补充地下水监测方案 模版

补充地下水监测方案 模版
补充地下水监测方案 模版

环境质量现状补充监测方案

二〇一六年五月

1项目概况

1、项目名称:========中心项目

2、建设性质:新建

3、建设单位:===========有限公司

4、建设地址:。

5、建设内容及规模:

2 环境质量现状监测

2.1 环境空气质量现状监测

本次环境空气现状常规因子引用《=======环境影响报告书》于2013年9月21日至9月27日对评价区内高村、小泉沟两个监测点进行的现场实测数据。本次补充高村、小泉沟村特征污染因子非甲烷总烃监测

2.1.1 监测点位的布设

根据评价工作等级,本次环境空气质量现状监测布设2监测点,点位布设情况见表2-1和附图1。

表2-1 环境空气采样点方位、距离和布点原则

2.3.2 监测项目

环境空气中的非甲烷总烃。采样的同时记录风向、风速、气温、气压等常规气象要素。

2.3.3 监测时间和频率

监测时间为2016年6月,分别取得连续3天的有效监测数据。按照《环境影响评价技术导则大气环境》(HJ2.2-2008)和《环境空气质量标准》(GB3095-2012)的要求,非甲烷总烃采样为每天02、08、14、20时的4个小时值,每小时采样时间不小

于45分钟;同时记录风向、风速、气温、气压等常规气象要素。

2.3.4 监测方法及分析方法

样品采集和分析严格按照《环境监测技术规范》和《环境空气质量标准》(GB3095-2012)规定的分析方法执行。

2.2 地下水环境质量现状监测

2.2.1 监测点位的布设

根据《环境影响评价技术导则地下水环境》(HJ610-2011),共布设了4个水质、水位监测点,3个水位监测点分别见表2-2、表2-3及图1。

表2-2 地下水水质、水位监测点

表2-3 地下水水位监测点

2.3.2 监测项目

检测分析K++Na+、C a2+、Mg2+、CO32-、HCO3-、CL-、SO42-的浓度。

水质监测项目包括:pH值、氨氮、硝酸盐、亚硝酸盐、挥发酚、氰化物、砷、汞、六价铬、总硬度、铅、氟化物、铁、镉、锰、溶解性总固体、高锰酸盐指数、硫酸盐、氯化物、细菌总数、总大肠菌群共21项,同时同时记录井深、水深(井底至水面深度)。

2.3.3 监测时间和频率

连续监测3天。

2.3.4 监测方法及分析方法

按照国家规定的监测方法和要求执行。

3环评执行标准

3.1环境空气质量标准

非甲烷总烃参照河北省地方标准《环境空气质量非甲烷总烃限值》(DB13/1577-2012)中二级标准。

表3-1 环境空气质量评价标准

3.2地下水环境质量标准

本次评价采用《地下水质量标准》(GB14848-93)Ⅲ类水质标准进行现状评价,

评价标准见表3-2。

表3-2 地下水评价标准

地下水监测系统整体解决方案

陕西颐信网络科技有限责任公司 2014年9月22日 陕西颐信网络科技有限责任公司 地下水监测系统 整体解决方案

目录 一、概述.................................................................................................................................................... - 1 - 1.1项目背景...................................................................................................................................... - 1 - 1.2新产品研究.................................................................................................................................. - 2 - 二、系统简介............................................................................................................................................ - 2 - 三、系统功能............................................................................................................................................ - 3 - 四、系统方案............................................................................................................................................ - 4 - 4.1数据流程及组网.......................................................................................................................... - 4 - 4.2系统组成...................................................................................................................................... - 4 - 4.3数据采集...................................................................................................................................... - 5 - 4.4数据传输格式.............................................................................................................................. - 5 - 五、系统软件............................................................................................................................................ - 5 - 5.1软件平台...................................................................................................................................... - 5 - 5.2数据接收软件.............................................................................................................................. - 5 - 5.3数据查询分析软件...................................................................................................................... - 6 - 六、系统特点.......................................................................................................................................... - 10 - 七、产品性能.......................................................................................................................................... - 10 - 7.1一体化智能水位采集装置........................................................................................................ - 10 - 7.1.1产品特点....................................................................................................................... - 11 - 7.1.2技术指标......................................................................................................................... - 12 - 7.2无线手持参数设置仪................................................................................................................ - 12 - 八、工程实例.......................................................................................................................................... - 14 -

环境监测实施方案

XX 县作为本项目监测点,鉴于本次监测任务顺利进行,特绘制XX 县环境监测总体方案图,如下图1所示: 图1 XX 县环境监测总体方案图 1监测内容 XX 县地表水水质、县政府所在地空气质量、重点污染源(水、气)、城区及交通干线噪声质量等监测工作。具体内容如下: 1.1地表水水质监测 严格执行《地表水环境质量标准》(GB3838-2002)、《地表水和污水监测技术规范》(HJ/T91—2002)、《环境水质监测质量保证手册(第二版)》及《水和废水监测分析方法》(第四版)等相关标准和规范。 1.1.1 监测断面 哈尔腾河红崖子断面。 1.1.2 监测指标及方法依据(见表1-1) 采用《地表水环境质量标准》(GB3838—2002)表1中除粪大肠 编制监测方案确定监测项目及类别 现场样品采集 检测室样品分析 检测 数据处理及结果分析上报 出具监测报告 接受委托 后期服务

菌群以外的23项指标。

具体监测项目见下表: 表1-1 地表水监测因子及检测方法依据

此外还可根据XX当地污染实际情况,适当增加区域污染物监测。1.1.3 监测网点布置(见表1-2) 表1-2 地表水监测网点布置 1.1.4 样品采集方法及设备(见表1-3) 表1-3 样品采集方法及设备 1.1.4监测时间及频次(见表1-4) 每季度至少监测1次,全面至少监测4次,且需在各监测月份的上旬(1-10日)完成水质监测的采样及实验室分析。具体监测时段按下表执行(特殊情况除外) 表1-4 监测时间及频次

1.2 环境空气质量监测 严格执行《环境空气质量标准》(GB3095—1996)、《环境空气质量手工监测技术规范》(HJ/T193—2005)及《空气和废气监测分析方法》(第四版)等相关标准和规范,应加强监测过程的质量控制。 1.2.1 监测地点 XX县政府广场。 1.2.2 监测指标及方法依据(见表1-5) 表1-5 环境空气监测指标及检测方法依据 1.2.3 监测网点布置(见表1-6) 表1-6 环境空气监测网点布置

第二章 环境监测方案的制定

第二章环境监测方案的制定 监测方案:监测任务总体构思和设计 根据监测目的+实地污染调查研究(来源及背景) 确定监测对象,监测项目(内容) 设计监测网点(地点) 合理安排采样时间、频率,选定采样方法和分析测定技术(方法及步骤)提出监测报告要求 制定质量保证措施和方案实施计划(保证结果的可信性) 以水和为例 一、水质监测方案的制定 1.1 污染调查(来源和背景) 根据监测目的,确定调查范围和内容。 如进行区域性污染控制设施监测,就需要对该区域的污染状况进行全面的调查;如为了某项工程设计取得原始资料,则应按设计规范或卫生标准的要求,调查该项工程及其范围内的污染状况。 A、地下水污染调查 收集、汇总监测区域的水文、地质、气象等方面的有关资料和以往的监测资料。如:地质图、剖面图、测绘图、水井的成套参数、含水层、地下水补给、径流和流向,以及温度、湿度、降水量等。 调查监测区域内城市发展、工业分布、资源开发和土地利用情况,尤其是地下工程规模、应用等;了解化肥和农药的施用面积和施用量;查清污水灌溉、排污、纳污和地表水污染现状。 测量或查知水位、水深,以确定采水器和泵的类型、费用和采样程序。 确定主要污染源和污染物,并根据地区特定与地下水的主要类型把地下水分成若干个水文地质单元。 B、水污染调查 水污染来源:工业废水、生活污水、医院污水等。 调查研究:用水情况、废水或污水类型、主要污染物、排污去向、排放量、车间、工厂或地区的排污口数量及位置、废水处理情况等综合分析,确定监测项目、点位、采样方案、分析方法、质量保证措施等。 1.2 监测项目(内容) (1)确定原则 ?目的和要求:根据目的要求及相关的水质标准及规范要求,选择测定项目。

水位远程监测系统方案

水位远程监测系统 方案

水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求....................................................................................2二、方案概述....................................................................................2三、系统组成....................................................................................2 3.1控制中心主站 (3) 3.2通讯网络....................................................................................3 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功

能..........................................................................................5 5.2特点..........................................................................................6六、主要硬件设备概述 (9) 6.1G P R S无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

环境监测方案模板

×××项目 监测方案 ××××××××××有限公司

××年××月××日

×××项目 监测方案 部门负责人:高级工程师技术审定人:高级工程师技术审核人:高级工程师编制:工程师

1环境空气 1.1环境空气质量现状 1.1.1监测点位布设 环境空气质量监测点见表1.1-1及附图1。 1.1.2监测项目及频次 监测频次见表1.1-2。 1.2厂界特征因子监测 厂界特征因子监测点见表1.2-1及附图2。 表1.2-1 厂界特征因子监测点一览表 1.3监测方法 监测方法执行《环境空气质量标准》(GB3096-1995)和《空气和废气监测分析方法》(第四版)中相关规定。 1.4监测报告 应包括监测结果、各项目监测分析方法与检出限、同步监测的气象数据等。

2.1监测点布设 共设置××个监测断面,详见表2.1-1。 (HJ/T2.3-93)中有关河流或湖泊、水库相关规定,进行河流或湖泊、水库监测点布设。 2.2监测项目 常规水质参数和特征水质参数,具体根据项目实际情况,并结合《环境影响评价技术导则地面水环境》(HJ/T2.3-93)中相关规定进行选择。 2.3监测频次 执行《环境影响评价技术导则地面水环境》(HJ/T2.3-93)中相关规定。 2.4监测方法 监测方法执行《水和废水分析监测方法》中相关规定。

3.1监测点位布设 地下水环境质量现状监测点见表1.1-1及附图3。 3.2监测项目 (1)水质监测:×××(根据项目实际情况选择监测因子) (2)井点监测:地理坐标、水位、水温、水量、井深、水井的使用功能、结构。 3.3监测频次 监测一天,每天1次。 3.4监测方法 监测方法执行《地下水环境监测技术规范》(HJ/T164-2004)中相关规定。 注:以上各项可根据《地下水环境监测技术规范》(HJ/T164-2004)中相关规定进行适当调整。

地下水监测技术方案

咸潮监测预警技术方案 2013年7月

目录 1. 概述 (2) 2. 技术方案 (3) 2.1系统组成 (3) 2.2方案特点 (3) 2.3产品功能特点介绍 (4) 2.3.1 OTT Ecolog800 温盐深监测记录仪 (4) 2.4 供电模式 (8) 2.5 数据通讯 (9) 2.6 系统安装 (9) 2.7 监控中心软件 (9) 3. 产品主要应用情况 (11)

1. 概述 地下水作为人类生存空间的重要组成部分,为人类提供了优质的淡水资源。但是,随着我国环境污染的日趋严重,人类活动导致地下水污染已从点状扩展到面状污染。除地下水自身受污染外,又成为土地污染的重要媒介。 含水层对污染源的敏感性、纳污的脆弱性及其与土地污染的相关性已引起行业专家的普遍关注。而且,土壤和含水层一旦受到污染,清除、治理、修复十分困难,不仅经济投入很大,技术上也有难度,时间周期也很长。 我国的淡水资源严重不足,人均占有量只及世界人均量的四分之一,目前,国内七大地表水系均遭到不同程度的污染,地下水污染也面临十分严峻的局面,这对我国本不充裕的水资源来说无疑更让人忧虑。随着人口密度加大和工农业生产的发展,水资源供需矛盾日益突出,地下水降落漏斗逐步扩大,地表水体的严重污染也使地下水逐步遭到污染,而浅层地下水的无法使用迫使许多地区大量开发深层地下水,又带来了地面沉降,海水入侵等缓变地质灾害。据环保部门统计,1996年全国废水排放总量约1356亿吨,江、河、湖污染严重,并呈加重趋势,50%的浅层地下水遭到不同程度的污染,其中40%已不适宜饮用。 国家发展改革委、水利部、建设部、卫生部、国家环保总局编制的《全国城市饮用水安全保障规划(2006—2020)》日前印发。按照《规划》目标,到2020年,将建立起比较完善的饮用水安全保障体系,满足2020年全面实现小康社会目标对饮用水安全的要求。“十一五”期间,重点解决205个设市城市及350个问题突出的县级城镇饮用水安全问题。 目前来看,全国各地,尤其是北方地区广泛采用地下水作为饮用水源。为保障供水安全,有必要对地下水的水文和水质参数进行监测,以便实时掌握地下水的储量变化,水质指标等情况,选择合适优质的地下水源,保障饮用水源的安全,合理有效的利用地下水,在近海地区,更可以根据实时监测指标对可能出现的海水倒灌实现预警等目的。

企业环境监测方案范本

XXXXXX 有限公司环境监测方案 一、监测指标 (一)苯、甲苯、二甲苯、非甲烷总烃、颗粒物。 (二)噪声(厂界)。 (三)☆如环评有破碎清洗工艺必须监测废水。 二、监测频率 每年四次(每季度一次)。 三、应急监测预案 (一)目的 为在发生环境污染事故时,最大限度地减少环境污染,降低经济损失,在事故处理和应急情况下,迅速及时地进行环境监测,制定以下预案。 (二)适用范围 本预案适用于XXXXXX 有限公司范围内发生的环境污染事故的应急情况监测。 (三)基本原则及应急监测措施 1 、基本原则:本预案是XXXXXX 有限公司环境保护工作的重要组成部分,必须服从各级环境污染事故应急处理预案指挥部的具体指挥和领导。坚持个人利益服从集体利益,局部利益服从全局利益,日常监测服从应急监测原则。 2 、应急监测措施:

(1)公司环保安全部门在接到环境污染事故信息、后,按环境污染信息报送规定上报市环保局。同时立即与市坏境保护监测站联系,及时判断可能的污染因未,进行应急准备,并立即组织有关人员,分别进行现场监测采样和化验准备工作。 ①人员准备:技术人员现场X 名,采样人员X 名,化验人员X 名,司机X 名。 ②做好采样容器的准备工作。 ③及时协调市环保监测站化验室负责分析化验人员做好相应的分析项目的一切准备工作。 (2)监测人员在接到环境污染事故信息后,必须在XX 分钟内到达现场采样,并在XX 分钟内送到化验室。 (3)协调市坏保监测站化验人员快速、准确地完成样品.分析,及时出具数据,并保留样品。 (4)当对某污染物缺少监测手段时,应立即对外请求支援。 (5)监测数据可用电话或书面形式娜最快速度上报应急指挥部。 (6)应急监测应做到从事故的发生直到事故的处理终结全过程的监测,监测次数以能满足减少损失和事故处理以及事故发生后的生产恢复为要求。 应急监测点位及次数表

环境监测实施方案

XX县作为本项目监测点,鉴于本次监测任务顺利进行,特绘制XX 县环境监测总体方案图,如下图1所示: 图1 XX县环境监测总体方案图 1监测内容 XX县地表水水质、县政府所在地空气质量、重点污染源(水、气)、城区及交通干线噪声质量等监测工作。具体内容如下: 1.1地表水水质监测 严格执行《地表水环境质量标准》(GB3838-2002)、《地表水和污水监测技术规范》(HJ/T91—2002)、《环境水质监测质量保证手册(第二版)》及《水和废水监测分析方法》(第四版)等相关标准和规范。 监测区域现场勘查及资料收 集 (包括地理位置、地形地貌、气 象气候、土壤利用等) 编制监测方案 确定监测项目 及类别 确定确定监测点 布置及采样时间 和方法 电话预约 现场样品采集 检测室样品分析 检测 数据处理及结 果分析上报 出具监测报告 接受委托 后期服务

1.1.1 监测断面 哈尔腾河红崖子断面。 1.1.2 监测指标及方法依据(见表1-1) 采用《地表水环境质量标准》(GB3838—2002)表1中除粪大肠菌群以外的23项指标。具体监测项目见下表: 表1-1 地表水监测因子及检测方法依据 监测指标技术要求方法依据 水温,℃ pH 溶解氧 高锰酸盐指数 化学需氧量(COD) 五日生化需氧量 (BOD) 氨氮(NH3-N) 总磷(以P计) 总氮(湖、库,以N计) 铜 锌 氟化物(以F-计) 硒 砷 汞 镉 铬(六价) 铅

氰化物 挥发酚 石油类 阴离子表面活性剂 硫化物 此外还可根据XX当地污染实际情况,适当增加区域污染物监测。 1.1.3 监测网点布置(见表1-2) 表1-2 地表水监测网点布置 组号监测点名称监测点位置设点依据 1.1.4 样品采集方法及设备(见表1-3) 表1-3 样品采集方法及设备 样品名称采样方法采集设备 地表水 1.1.4监测时间及频次(见表1-4) 每季度至少监测1次,全面至少监测4次,且需在各监测月份的上旬(1-10日)完成水质监测的采样及实验室分析。具体监测时段按下表执行(特殊情况除外)

20091231--地下水位监测方案(终)

北京地铁15号线7标段车站及附属构筑物 地下水位监测方案 编制: 审核: 审批: 北京勤业测绘科技有限公司 2009年9月7日 联系电话:88123128/88435669 传真号码:88435669 公司地址:北京市海淀区西四环北路15号依斯特大厦517 电子邮箱:

1、编写说明 此监测项目系车站主体结构施工由止水帷幕方案改为井点降水方案后,应委托方要求增加项目;并编写此专项方案。 2、编制依据 委托方合同 《建筑与市政降水工程技术规范》(JGJ/T111) 3、观测井的布设 3.1观测井施工 3.1.1、井位选择 观测井原则上布设在基坑的四角及基坑的长短边中部的土层中,鉴于施工现场实际情况,如围挡内有井位,井位应距围护桩墙 1.5~2.0m左右;如围挡内无井位,可在围挡外对应位置的绿地中设置,距围护桩墙5.0~10.0m左右。 3.1.2、观测井深度 观测井深度为基坑设计深度加 2.0m(从自然地面起计);应接近降水井的降水曲线最低处。 3.1.3观测井结构与施工 观测井结构见图1和图2,施工流程:成孔----下管---洗井—井室保护。 ⑴成孔 采用勘探钻机,地层自造浆护壁,孔径保持圆整垂直。

图1:观测井结构平面图图2:观测井结构剖面示意图⑵下管、回填 塑料花管开孔率15%,滤管外包一层40目尼龙网;外填3-5mm石屑或中粗砂作为滤料,管外回填至进水段上方300mm(见图1和图2)。 ⑶洗井 借助空压机清洗孔内砂浆至出清水为至。再用泵进行恢复性抽洗,次数不少于6次。 ⑷井室保护 管口埋设DN150mm,长500钢管,并配置钢盖予以保护。 3.2观测井质量 孔径圆整垂直,孔深与设计深度误差<500mm;孔深>设计深度300-500mm。 4、监测方法、频次、精度 4.1监测方法

地下水自行监测方案

山东XXX有限公司 地下水自行监测方案 一、编制目的 为贯彻实施《山东省生态环境厅关于印发山东省化工企业聚集区及其周边地下水水质监测井设立和监测的指导意见的通知》(鲁环函〔2019〕312 号)文件精神,落实目标责任,强化监督管理,公司为了解本身生产过程中是否会对地下水造成污染拟开展地下水的监测活动。 在公司生产运行过程中,正常或非正常生产情况下可能对环境带来一定的影响,可能造成地下水污染,导致该区域内或周边人群在未来承受不可接受的人体健康风险。因此,开展地下水检测的目的在于通过对公司上下游地下水污染状况调查与检测,初步识别公司生产过程中是否对地下水造成污染。 二、编制依据 1.《中华人民共和国环境保护法》; 2.《中华人民共和国水污染防治法》; 3.《环境影响评价技术导则地下水环境》(HJ 610-2016); 4.《地下水环境监测技术规范》(HJ/T 164-2004); 5.《地下水监测工程技术规范》(GB/T 51040-2014); 6.《地下水监测井建设规范》(DZ/T 0270-2014); 7.《水文水井地质钻探规程》(DZ/T 0148-2014);

8. 《地下水环境状况调查评价工作指南》(环办〔2014〕99号)。 三、监测方案 1.监测点位 按照《环境影响评价技术导则地下水环境》(HJ 610-2016)等要求,公司监测井设立3眼,在公司厂内,上下游各设立1眼。监测点位布设情况见表1及图1。 表1 地下水环境质量现状监测点位布设情况 图1 地下水环境质量现状监测点位布设图 2.监测项目 监测项目包括常规因子和特征污染因子。常规因子为《地下水环境质量标准》(GB/T 14848-2017)表1地下水质量常规指标项(除放射性指标、微生物指标等)。特征污染因子包括公司内所涉及的二氯甲烷、苯乙烯、丙烯腈。 表2 检测项目信息

地下水水质在线自动监测系统

1.地下水水质在线自动监测系统 一技术方案 1.系统组成及概述 1.1系统结构组成 地下水水质自动监测系统由以下两部分构成:监控子站(地下水子站),水质监控中心平台。 1.2监控子站组成及概述 1.2.1 地下水水质在线自动监测系统 采用投入式、免试剂多参数水质分析仪,仪器通过地下水监测井悬吊于待监测水层中,对地下水体实施现场原位连续自动监测。采用太阳能供电方式,通过无线通讯技术实现地下水监测系统与中心监控平台之间的数据传输和远程控制。 系统由供电系统,数据采集传输单元、水位水温传感器、水质多参数分析仪、地下水监测信息管理平台等组成。 地下水监测系统示意图

地下水监测系统效果图 1.2.2地下水水质监测站配置 1、标准配置 目前国内地下水监测常规因子: 水文监测因子:水温、水位; 水质监测因子:溶解氧、电导率、浊度、PH 监测因子选择原因 水位地下水总量控制 水温地下水的温度场与压力场和化学场的变化密切相关 溶解氧溶解氧对饮用水地下原水的除铁、锰的效果有影响 电导率(EC) 地下水的电导率异常与其污染状况密切相关 浊度浊度是地下水透明度的衡量指标 pH 地下水水化学特征的因子 2、可选配置 地下水监测可扩展监测因子: 水质监测因子:总溶解性固体、氨氮、硝酸盐、氯化物、氟化物、钙、CODmn、盐度、矿化度、水中油等

总溶解性固体(TDS) 也称地下水总矿化度,是地下水中各种离子的集中体现,也是研究地下 水化学特征的重要指标 氨氮、硝酸盐 地下水受污染的重要指标。 主要来源:污水废水下渗污染、化学肥料的污染、垃圾粪便的污染 氯化物地下水受污染的重要指标。 主要来源:第一、水流过含有氯化物的地层,将其中的氯化物溶入水中。第二、水源受生活污水或工业废水污染。第三、接近海边的江水或井水受海潮水或海风影响使氯化物含量增高。 氟化物饮用水源水受污染的重要指标 钙地下水硬度的重要来源 CODMn 衡量地下水水质有机物污染状况 盐度、矿化度衡量地下水溶解物质的指标 水中油地下水工厂、加油站污染状况 1.3系统特点 ●太阳能、市电、电池供电多种模式 ●长期、连续、定点在线监测,全自动无人值守工作 ●适合于各种水文地质类型含水层水文、水质监测 ●多通道数据采集传输设备,并有数据记录、处理、报警功能 ●根据野外环境,具备相应避雷保护、抗干扰功能,提高系统野外适应性 ●野外环境长期专用传感器,高精度、高稳定性 ●传感器多层抗生物污染设计:环境安全防垢部件和防垢涂层;独特的双清洗刷装置 ●标准化接口,模块化设计,安装简易、灵活,可根据需求扩展监测参数 ●采用光谱分析、电化学分析技术,对水体进行免试剂原位监测,不对环境产生二次污染

环评监测方案编制要求

*****项目环境质量现状监测方案 1、空气环境质量现状调查监测方案 1.1 监测因子 (1)凡项目排放的污染物属于常规污染物的应筛选为监测因子。 (2)凡项目排放的特征污染物有国家或地方环境质量标准的、或者有TJ36 中的居住区大气中有害物质的最高允许浓度的,应筛选为监测因子;对于没有相应环境质量标准的污染物,且属于毒性较大的,应按照实际情况,选取有代表性的污染物作为监测因子,同时应给出参考标准值和出处。 1.2 监测布点 应根据项目的规模和性质,结合地形复杂性、污染源及环境空气保护目标的布局,综合考虑监测点设置数量。 表1 现状监测布点 补充监测布点要求:

一级评价项目,监测点应包括评价范围内有代表性的环境空气保护目标,点位不少于10 个;二级评价项目,监测点应包括评价范围内有代表性的环境空气保护目标,点位不少于 6 个。对于地形复杂、污染程度空间分布差异较大,环境空气保护目标较多的区域,可酌情增加监测点数目。三级评价项目,若评价范围内已有例行监测点位,或评价范围内有近3年的监测资料,且其监测数据有效性符合本导则有关规定,并能满足项目评价要求的,可不再进行现状监测,否则,应设置2~4 个监测点。 若评价范围内没有其他污染源排放同种特征污染物的,可适当减少监测点位。 对于公路、铁路等项目,应分别在各主要集中式排放源(如服务区、车站等大气污染源)评价范围内,选择有代表性的环境空气保护目标设置监测点位,监测点设置数目参考表1执行。 城市道路项目,可不受上述监测点设置数目限制,根据道路布局和车流量状况,并结合环境空气保护目标的分布情况,选择有代表性的环境空气保护目标设置监测点位。 1.4、监测时间及频次 (1)一级评价项目应进行二期(冬季、夏季)监测;二级评价项目可取一期不利季节进行监测,必要时应作二期监测;三级评价项目必要时可作一期监测。 (2)每期监测时间,至少应取得有季节代表性的7天有效监测数据,对于评价范围内没有排放同种特征污染物的项目,可减少监测天数。 (3)一级评价项目每天监测时段,应至少获取当地时间02,05,08,11,14,17,20,23 时8 个小时浓度值,二级和三级评价项目每天监测时段,至少获取当地时间02,08,14,20 时 4 个小时浓度值。日平均浓度监测值应符合GB3095 对数据的有效性规定。 (4)对于部分无法进行连续监测的特殊污染物,可监测其一次浓度值,监测时间须满足所用评价标准值的取值时间要求。 1.4采样及分析方法 采样方法按《环境监测技术规范》(大气部分)执行,分析方法按《环境空气质量标准》(GB3095-1996)中的规定执行。 2、地面水环境质量现状调查监测方案

环境监测方案制定

环境监测方案制定

污染源调查: 水污染源 污水排放量汇总 固体废物污染源 (1) 生活垃圾 经调查,拟建项目区周边地区的生活垃圾固体废物主要来自项目规划范围内及周边居民产生的生活垃圾。 (2)固体废弃物:主要是少量农户生活垃圾和少量农作废料,对环境影响不大 空气环境:本项目的南边是东京大道,道路扬尘和汽车尾气是主要大气污染源。但是公路两侧设有50~100米的绿化缓冲带, 使其对周围环境影响不大。 校园空气污染物的排放源、数量、燃料种类和污染物名称及排放方式等,为空气环境监测项目的选择提供依据。 表1 校园空气污染源情况调查

大气污染物排放总量(单位:t/a ) 大气污染物烟尘SO2 NO x CO THC 排放量(t/a) 声环境:东京大道及西边金明大道的交通噪声是评价区目前最主要的噪声源,对局部地区有一定的影响。 电磁辐射:规划用地范围内有一架空高压线通过,产生一定的电磁辐射污染。

1、地表水环境现状监测 (1)监测断面布设 根据该项目水体的水文、气候、地质和地貌资料。如水位、水量、流速及流向的变化,河流的宽度、深度以及水体沿岸的资源现状和水资源的用途,饮用水源分布和重点水源保护区等来确定监测断面及数目。 因为水面宽≤50米则设一条(中泓垂线)而且断面上垂线的布设应避开岸边污染带。水深≤5米则设一点(水面下0.5米处) 。 依据该项目的水污染特性,并结合项目所在区域地表水的分布状况,在评价区内共设置6个监测断面。 (2)监测项目

流量、流速、水温(℃)、pH值、石油类、氨氮、总氮、BOD5、COD Cr、溶解氧、高锰酸盐指数、总磷、粪大肠菌群、铜、铅、锌、六价铬。 (2)采样时间及频率 监测时期为一期(枯水期),连续采样三天. (3)分析方法 采样和监测方法根据《地表水和污水监测技术规范》(HJ/T 91-2002)和《地表水环境质量监测实用分析方法》进行。 (4)地表水环境质量现状评价 根据检测结果表明六个断面均有部分指标超标,主要超标指标为BOD5、CODcr、TP,另外,北沙河与京包线交界处阴离子表面活性剂也出现超标,从超标的水质指标来看,造成东沙河和北沙河水质超标的主要原因应来自生活污染源,应加强沿河的生活污水治理。 2、大气环境质量监测方案 (1)空气环境分析与监测因子的筛选 根据国家环境空气质量标准和校园及其周边的大气污染物排放 情况来筛选监测项目;我校无特征污染物排放,结合大气污染源调查结果,可选TSP、PM10、SO2、NO2、CO等作为大气环境监测项目。 (2)采样点的布设

地下水资源监测系统实施方案

目录 1 综述 (4) 1.1 实施方案的建设背景 (4) 1.2 项目的建设地点 (4) 1.3 实施方案的建设原则 (4) 1.4 实施方案的建设内容 (5) 1.5 实施方案的建设标准和依据 (5) 2 实施方案的需求分析 (7) 2.1 实施方案的功能需求 (7) 2.2 实施方案的信息量指标 (8) 2.2.1 系统数据处理量的分析 (8) 2.2.2 系统数据存储量的分析 (8) 2.2.3 系统数据传输量的分析 (9) 2.2.4 系统采集与共享的信息量的分析 (10) 2.2.5 系统存储与备份的信息量的分析 (10) 2.2.6 系统处理与展示的信息量的分析 (10) 2.2.7 系统存储能力的需求总量 (10) 3 实施方案的配置设计 (11) 3.1 实施方案的总体构架 (11) 3.2 信息资源规划和数据库设计 (12) 3.2.1 地下水资源监测系统的通信组网设计 (12) 3.2.2 地下水资源监测系统数据库的配置设计 (14) 3.2.2.1 数据库的物理与逻辑结构 (15) 3.2.2.2 数据库的建设内容 (18) 3.2.2.3 数据量测算 (19) 3.2.2.4 数据库的技术特性 (19) 3.2.2.5 数据库管理软件的选配 (19) 3.2.2.6 服务器的要求 (20) 3.3 应用支撑系统的配置设计 (20)

3.3.1 监测站点的土建设计 (20) 3.3.2 监测站点的主要硬件产品 (21) 3.3.2.1 投入式水位计 (21) 3.3.2.2 在线5参数水质监测仪 (21) 3.3.2.3 数据采集器RTU (22) 3.3.2.4 通信Modem (23) 3.3.2.5 充放电控制器 (24) 3.3.2.6 蓄电池 (24) 3.3.2.7 地下水位监测点设备拓扑图 (25) 3.3.3 中心站的主要硬件产品 (25) 3.3.3.1 中心站的路由器 (25) 3.3.3.2 中心站数据库服务器 (26) 3.3.3.3 中心站的交换机 (27) 3.3.3.4 中心站服务器机柜 (27) 3.3.4 中心站工作平台软件 (28) 3.3.4.1 中心站的服务器操作系统软件 (28) 3.3.4.2 中心站的服务器数据库软件 (28) 3.3.4.3 中心站的网络杀毒软件 (28) 3.3.4.4 数据接收处理监控软件 (28) 3.3.4.5 软件安全与策略 (29) 3.4 数据处理和存储系统设计 (30) 3.4.1 信息处理和数据存储系统的结构 (30) 3.4.2 信息处理和数据存储系统的技术特征 (31) 3.5 终端系统与接口设计 (35) 3.5.1 系统终端的技术设计 (35) 3.6 计算机网络的配置与要求 (37) 3.6.1 机房建设 (37) 3.6.2 计算机网络配置设计 (40) 4 项目建设与运行管理 (40) 4.1 系统运行管理维护机构 (40)

水位远程监测系统方案

水位远程监测系统方案上海智达电子有限公司

目录 一、客户需求 (2) 二、方案概述 (2) 三、系统组成 (2) 3.1控制中心主站 (3) 3.2通讯网络 (3) 3.3现场主要监测设备 (3) 四、地下水位监测系统主要特点 (4) 五、系统软件功能及特点 (5) 5.1功能 (5) 5.2特点 (6) 六、主要硬件设备概述 (9) 6.1 GPRS无线通讯设备 (10) 6.2水资源控制器 (11) 6.3水位计 (14) 6.4室外专用监测箱 (16) 6.5开关电源 (17)

一、客户需求 在某单位建立一套水位远程监测系统,来实对水位的实时监测,统一管理。 二、方案概述 作为行业领先者的水位远程监测系统的解决方案,经过我们多年的水位监测系统项目实施经验,依据用户的具体情况,并结合实际需求,我们提供并建立一个合理、完整的地下水位系统的决方案。 水位数据的收集不仅能够及时、准确地反应问题,分析问题,解决问题,从而指导工作实践,而且更是研究地下水位动态规律,掌握不同水文地质单元、不同层位、不同水源地地下水位变化特征的重要依据,对水资源的研究与管理具有重要意义。 可实现如下功能: (1)数据自动采集:自动实时采集计量点的地下水位数据,实现数据采集的准确性、完整性、及时性和可靠性,; (2)报警信息主动上报:现场监测箱开门、断电、设备运行异常等信息能够主动发送到监测中心; (4)计量装置监测:远程监测水位计运行信息,分析计量故障等信息,及时发现用户计量异常; (5)统计分析:配合水位监测体系的建立,实现各地下水位监测点的数据统计、做出日周月年报表、曲线、柱状图等。 三、系统组成 本系统主要地下水位监测中心主站、通信网络、现场监测设备三部分组成,利用前端监控、数据采集设备的数据远传通讯功能和系统软件功能实现。采集数据,使监测中心通过简单而又经济的计量手段,实现对整个地区地下水信息的实时监测,进而实现良好的社会效益和经济效益。

视频监控环境监测综合解决方案

济南环境监测站远程视频监控系统 建设方案书 2015年5月

目录 目录 (2) 第一章概述 (4) 1.1 项目背景 (4) 1.2 建设目标 (4) 第二章系统方案设计 (6) 2.1项目背景 (6) 2.2建设原则 (7) 2.3建设的必要性 (8) 2.4 设计指导思想 (8) 2.5 设计原则 (8) 2.6 系统结构 (9) 2.7平台建设 (12) 2.7.1 监控终端实现功能 (13) 2.7.2管理服务器实现功能 (14) 2.7.3 网络基础平台 (15) 2.7.4应用支撑平台 (15) 2.7.5业务应用平台 (16) 2.7前端站房 ...................................................... 错误!未定义书签。第三章设备选型. (19) 3.1 UV水质COD在线监测仪 (19) 3.2在线氨氮水质自动分析仪 (21) 3.3 在线PH计 (23)

3.4 污染源自动监控(监测)数据采集传输仪 (24) 3.5球型摄像机 (27) 3.6室外红外一体摄像机 (31) 3.7 网络视频服务器 (33) 第四章设备配置清单 ................. 错误!未定义书签。

第一章概述 1.1 项目背景 人类在创造了一个亘古未有的物质文明的同时几乎控制了所有的生态领域,可在这种快速“生产文明”的过程中,日益严重的污染与能源危机问题一样,正日渐成为人类威胁自身存在的隐患。有经济学家指出“真正文明”的产出,应当是从生产量中扣除低于平均效率的能源浪费及污染等部分,否则速度越高则经济效益越低,这样的增长与发展将是一种不可持续的虚假繁荣。环境问题已经成为我们经济能否可持续发展的首要问题,也是我们人类自身生存的首要问题,对环境的治理已刻不容缓。如何获得环境治理情况信息,怎样知道环境的污染程度消息,如何得知重大污染事件并采取紧急措施,是环境监控的主要内容。而环境监控又是环境治理的重要基础。建设一个功能强大,科学合理的环保远程综合监控系统,为我们治理环境,监督环境状况,评价环境状况提供了有力的依据。 随着经济的发展,我国的污水、烟气、噪音和有害物等排放量已越来越大,已造成地表水和人们生活环境的严重污染,环境和空气质量呈现不断恶化趋势,目前全国各地对污染源和排污河渠的水质监测和环保监测仍停留在手工、人工监测阶段,时间覆盖率低,样品缺乏科学性、广泛新和代表性,难以反映企业及城市环保整体连续变化的情况。国家及各省市地区日趋重视生态环境的保护,在水资源和各种污染源监管、监测污染方面不断加强治理,但因为环境保护意识的淡薄及部分地区区域利益的驱使等诸多因素,随意偷排污水、气体和非达标排污,造成环境严重污染的情况时有发生,因此在环境监测监管方面也要加大投入,提供一个有效的实用的先进的监控系统和解决方法,对加强环境监测力度显得极为迫切,建立环保远程监测和视频监控系统,提高环保监测能力,势在必行。 1.2 建设目标 本项目将建设济南市区境内的重点污染源企业在线自动监测系统,结合成熟的网络视频技术,建成一个数据采集和视频监控相结合的重点污染源综合在心检测系统。建成一个技术先进、性能完善、安全可靠、运行高效的环境信息管理体系,形成集网络建设、应用集成、数据共享和信息服务于一体的综合信息系统,实现环境保护资源的有机整合,提高环境信息资源的开发和利用水平,实现环境保护管理业务流程的重组和优化,提高环境综合管理的工作效率,加快环境信息化建设的步伐和环境管理工作的进程,为环境决策和环境管理提供技术支持和技术服务。

水质监测方案的制定-2

水质监测方案的制定 The formulation of water quality monitoring programme 摘要:目前我国水资源紧缺,水污染严重,水质监测是水资源管理与保护的重要基础。水质监测可以帮助解决现存的或潜在的水环境问题,对改善生活环境和生态环境,最终实现人类的可持续发展的活动中起着举足轻重的作用【1】。所以,制定合理的水质监测方案有重要作用。 Abstract:At present our country is short of water resources,and water pollution is serious.The water quality monitoring is the Important basis of the Water resources management and protection. W ater quality monitoring can help to solve the existing and potential Water environment problems, it plays a vital role to improve the living environment and the ecologic environment,to realize the sustainable development activities.So, it is important to formulate a reasonable water quality monitoring programme. 关键词:水质监测目的,调查研究,测定项目,监测网点,采样时间和频率,采样方法,分析技术,质量保证。 Ke y words: purpose of water quality monitoring, investigation, M easuring items, M onitoring network, The sampling time and frequency, Sampling method, Analysis technology, quality assurance 引言:水质监测是监视和测定水体中污染物的种类、各类污染物的浓度及变化趋势,评价水质状况的过程。监测范围十分广泛,包括未被污染和已受污染的天然水(江、河、湖、海和地下水)及各种各样的工业排水等。主要监测项目可分为两大类:一类是反映水质状况的综合指标,如温度、色度、浊度、Ph、电导率、悬浮物、溶解氧、化学需氧量和生物需氧量等;另一类是一些有毒物质,如酚、氰、砷、铅、铬、镉、汞和有机农药等。为客观的评价江河和海洋水质的状况,除上述监测项目外,有时需进行流速和流量的测定。要对上述要素做到完善的测定就需要制定一个合理的监测方案。 监测方案是完成一项监测任务的程序和技术方法的总体设计,制定时须首先明确监测目的,然后在调查研究的基础上确定监测项目,布设监测网,合理安排采样频率和采样时间,选定采样方法和分析测定和技术,提出检测报告要求,制定质量控制和保证措施及实施计划等【2】。 内容: 1、水质监测的目的: 地表水及地下水:经常性监测。 生产和生活过程:监视性监测。 事故监测:应急监测。 为环境管理及科学研究提供数据和资料。 2、进行调查研究: 收集预测水体及其周围的有关资料,例如水体的水体的水文资料,附近城市布局,工业布局以及污染源的排污情况,历年该处水质监测资料等。 3、确定测定项目: 测定项目要依据水体被污染的情况,水体功能和废(污)税种所含污染物的量以及经济条件等因素确定。一般地表水监测项目有基本监测项目,集中式

相关文档
最新文档