师大版初中数学知识点归纳(初中完整版)

北师大版初中数学知识点归纳(初中完整版)

第一章丰富的图形世界1、几何图形从实物中抽象出来的各种图形,包括立体图形和平面图形.立体图形:有些几何图形的各个部分不都在同一平面内,它们是立体图形。

平面图形:有些几何图形的各个部分都在同一平面内,它们是平面图形。

2、点、线、面、体(1)几何图形的组成点:线和线相交的地方是点,它是几何图形中最基本的图形。

线:面和面相交的地方是线,分为直线和曲线.面:包围着体的是面,分为平面和曲面。

体:几何体也简称体。

(2)点动成线,线动成面,面动成体.3、生活中的立体图形圆柱柱生活中的立体图形球棱柱:三棱柱、四棱柱(长方体、正方体)、五棱柱、……(按名称分) 锥圆锥棱锥4、棱柱及其有关概念:棱:在棱柱中,任何相邻两个面的交线,都叫做棱。

侧棱:相邻两个侧面的交线叫做侧棱。

n棱柱有两个底面,n个侧面,共(n+2)个面;3n条棱,n条侧棱;2n个顶点。

5、正方体的平面展开图:11种6、截一个正方体:用一个平面去截一个正方体,截出的面可能是三角形,四边形,五边形,六边形.7、三视图物体的三视图指主视图、俯视图、左视图.主视图:从正面看到的图,叫做主视图。

左视图:从左面看到的图,叫做左视图。

俯视图:从上面看到的图,叫做俯视图。

8、多边形:由一些不在同一条直线上的线段依次首尾相连组成的封闭平面图形,叫做多边形。

从一个n 边形的同一个顶点出发,分别连接这个顶点与其余各顶点,可以把这个n 边形分割成(n-2)个三角形。

弧:圆上A 、B 两点之间的部分叫做弧.扇形:由一条弧和经过这条弧的端点的两条半径所组成的图形叫做扇形.第二章 有理数及其运算1、有理数的分类 正有理数有理数 零 有限小数和无限循环小数负有理数或 整数有理数分数2、相反数:只有符号不同的两个数叫做互为相反数,零的相反数是零3、数轴:规定了原点、正方向和单位长度的直线叫做数轴(画数轴时,要注意上述规定的三要素缺一不可).任何一个有理数都可以用数轴上的一个点来表示。

(最新版)北师大版初中数学各册章节知识点总结

(最新版)北师大版初中数学各册章节知识点总结

北师大版初中数学七年级(上册)各章知识点第一章丰富图形世界1、生活中常见的几何体:2、常见几何体的分类:3、平面图形折成立体图形应注意:4、圆柱的侧面展开图是一个长方形;表面全部展开是两个和一个;圆锥的表面全部展开图是一个和一个;正方体表面展开图是一个和两个;长方体的展开图是一个大和两个。

5、特殊立体图形的截面图形:(1)长方体、正方形的截面是:三角形、四边形(长方形、正方形、梯形、平行四边形)、五边形、六边形。

(2)圆柱的截面是:长方形(正方形)、圆(3)圆锥的截面是:三角形、圆。

(4)球的截面是:圆。

6、我们经常把从正面看到的图形叫做主视图,从左面看到的图叫做左视图,从上面看到的图叫做俯视图。

7、常见立体图形的俯视图几何体长方体正方体圆锥圆柱球主视图长方形正方形三角形长方形圆俯视图长方形正方形圆(有一点)圆圆左视图长方形正方形三角形长方形圆8、点动成线,线动成面,面动成体。

第二章有理数1 、正数与负数在以前学过的0以外的数前面加上负号“—”的数叫负数。

与负数具有相反意义,即以前学过的0以外的数叫做正数(根据需要,有时在正数前面也加上“+”)。

2 、有理数(1) 正整数、0、负整数统称,正分数和负分数统称。

整数和分数统称。

0既不是数,也不是数。

(2) 通常用一条直线上的点表示数,这条直线叫数轴。

数轴三要素:原点、、单位长度。

在直线上任取一个点表示数0,这个点叫做。

(3) 只有符号不同的两个数叫做互为相反数。

例:2的相反数是;-2的相反数;0的相反数是。

(4) 数轴上表示数a的点与原点的距离叫做数a的绝对值,记作。

一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

3 、有理数的加减法(1)有理数加法法则:①同号两数相加,取相同的符号,并把绝对值相加。

②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

互为相反数的两个数相加和为0。

有关北师大版初中数学知识点总结5篇

有关北师大版初中数学知识点总结5篇

有关北师大版初中数学知识点总结5篇北师大版初中数学知识点总结2实数无理数:无限不循环小数叫无理数平方根:①如果一个正数X的平方等于A,那么这个正数X就叫做A的算术平方根。

②如果一个数X的平方等于A,那么这个数X就叫做A的平方根。

③一个正数有2个平方根/0的平方根为0/负数没有平方根。

④求一个数A的平方根运算,叫做开平方,其中A叫做被开方数。

立方根:①如果一个数X的立方等于A,那么这个数X就叫做A的立方根。

②正数的立方根是正数、0的立方根是0、负数的立方根是负数。

③求一个数A 的立方根的运算叫开立方,其中A叫做被开方数。

实数:①实数分有理数和无理数。

②在实数范围内,相反数,倒数,绝对值的意义和有理数范围内的相反数,倒数,绝对值的意义完全一样。

③每一个实数都可以在数轴上的一个点来表示。

相信通过上面的学习,同学们对实数知识点可以很好的掌握了,希望同学们在考试中取得好成绩。

初中数学知识点总结:平面直角坐标系下面是对平面直角坐标系的内容学习,希望同学们很好的掌握下面的内容。

平面直角坐标系平面直角坐标系:在平面内画两条互相垂直、原点重合的数轴,组成平面直角坐标系。

水平的数轴称为x轴或横轴,竖直的数轴称为y轴或纵轴,两坐标轴的交点为平面直角坐标系的原点。

平面直角坐标系的要素:①在同一平面②两条数轴③互相垂直④原点重合三个规定:①正方向的规定横轴取向右为正方向,纵轴取向上为正方向②单位长度的规定;一般情况,横轴、纵轴单位长度相同;实际有时也可不同,但同一数轴上必须相同。

③象限的规定:右上为第一象限、左上为第二象限、左下为第三象限、右下为第四象限。

相信上面对平面直角坐标系知识的讲解学习,同学们已经能很好的掌握了吧,希望同学们都能考试成功。

初中数学知识点:平面直角坐标系的构成对于平面直角坐标系的构成内容,下面我们一起来学习哦。

平面直角坐标系的构成在同一个平面上互相垂直且有公共原点的两条数轴构成平面直角坐标系,简称为直角坐标系。

北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结最新最全

北师大版初中数学知识点总结以下是北师大版初中数学的知识点总结,涵盖了初中阶段的主要数学概念、定理、公式和解题方法。

一、数与代数1.1 有理数•定义:有理数是可以表示为两个整数比值的数,形式为a/b,其中a、b为整数,b不为0。

•分类:正有理数、负有理数、零。

•性质:有理数加减乘除运算遵循交换律、结合律和分配律。

1.2 实数•定义:实数是包含有理数和无理数的数集。

•无理数:不能表示为两个整数比值的数,如π、√2等。

1.3 函数•定义:函数是一种关系,使得一个集合(定义域)中的每个元素对应到另一个集合(值域)中的唯一元素。

•表示方法:解析式、表格、图象。

二、几何2.1 点、线、面•点:没有长度、宽度和高度的物体。

•线:由无数个点连成的直线、射线和线段。

•面:由无数个线段围成的平面图形。

2.2 三角形•定义:由三条边和三个角组成的图形。

•分类:锐角三角形、直角三角形、钝角三角形。

•性质:三角形的内角和为180°,两边之和大于第三边。

2.3 四边形•定义:由四条边和四个角组成的图形。

•分类:矩形、平行四边形、梯形、菱形等。

•性质:四边形的内角和为360°。

2.4 圆•定义:平面上到一个固定点(圆心)距离相等的所有点的集合。

•性质:圆的半径相等,圆心到圆上任意一点的距离等于半径。

2.5 立体几何•定义:研究三维空间中的点、线、面及其相互关系的几何学。

•主要概念:平面、直线、球、锥、柱等。

三、统计与概率3.1 统计•定义:研究数据收集、整理、分析和解释的方法。

•主要内容:图表、平均数、中位数、众数等。

3.2 概率•定义:描述事件发生可能性大小的数学概念。

•计算方法:频率、树状图、列表等。

四、综合应用•定义:将数学知识应用到实际问题中的能力。

•主要类型:几何问题、概率问题、应用题等。

以上就是北师大版初中数学的知识点总结,希望能对您的学习有所帮助。

学习建议1.重视基础:掌握数学基础知识是解决复杂问题的关键。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

侧面是曲面底面是圆面圆柱,:⎩⎨⎧侧面是正方形或长方形底面是多边形棱体柱体,:侧面是曲面底面是圆面圆锥,:⎩⎨⎧侧面都是三角形底面是多边形棱锥锥体,:最新北师版初中数学知识点复习七年级上第一章 丰富的图形世界()1 生活中的立体图形2 展开与折叠3 截一个几何体4 从三个方向看物体的形状¤1.¤2.¤3. 球体:由球面围成的(球面是曲面)¤4. 几何图形是由点、线、面构成的。

①几何体与外界的接触面或我们能看到的外表就是几何体的表面。

几何的表面有平面和曲面;②面与面相交得到线;③线与线相交得到点。

※5. 棱:在棱柱中,任何相邻两个面的交线都叫做棱.。

※6. 侧棱:相邻两个侧面的交线叫做侧棱..,所有侧棱长都相等。

¤7. 棱柱的上、下底面的形状相同,侧面的形状都是长方形。

¤8. 根据底面图形的边数,人们将棱柱分为三棱柱、四棱柱、五棱柱、六棱柱……它们底面图形的形状分别为三边形、四边形、五边形、六边形……¤9. 长方体和正方体都是四棱柱。

¤10. 圆柱的表面展开图是由两个相同的圆形和一个长方形连成。

¤11. 圆锥的表面展开图是由一个圆形和一个扇形连成。

※12. 设一个多边形的边数为n(n≥3,且n为整数),从一个顶点出发的对角线有(3)条;可以把n边形成(2)个三角形;这个n边形共有2)3(nn条对角线。

◎13. 圆上两点之间的部分叫做弧.,弧是一条曲线。

◎14. 扇形,由一条弧和经过这条弧的端点的两条半径所组成的图形。

¤15. 凸多边形和凹多边形都属于多边形。

有弧或不封闭图形都不是多边形。

第二章有理数及其运算()1.有理数2.数轴3.绝对值4.有理数的加法5.有理数的减法6.有理数的加减混合运算7.有理数的乘法⎪⎪⎪⎩⎪⎪⎪⎨⎧有理数⎪⎩⎪⎨⎧)3,2,1:()3,2,1:( 如负整数如正整数整数)0(零⎪⎩⎪⎨⎧----)8.4,3.2,31,21:( 如负分数分数)8.3,3.5,31,21:( 如正分数8.有理数的除法9.有理数的乘方10.科学记数法11.有理数的混和运算12.用计算器进行运算※数轴的三要素:原点、正方向、单位长度(三者缺一不可)。

※任何一个有理数,都可以用数轴上的一个点来表示。

(反过来,不能说数轴上所有的点都表示有理数)※如果两个数只有符号不同,那么我们称其中一个数为另一个数的相反数,也称这两个数互为相反数。

(0的相反数是0) ※在数轴上,表示互为相反数的两个点,位于原点的侧,且到原点的距离相等。

¤数轴上两点表示的数,右边的总比左边的大。

正数在原点的右边,负数在原点的左边。

※绝对值的定义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离。

数a 的绝对值记作。

※正数的绝对值是它本身;负数的绝对值是它的数;0的绝对值是0。

⎪⎩⎪⎨⎧<-=>)0()0(0)0(||a a a a a a 或 ⎩⎨⎧<-≥)0()0(||a a a a a ※绝对值的性质:除0外,绝对值为一正数的数有两个,它们互为相反数;互为相反数的两数(除0外)的绝对值相等;任何数的绝对值总是非负数,即≥0※比较两个负数的大小,绝对值大的反而小。

比较两个负数的大小的步骤如下:①先求出两个数负数的绝对值;②比较两个绝对值的大小; ③根据“两个负数,绝对值大的反而小”做出正确的判断。

※绝对值的性质:①对任何有理数a ,都有≥0.②若0,则0,反之亦然. ③若,则±b .④对任何有理数a,都有※有理数加法法则: ①同号两数相加,取相同符号,并把绝对值相加。

②异号两数相加,绝对值相等时和为0;绝对值不等时取绝对值较大的数的符号,并用较大数的绝对值减去较小数的绝对值。

③一个数同0相加,仍得这个数。

※加法的交换律、结合律在有理数运算中同样适用。

0 --- 1 2 3 越来越大¤灵活运用运算律,使用运算简化,通常有下列规律:①互为相反的两个数,可以先相加;②符号相同的数,可以先相加;③分母相同的数,可以先相加;④几个数相加能得到整数,可以先相加。

※有理数减法法则:减去一个数,等于加上这个数的相反数。

¤有理数减法运算时注意两“变”:①改变运算符号;②改变减数的性质符号(变为相反数)有理数减法运算时注意一个“不变”:被减数与减数的位置不能变换,也就是说,减法没有交换律。

¤有理数的加减法混合运算的步骤:①写成省略加号的代数和。

在一个算式中,若有减法,应由有理数的减法法则转化为加法,然后再省略加号和括号;②利用加法则,加法交换律、结合律简化计算。

(注意:减去一个数等于加上这个数的相反数,当有减法统一成加法时,减数应变成它本身的相反数。

)※有理数乘法法则: ①两数相乘,同号得正,异号得负,绝对值相乘。

②任何数与0相乘,积仍为0。

※如果两个数互为倒数,则它们的乘积为1。

(如:-2与21 、 3553与…等) ※乘法的交换律、结合律、分配律在有理数运算中同样适用。

¤有理数乘法运算步骤:①先确定积的符号;②求出各因数的绝对值的积。

¤乘积为1的两个有理数互为倒数。

注意:①零没有倒数。

②求分数的倒数,就是把分数的分子分母颠倒位置。

一个带分数要先化成假分数。

③正数的倒数是正数,负数的倒数是负数。

※有理数除法法则: ①两个有理数相除,同号得正,异号得负,并把绝对值相除。

②0除以任何非0的数都得0。

0不可作为除数,否则无意义。

※有理数的乘方※注意:①一个数可以看作是本身的一次方,如5=51;②当底数是负数或分数时,要先用括号将底数括上,再在右上角写指数。

※乘方的运算性质:①正数的任何次幂都是正数;②负数的奇次幂是负数,负数的偶次幂是正数;③任何数的偶数次幂都是非负数;④1的任何次幂都得1,0的任何次幂都得0;⑤-1的偶次幂得1;-1的奇次幂得-1;⑥在运算过程中,首先要确定幂的符号,然后再计算幂的绝对值。

※有理数混合运算法则:①先算乘方,再算乘除,最后算加减②如果有括号,先算括号里面的. =⨯⨯⨯⨯ a n a a a a 个幂第三章 整式及其加减()1 字母表示数2 代数式3 整式4 整式的加减5 探索与表达规律※代数式的概念:用运算符号(加、减、乘除、乘方、开方等)把数与表示数的字母连接而成的式子叫做代数式...。

单独的一个数或一个字母也是代数式。

注意:①代数式中除了含有数、字母和运算符号外,还可以有括号;②代数式中不含有“=、>、<、≠”等符号。

等式和不等式都不是代数式,但等号和不等号两边的式子一般都是代数式;③代数式中的字母所表示的数必须要使这个代数式有意义,是实际问题的要符合实际问题的意义。

※代数式的书写格式:①代数式中出现乘号,通常省略不写,如;②数字与字母相乘时,数字应写在字母前面,如4a ; ③带分数与字母相乘时,应先把带分数化成假分数后与字母相乘,如a 312应写作a 37;④数字与数字相乘,一般仍用“×”号,即“×”号不省略; ⑤在代数式中出现除法运算时,一般按照分数的写法来写,如4÷(4)应写作44-a ;注意:分数线具有“÷”号和括号的双重作用。

⑥在表示和(或)差的代差的代数式后有单位名称的,则必须把代数式括起来,再将单位名称写在式子的后面,如)(22b a -平方米※代数式的系数:代数式中的数字中的数字因数叫做代数式的系数......。

如3x,4y 的系数分别为3,4。

注意:①单个字母的系数是1,如a 的系数是1;②只含字母因数的代数式的系数是1或-1,如的系数是-1。

a 3b 的系数是1※代数式的项:代数式7262--x x 表示6x 2、-2x 、-7的和,6x 2、-2x 、-7是它的项,其中把不含字母的项叫做常数项注意:在交待某一项时,应与前面的符号一起交待。

※同类项:所含字母相同,并且相同字母的指数也相同的项叫做同类项。

注意:①判断几个代数式是否是同类项有两个条件:a.所含字母相同;b.相同字母的指数也相同。

这两个条件缺一不可;②同类项与系数无关,与字母的排列顺序无关;③几个常数项也是同类项。

※合差同类项:把代数式中的同类项合并成一项,叫做合并同类项。

①合并同类项的理论根据是逆用乘法分配律;②合并同类项的法则是把同类项的系数相加,所得结果作为系数,字母和字母的指数不变。

注意:①如果两个同类项的系数互为相反数,合并同类项后结果为0;②不是同类项的不能合并,不能合并的项,在每步运算中都要写上;③只要不再有同类项,就是最后结果,结果还是代数式。

※根据去括号法则去括号:括号前面是“+”号,把括号和它前面的“+”号去掉,括号里各项都不改变符号;括号前面是“-”号去掉,括号里各项都改变符号。

※根据分配律去括号:括号前面是“+”号看成+1,括号前面是“-”号看成-1,根据乘法的分配律用+1或-1去乘括号里的每一项以达到去括号的目的。

※注意:①去括号时,要连同括号前面的符号一起去掉;②去括号时,首先要弄清楚括号前是“+”号还是“-”号;③改变符号时,各项都变号;不改变符号时,各项都不变号。

第四章基本平面图形()1.线段、射线、直线2.比较线段的长短3.角4.角的比较5.多边形和圆的初步认识一. 线段、射线、直线※1. 正确理解直线、射线、线段的概念以及它们的区别:※2. 直线公理:经过两点有且只有一条直线.二.比较线段的长短※1. 线段公理:两点间线段最短;两之间线段的长度叫做这两点之间的距离.※2. 比较线段长短的两种方法:①圆规截取比较法;②刻度尺度量比较法.※3. 用刻度尺可以画出线段的中点,线段的和、差、倍、分; 用圆规可以画出线段的和、差、倍.三.角※1. 角:有公共端点的两条射线组成的图形叫做角;这个公共端点叫做角的顶点;这两条射线叫做角的边. ※2. 角的表示法:角的符号为“∠” ①用三个字母表示,如图1所示∠②用一个字母表示,如图2所示∠b③用一个数字表示,如图3所示∠1④用希腊字母表示,如图4所示∠β ※经过两点有且只有一条直线。

※两点之间的所有连线中,线段最短。

※两点之间线段的长度,叫做这两点之间的距离........1º=60’ 1’=60”※角也可以看成是由一条射线绕着它的端点旋转而成的。

如图5所示:※一条射线绕它的端点旋转,当终边和始边成一条直线时, 所成的角叫做平角..。

如图 ※终边继续旋转,当它又和始边重合时,所成的角叫做周角..。

如图7 AO B 图1 b图2平周角1 图3 β 图4※从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线.....。

相关文档
最新文档