二元一次方程组知识点及典型例题 (1)

合集下载

数学第八章 二元一次方程组知识点及练习题及解析(1)

数学第八章 二元一次方程组知识点及练习题及解析(1)

数学第八章 二元一次方程组知识点及练习题及解析(1)一、选择题1.把方程23x y -=改写成用含x 的式子表示y 的形式,正确的是( )A .23x y =+B .32y x +=C .23y x =-D .32y x =-2.下列判断中,正确的是( ) A .方程x y =不是二元一次方程B .任何一个二元一次方程都只有一个解C .方程25x y -=有无数个解,任何一对x 、y 都是该方程的解D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解3.巴广高速公路在5月10日正式通车,从巴中到广元全长约为126km .一辆小汽车,一辆货车同时从巴中,广元两地相向开出,经过45分钟相遇,相遇时小汽车比货车多行6km ,设小汽车和货车的速度分别为xkm /h ,ykm /h ,则下列方程组正确的是( )A .()()45126456x y x y ⎧+=⎪⎨-=⎪⎩B .()312646x y x y ⎧+=⎪⎨⎪-=⎩C .()()31264456x y x y ⎧+=⎪⎨⎪-=⎩D .()()31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩4.小明的妈妈在菜市场买回2斤萝卜、1斤排骨共花了41.4元,而两个月前买同重量的这两样菜只要36元,与两个月前相比,这次萝卜的单价下降了10%,但排骨单价却上涨了20%,设两个月前买的萝卜和排骨的单价分别为x 元/斤,y 元/斤,则可列方程为( )A .()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩B .()()241.42110%120%36x y x y +=⎧⎨⨯-++=⎩C .()()241.4110%2120%36x y x y +=⎧⎨-+⨯+=⎩D .()()236110%2120%41.4x y x y +=⎧⎨-+⨯+=⎩5.已知方程组512x y ax by +=⎧⎨+=⎩和521613x y bx ay +=⎧⎨+=⎩的解相同,则a 、b 的值分别是( )A .2,3B .3,2C .2,4D .3,46.已知下列各式:①12+=y x;②2x ﹣3y =5;③xy =2;④x+y =z ﹣1;⑤12123x x +-=,其中为二元一次方程的个数是( ) A .1 B .2 C .3 D .47.已知方程组222x y kx y +=⎧⎨+=⎩的解满足x+y=2,则k 的算术平方根为( )A .4B .﹣2C .﹣4D .2 8.将一张面值100元的人民币,兑换成10元或20元的零钱,兑换方案有( )A .6种B .7种C .8种D .9种9.下列方程组的解为31x y =⎧⎨=⎩的是( )A .224x y x y -=⎧⎨+=⎩B .253x y x y -=⎧⎨+=⎩C .32x y x y +=⎧⎨-=⎩D .2536x y x y -=⎧⎨+=⎩10.若x m ﹣n ﹣2y m+n ﹣2=2007,是关于x ,y 的二元一次方程,则m ,n 的值分别是( )A .m=1,n=0B .m=0,n=1C .m=2,n=1D .m=2,n=3二、填空题11.三位先生A 、B 、C 带着他们的妻子a 、b 、c 到超市购物,至于谁是谁的妻子现在只能从下列条件来推测:他们6人,每人花在买商品的钱数(单位:元)正好等于商品数量的平方,而且每位先生都比自己的妻子多花48元钱,又知先生A 比b 多买9件商品,先生B 比a 多买7件商品.则先生A 的妻子是__________.12.方程组31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩的解是________.13.已知对任意a b ,关于x y ,的三元一次方程()()a b x a b y a b --+=+只有一组公共解,求这个方程的公共解_____________.14.观察表一,寻找规律,表二、表三、表四分别是从表一中截取的一部分,则a +b ﹣m =_____.15.已知x m y n =⎧⎨=⎩是方程组20234x y x y -=⎧⎨+=⎩的解,则3m +n =_____.16.已知1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),若()()()()2222123222281n a a a a ++++++⋯++=,则这列数的个数n 为____.17.若关于x ,y 的方程组322x y x y a +=⎧⎨-=-⎩的解是正整数,则整数a 的值是_____.18.如图,小强和小红一起搭积木,小强所搭的“小塔”的高度为23 cm ,小红所搭的“小树”的高度为22 cm ,设每块A 型积木的高为x cm ,每块B 型积木的高为y cm ,则x =__________,y =__________.19.对于有理数,规定新运算:x ※y =ax +by +xy ,其中a 、b 是常数,等式右边的是通常的加法和乘法运算. 已知:2※1=7 ,(-3)※3=3 ,则13※b =__________. 20.火锅是重庆的一张名片,深受广大市民的喜爱.重庆某火锅店采取堂食、外卖、店外摆摊(简称摆摊)三种方式经营,6月份该火锅店堂食、外卖、摆摊三种方式的营业额之比为3:5:2.随着促进消费政策的出台,该火锅店老板预计7月份总营业额会增加,其中摆摊增加的营业额占总增加的营业额的25,则摆摊的营业额将达到7月份总营业额的720,为使堂食、外卖7月份的营业额之比为8:5,则7月份外卖还需增加的营业额与7月份总营业额之比是__________.三、解答题21.阅读以下内容:已知有理数m ,n 满足m+n =3,且3274232m n k m n +=-⎧⎨+=-⎩求k 的值.三位同学分别提出了以下三种不同的解题思路:甲同学:先解关于m ,n 的方程组3274232m n k m n +=-⎧⎨+=-⎩,再求k 的值;乙同学:将原方程组中的两个方程相加,再求k 的值; 丙同学:先解方程组3232m n m n +=⎧⎨+=-⎩,再求k 的值.(1)试选择其中一名同学的思路,解答此题;(2)在解关于x ,y 的方程组()()11821a x by b x ay ⎧+-=⎪⎨++=⎪⎩①②时,可以用①×7﹣②×3消去未知数x ,也可以用①×2+②×5消去未知数y .求a 和b 的值.22.对x ,y 定义一种新运算T ,规定()22,ax byT x y a y+=+(其中a ,b 是非零常数且0x y +≠),这里等式右边是通常的四则运算.如:()223193,1314a b a b T ⨯+⨯+==+,()24,22am bT m m +-=-. (1)填空:()4,1T =_____(用含a ,b 的代数式表示);(2)若()2,02T -=-且()5,16T -=. ①求a 与b 的值;②若()()310,33,310T m m T m m --=--,求m 的值.23.为鼓励市民节约用水,某市居民生活用水按阶梯式水价计费.下表是该市居民“一户一表”生活用水阶梯式计费价格表的部分信息,请解答: 自来水销售价格 每户每月用水量 单位:元/吨15吨及以下a超过15吨但不超过25吨的部分 b超过25吨的部分5(1)小王家今年3月份用水20吨,要交水费___________元;(用a ,b 的代数式表示) (2)小王家今年4月份用水21吨,交水费48元;邻居小李家4月份用水27吨,交水费70元,求a ,b 的值.(3)在第(2)题的条件下,若交水费76.5元,求本月用水量.(4)在第(2)题的条件下,小王家5月份用水量与4月份用水量相同,却发现要比4月份多交9.6元钱水费,小李告诉小王说:“水价调整了,表中表示单位的a ,b 的值分别上调了整数角钱(没超过1元),其他都没变.”到底上调了多少角钱呢?请你帮小王求出符合条件的所有可能情况.24.李师傅要给-块长9米,宽7米的长方形地面铺瓷砖.如图,现有A 和B 两种款式的瓷砖,且A 款正方形瓷砖的边长与B 款长方形瓷砖的长相等, B 款瓷砖的长大于宽.已知一块A 款瓷砖和-块B 款瓷砖的价格和为140元; 3块A 款瓷砖价格和4块B 款瓷砖价格相等.请回答以下问题:(1)分别求出每款瓷砖的单价.(2)若李师傅买两种瓷砖共花了1000 元,且A款瓷砖的数量比B款多,则两种瓷砖各买了多少块?(3)李师傅打算按如下设计图的规律进行铺瓷砖.若A款瓷砖的用量比B款瓷砖的2倍少14块,且恰好铺满地面,则B款瓷砖的长和宽分别为_ 米(直接写出答案).25.每年的6月5日为世界环保日,为提倡低碳环保,某公司决定购买10台节省能源的新机器,现有甲、乙两种型号的机器可选,其中每台的价格、产量如下表:甲型机器乙型机器价格(万元/台)a b产量(吨/月)240180经调查:购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元.(1)求a、b的值;(2)若该公司购买新机器的资金不超过216万元,请问该公司有哪几种购买方案?(3)在(2)的条件下,若公司要求每月的产量不低于1890吨,请你为该公司设计一种最省钱的购买方案.26.已知:用3辆A型车和2辆B型车载满货物一次可运货17吨;用2辆A型车和3辆B型车载满货物一次可运货l8吨,某物流公刊现有35吨货物,计划同时租用A型车a 辆,B型车b辆,一次运完,且恰好每辆车都载满货物.根据以上信息,解答下列问题:(1)l辆A型车和l辆B型车都载满货物一次可分别运货多少吨?(2)请你帮该物流公司设计租车方案;(3)若A型车每辆需租金200元/次,B型车每辆需租金240元/次,请选出最省钱的租车方案,并求出最少租车费.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】将x 看做常数移项求出y 即可得. 【详解】由2x-y=3知2x-3=y ,即y=2x-3, 故选C . 【点睛】此题考查了解二元一次方程,解题的关键是将x 看做已知数求出y .2.D解析:D 【分析】根据二元一次方程的概念和二元一次方程的解逐项进行判断即可. 【详解】A .方程x y =是二元一次方程,故错误;B .任何一个二元一次方程都有无数个解,故错误;C .方程25x y -=有无数个解,但并不是任何一对x 、y 都是该方程的解,故错误;D .21x y =⎧⎨=-⎩既是方程24x y -=的解也是方程231x y +=的解,故正确;故选:D . 【点睛】本题主要考查了二元一次方程的概念和二元一次方程的解,熟练掌握二元一次方程的概念和解法是解题的关键.3.D解析:D 【解析】设小汽车的速度为xkm/h ,则45分钟小汽车行进的路程为34xkm ;设货车的速度为ykm/h ,则45分钟货车行进的路程为34ykm .由两车起初相距126km ,则可得出34(x+y )=126;又由相遇时小汽车比货车多行6km ,则可得出34(x-y )=6.可得出方程组31264364x y x y ⎧+=⎪⎪⎨⎪-=⎪⎩()(). 故选:D .点睛:学生在分析解答此题时需注意弄清题意,明白所要考查的要点.另外,还需注意单位的换算,避免粗心造成失误.4.A解析:A 【分析】根据题目中设的两个月前的萝卜和排骨的单价,先列出两个月前的式子236x y +=,再根据降价和涨价列出现在的式子()()2110%120%41.4x y ⨯-++=,得到方程组. 【详解】解:两个月前买菜的情况列式:236x y +=,现在萝卜的价格下降了10%,就是()110%x -,排骨的价格上涨了20%,就是()120%y +,那么这次买菜的情况列式:()()2110%120%41.4x y ⨯-++=,∴方程组可以列为()()2362110%120%41.4x y x y +=⎧⎨⨯-++=⎩.故选:A . 【点睛】本题考查二元一次方程组的应用,解题的关键是根据题意找到等量关系列出方程组.5.B解析:B 【分析】由于这两个方程组的解相同,所以可以把这两个方程组中的第一个方程联立再组成一个新的方程组,然后求出x 、y 的解,把求出的解代入另外两个方程,得到关于a ,b 的方程组,即可求出a 、b 的值. 【详解】根据题意,得:55216x y x y +=⎧⎨+=⎩,解得:23x y =⎧⎨=⎩,将2x =、3y =代入1213ax by bx ay +=⎧⎨+=⎩,得:23122313a b b a +=⎧⎨+=⎩,解得:32a b =⎧⎨=⎩,∴a 、b 的值分别是3、2. 故选:B . 【点睛】本题主要考查了二元一次方程组的解,理解方程组的解即为能使方程组中两方程都成立的未知数的值是解题的关键.6.A解析:A 【分析】根据二元一次方程的定义即可判断. 【详解】①是分式方程,故不是二元一次方程; ②正确;③是二元二次方程,故不是二元一次方程; ④有3个未知数,故不是二元一次方程; ⑤是一元一次方程,不是二元一次方程. 故选:A . 【点睛】考查二元一次方程的定义,含有2个未知数,未知项的最高次数是1的整式方程就是二元一次方程.7.D解析:D 【解析】试题分析:把两个方程相加可得3x+3y=2+k ,两边同除以3可得x+y=23k+=2,解得k=4,因此k 的算术平方根为2. 故选D.8.A解析:A 【解析】试题解析:设兑换成10元x 张,20元的零钱y 元,由题意得: 10x+20y=100, 整理得:x+2y=10,方程的整数解为:24xy=⎧⎨=⎩,43xy=⎧⎨=⎩,62xy=⎧⎨=⎩,81xy=⎧⎨=⎩,10{xy==,5xy=⎧⎨=⎩.因此兑换方案有6种,故选A.考点:二元一次方程的应用.9.D解析:D【解析】把31xy=⎧⎨=⎩代入选项A第2个方程24x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项B第2个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项C第1个方程3x y+=不成立,故错误;把31xy=⎧⎨=⎩代入选项D两个方程均成立,故正确;故选D.10.C解析:C【分析】根据二元一次方程的定义,列出关于m、n的方程组,然后解方程组即可.【详解】解:根据题意,得121 m nm n-=⎧⎨+-=⎩,解得21mn=⎧⎨=⎩.故选:C.二、填空题11.【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x、y都是正整数,且与有相同的奇偶性,即可得出关于x、y 的二元一次方程组,求出x、y的值,再找出符合和解析:c【分析】设一对夫妻,丈夫买了x件商品,妻子买了y件商品,列出关于x、y的二元二次方程,再根据x 、y 都是正整数,且x y +与x y -有相同的奇偶性,即可得出关于x 、y 的二元一次方程组,求出x 、y 的值,再找出符合9x y -=和7x y -=的情况即可进行解答. 【详解】设一对夫妻,丈夫买了x 件商品,则钱数为2x ,妻子买了y 件商品,则钱数为2y ,依题意有x 2-y 2=48,即()()48x y x y +-=, ∵x 、y 都是正整数,且x y +与x y -有相同的奇偶性, 又∵x y x y +>-,48=24×2=12×4=8×6,∴242x y x y +=⎧⎨-=⎩或124x y x y +=⎧⎨-=⎩或86x y x y +=⎧⎨-=⎩,解得13x =,11y =或8x =,4y =或7x =,1y =,符合9x y -=的只有一种,可见A 买了13件商品,b 买了4件, 同时符合7x y -=的也只有一种,可知B 买了8件,a 买了1件, ∴C 买了7件,c 买了11件.由此可知三对夫妻的组合是:A 、c ;B 、b ;C 、a . 故答案为:c . 【点睛】本题考查了不定方程组的解及数的奇偶性,根据题意列出关于x 、y 的不定方程是解答此题的关键.12.【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】 解:①+③解得:2x=10,即x=5; 将x=5代入②得y=3; 将x=5,y=3代解析:532x y z =⎧⎪=⎨⎪=⎩【分析】①+③解得x=5,然后将x=5代入②得y=3,最后将x=5、y=3代入③可得z=2即可. 【详解】解:31810x y z x y x y z =+⎧⎪+=⎨⎪++=⎩①②③①+③解得:2x=10,即x=5;将x=5代入②得y=3;将x=5,y=3代入③可得z=2.故答案为532x y z =⎧⎪=⎨⎪=⎩.【点睛】本题考查了解三元一次方程组,观察方程组、寻找各方程的特点、运用整体思想代入消元是解答本题的关键.13.【分析】先把原方程化为的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:∴两式相加得:,即,把代入得到,,故此方程组的解为:.故答案为:.【点睛】本题主要考解析:01x y =⎧⎨=-⎩【分析】先把原方程化为(1)(1)0a x y b x y ---++=的形式,再分别令a ,b 的系数为0,即可求出答案.【详解】解:由已知得:(1)(1)0a x y b x y ---++=∴1010x y x y --=⎧⎨++=⎩两式相加得:20x =,即0x =,把0x =代入10x y --=得到,1y =-,故此方程组的解为:01x y =⎧⎨=-⎩. 故答案为:01x y =⎧⎨=-⎩. 【点睛】 本题主要考查的知识点是三元一次方程组的问题,运用三元一次方程组的解法的知识进行计算,即可解答.14.﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2解析:﹣7【分析】由表二结合表一即可得出关于a 的一元一次方程,解之即可得出a 值;由表三结合表一即可得出关于b 的一元一次方程,解之即可得出b 值;在表三中设42为第x 行y 列,则75为第(x+1)行(y+2)列,结合表一中每个数等于其所在的行数×列式即可列出关于x 、y 的二元一次方程组,解之即可得出x 、y 的值,将其代入m=(x+1)(y+1)即可得出m 的值,将a 、b 、m 的值代入a-b+m 即可得出结论.【详解】表二截取的是其中的一列:上下两个数字的差相等,∴a-15=15-12,解得:a=18;表三截取的是两行两列的相邻的四个数字:右边一列数字的差比左边一列数字的差大1, ∴42-b-1=36-30,解得:b=35;表四截取的是两行三列的相邻的六个数字:设42为第x 行y 列,则75为第(x+1)行(y+2)列,则有()()421275xy x y ⎧⎨++⎩==, 解得:143x y ⎧⎨⎩== 或3228x y ⎧⎪⎨⎪⎩==(舍去), ∴m=(x+1)(y+1)=(14+1)×(3+1)=60.∴a+b ﹣m=18+35-60=-7.故答案为:-7【点睛】此题考查一元一次方程的应用,规律型:数字变化类,根据表一中数的排列特点通过解方程(或方程组)求出a 、b 、m 的值是解题关键.15.4【分析】将方程组的解代入得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把代入方程组得: ,①+②得:3m+n =4,故答案为4【点睛】本题考查了方程组的解解析:4【分析】将方程组的解代入20234x y x y -=⎧⎨+=⎩得的新的二元一次方程,然后观察发现,运用作差法即可完成解答.【详解】解:把x m y n =⎧⎨=⎩代入方程组得: 20234m n m n -=⎧⎨+=⎩①② , ①+②得:3m +n =4,故答案为4【点睛】本题考查了方程组的解的作用.将方程组的解代入方程组的解后,可以求出未知数,然后进行计算;但认真观察整体变换求得的结果,准确率更高.16.14或19【解析】【分析】由、、、…、是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a1+2)2、(a2+2)2、…、(an+2)2有x 个9,y 个4,列不定方程解答即解析:14或19【解析】【分析】由1a 、2a 、3a 、…、n a 是从1或0中取值的一列数(1和0都至少有一个),设有x 个1,y 个0,则(a 1+2)2、(a 2+2)2、…、(a n +2)2有x 个9,y 个4,列不定方程解答即可确定正确的答案.【详解】解:设有x 个1,y 个0,则对应(a 1+2)2、(a 2+2)2、…、(a n +2)2中有x 个9,y 个4, ∵()()()()2222123222281n a a a a ++++++⋯++=,∴9x +4y =81 ∴499y x =-, ∵x ,y 均为正整数,∴y 是9的倍数,∴59x y =⎧⎨=⎩,118x y =⎧⎨=⎩, ∴这列数的个数n =x +y 为14或19,故答案为:14或19.【点睛】本题考查了数字的变化类问题,解题的关键是对给出的式子进行正确的变形,得到不定方程然后求整数解即可.17.2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】,①-②得:3y=5-a ,解析:2或-1【解析】【分析】利用加减消元法解二元一次方程组,得到x 和y 关于a 的解,根据方程组的解是正整数,得到5-a 与a+4都要能被3整除,即可得到答案.【详解】322x y x y a +⎧⎨--⎩=①=②, ①-②得:3y=5-a ,解得:y=53a -, 把y=53a -代入①得: x+53a -=3, 解得:x=+43a , ∵方程组的解为正整数,∴5-a 与a+4都要能被3整除,∴a=2或-1,故答案为2或-1.【点睛】本题考查了解二元一次方程组,正确掌握解二元一次方程组的方法是解题的关键.18.5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组,再求解.故答案为4和5.点睛:本题考查了二元一解析:5【解析】根据小强搭的积木的高度=A的高度×2+B的高度×3,小红搭的积木的高度=A的高度×3+B的高度×2,依两个等量关系列出方程组23233222x yx y+=⎧⎨+=⎩,再求解45xy=⎧⎨=⎩.故答案为4和5.点睛:本题考查了二元一次方程组的应用,解题关键是看清图形的意思,找出等量关系列方程组求解.19.【解析】由题意得:,解得:a=,b=,则※b=a+b²+=,故答案为 .点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合解析:61 3【解析】由题意得:227{3393 a ba b++=-+-=,解得:a=13,b=133,则13※b=13a+b²+13=116913619993++=,故答案为61 3.点睛:此题考查二元一次方程组的解法和新运算的问题,解题的关键是要弄明白新的运算顺序及运算规律,并根据运算顺序结合已知条件得到方程组,求出a、b的值.20.【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增解析:1 8【分析】先根据题意设出相应的未知数,再结合题目的等量关系列出相应的方程组,最后求解即可求得答案.【详解】解:设6月份该火锅店堂食、外卖、摆摊三种方式的营业额分别为3k,5k,2k,7月份总增加的营业额为m,则7月份摆摊增加的营业额为25m,设7月份外卖还需增加的营业额为x.∵7月份摆摊的营业额是总营业额的720,且7月份的堂食、外卖营业额之比为8:5,∴7月份的堂食、外卖、摆摊三种方式的营业额之比为8:5:7,∴设7月份的堂食、外卖、摆摊三种方式的营业额分别为8a,5a,7a,由题意可知:3385552275k m x ak x am k a⎧+-=⎪⎪+=⎨⎪⎪+=⎩,解得:125215k ax am a⎧=⎪⎪⎪=⎨⎪=⎪⎪⎩,∴512 857208axa a a a==++,故答案为:18.【点睛】本题主要考查了三元一次方程组的应用,根据题意设出相应的未知数,结合题目中的等量关系列出方程组是解决本题的关键.三、解答题21.(1)见解析;(2)a和b的值分别为2,5.【分析】(1)分别选择甲、乙、丙,按照提示的方法求出k 的值即可;(2)根据加减消元法的过程确定出a 与b 的值即可.【详解】解:(1)选择甲,3274232m n k m n +=-⎧⎨+=-⎩①②, ①×3﹣②×2得:5m =21k ﹣8,解得:m =2185k -, ②×3﹣①×2得:5n =2﹣14k ,解得:n =2145k -, 代入m+n =3得:21821455k k --+=3, 去分母得:21k ﹣8+2﹣14k =15,移项合并得:7k =21,解得:k =3;选择乙, 3274232m n k m n +=-⎧⎨+=-⎩①②, ①+②得:5m+5n =7k ﹣6,解得:m+n =7-65k , 代入m+n =3得:7-65k =3, 去分母得:7k ﹣6=15,解得:k =3;选择丙,联立得:3232m n m n +=⎧⎨+=-⎩①②, ①×3﹣②得:m =11,把m =11代入①得:n =﹣8,代入3m+2n =7k ﹣4得:33﹣16=7k ﹣4,解得:k =3;(2)根据题意得:1327a b +=⎧⎨+=⎩, 解得:52b a =⎧⎨=⎩, 检验符合题意,则a 和b 的值分别为2,5.【点睛】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.22.(1)163a b +;(2)①11a b =⎧⎨=-⎩;②53m = 【分析】(1)把(4,-1)代入新运算中,计算得结果;(2)①根据新运算规定和T (-2,0)=-2且T (5,-1)=6,得关于a 、b 的方程组,解方程组即可;②把①中求得的a 、b 代入新运算,并对新运算进行化简,根据T (3m-10,m )=T (m ,3m-10)得关于m 的方程,求解即可.【详解】 解:(1)224(1)16(4,1)413a b a b T ⨯+⨯-+-==-; 故答案为:163a b +; (2)①∵()2,02T -=-且()5,16T -=, ∴42,225 6.4a ab ⎧=-⎪⎪-⎨+⎪=⎪⎩ 解得:1,1.a b =⎧⎨=-⎩②∵a=1,b=1-,且x+y≠0, ∴22()()(,)x y x y x y T x y x y x y x y -+-===-++.∴()310,33103610T m m m m m --=-+=-,()3,3103310610T m m m m m --=--+=-+∵()()310,33,310T m m T m m --=--,∴610610m m -=-+, 解得:53m =. 【点睛】本题考查了解一元一次方程、二元一次方程组的解法及新运算等相关知识,理解新运算的规定并能运用是解决本题的关键23.(155)a b +;23a b =⎧⎨=⎩;28.3吨;a 的值上调了0.4时b 的值上调了0.6或者a 的值上调了0.6时b 的值上调了0.1.【分析】(1)小王家今年3月份用水20吨,超过15吨,所以分两部分计费,15吨及以下费用为15a ,超过15吨的费用为(2015)5b b -=,故总费用155a b +;(2)依题意列方程组1564815105270a b a b +=⎧⎨++⨯=⎩,可求解; (3)在第(2)题的条件下,正好25吨时,所需费用60(元),可知若交水费76.5元,肯定用水超过25吨,可得用水量;(4)由小王家5月份用水量与4月份用水量相同与要比4月份多交9.6元钱水费,可列方程,满足方程的条件的解列出即所求.【详解】解:(1)小王家今年3月份用水20吨,要交消费为155a b +,故答案为:(155)a b +;(2)根据题意得,1564815105270a b a b +=⎧⎨++⨯=⎩, 解得:23a b =⎧⎨=⎩; (3)在第(2)题的条件下,当正好25吨时,可得费用15210360⨯+⨯=(元),由交水费76.5元可知,小王家用水量超过25吨,即:超过25吨的用水量(76.560)5 3.3=-÷=吨,合计本月用水量 3.32528.3=+=吨(4)设a 上调了x 元,b 上调了y 元,根据题意得:1569.6x y +=,52 3.2x y ∴+=,,x y 为整数角线(没超过1元),∴当0.6x =时,0.1y =元,当0.4x =时,0.6y =元,∴a 的值上调了0.4时,b 的值上调了0.6;a 的值上调了0.6时,b 的值上调了0.1.【点睛】本题考查了二元一次方程组的实际应用,并学会看图提练已知,用二元一次方程列举法来表示解.24.(1)A 款瓷砖单价为80元,B 款单价为60元.(2)买了11块A 款瓷砖,2块B 款;或8块A 款瓷砖,6块B 款.(3)B 款瓷砖的长和宽分别为1,34或1,15.【解析】【分析】(1)设A款瓷砖单价x元,B款单价y元,根据“一块A款瓷砖和一块B款瓷砖的价格和为140元;3块A款瓷砖价格和4块B款瓷砖价格相等”列出二元一次方程组,求解即可;(2)设A款买了m块,B款买了n块,且m>n,根据共花1000 元列出二元一次方程,求出符合题意的整数解即可;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米,根据图形以及“A款瓷砖的用量比B款瓷砖的2倍少14块”可列出方程求出a的值,然后由92bb-+是正整教分情况求出b的值.【详解】解: (1)设A款瓷砖单价x元,B款单价y元,则有14034x yx y+=⎧⎨=⎩,解得8060 xy=⎧⎨=⎩,答: A款瓷砖单价为80元,B款单价为60元;(2)设A款买了m块,B款买了n块,且m>n,则80m+60n=1000,即4m+3n=50∵m,n为正整数,且m>n∴m=11时n=2;m=8时,n=6,答:买了11块A款瓷砖,2块B款瓷砖或8块A款瓷砖,6块B款瓷砖;(3)设A款正方形瓷砖边长为a米,B款长为a米,宽b米.由题意得:7997 22114 22b ba ab a b a--⎛⎫⨯⨯=+⨯-⎪++⎝⎭,解得a=1.由题可知,92bb-+是正整教.设92bkb-=+(k为正整数),变形得到921kbk-=+,当k=1时,77(122b=>,故合去),当k=2时,55(133b=>,故舍去),当k=3时,34b=,当k=4时,15b=,答: B款瓷砖的长和宽分别为1,34或1,15.【点睛】本题主要考查了二元一次方程组的实际应用,(1)(2)较为简单,(3)中利用数形结合的思想,找出其中两款瓷砖的数量与图形之间的规律是解题的关键.25.(1)3018ab=⎧⎨=⎩;(2)有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)最省钱的方案是购买2 台甲种机器,8 台乙种机器.【解析】【分析】(1)根据购买一台甲型机器比购买一台乙型机器多12万元,购买2台甲型机器比购买3台乙型机器多6万元这一条件建立一元二次方程组求解即可,(2)设买了x台甲种机器,根据该公司购买新机器的资金不超过216万元,建立一次不等式求解即可,(3)将两种机器生产的产量相加,使总产量不低于1890吨,求出x的取值范围,再分别求出对应的成本即可解题.【详解】(1)解:由题意得12 236 a ba b-=⎧⎨-=⎩,解得,3018ab=⎧⎨=⎩;(2)解:设买了x台甲种机器由题意得:30+18(10-x)≤216解得:x≤3∵x为非负整数∴x=0、1、2、3∴有4 种方案:3 台甲种机器,7 台乙种机器;2 台甲种机器,8 台乙种机器;1 台甲种机器,9 台乙种机器;10 台乙种机器.(3)解:由题意得:240+180(10-x)≥1890解得:x≥1.5∴1.5≤x≤ 3∴整数x=2 或3当x=2 时购买费用=30×2+18×8=204(元)当 x =3 时购买费用=30×3+18×7=216(元) ∴最省钱的方案是购买 2 台甲种机器,8 台乙种机器.【点睛】本题考查了利润的实际应用,二元一次方程租的实际应用,一元一次不等式的实际应用,难度较大,认真审题,找到等量关系和不等关系并建立方程组和不等式组是解题关键.26.(1) A 型车、B 型车都装满货物一次可以分别运货3吨、4吨;(2) 最省钱的租车方案是方案一:A 型车8辆,B 型车2辆,最少租车费为2080元.【分析】(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,根据题目中的等量关系:用3辆A 型车和2辆B 型车载满货物一次可运货17吨;用2辆A 型车和3辆B 型车载满货物一次可运货l8吨,列方程组求解即可;(2)由题意得出3a+4b=35,然后由a 、b 为整数解,得到三中租车方案;(3)根据(2)中的所求方案,利用A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,分别求出租车费用即可.【详解】解:(1)设每辆A 型车、B 型车都装满货物一次可以分别运货x 吨、y 吨,依题意列方程组为:32172318x y x y +=⎧⎨+=⎩解得34x y =⎧⎨=⎩答:1辆A 型车辆装满货物一次可运3吨,1辆B 型车装满货物一次可运4吨.(2)结合题意,和(1)可得3a+4b=35∴a=3543b - ∵a、b 都是整数∴92a b =⎧⎨=⎩或55a b =⎧⎨=⎩或18a b =⎧⎨=⎩答:有3种租车方案:方案一:A 型车9辆,B 型车2辆;方案二:A 型车5辆,B 型车5辆;方案三:A 型车1辆,B 型车8辆.(3)∵A 型车每辆需租金200元/次,B 型车每辆需租金240元/次,∴方案一需租金:9×200+2×240=2280(元)方案二需租金:5×200+5×240=2200(元)方案三需租金:1×200+8×240=2120(元)∵2280>2200>2120∴最省钱的租车方案是方案一:A 型车1辆,B 型车8辆,最少租车费为2120元.【点睛】此题主要考查了二元一次方程组以及二元一次方程的解法,关键是明确二元一次方程有无数解,但在解与实际问题有关的二元一次方程组时,要结合未知数的实际意义求解.。

初中数学方程与不等式之二元一次方程组知识点训练及答案(1)

初中数学方程与不等式之二元一次方程组知识点训练及答案(1)

初中数学方程与不等式之二元一次方程组知识点训练及答案(1)一、选择题1.若关于x y 、的方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,则方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩的解是 ( )A .223x y =⎧⎪⎨=⎪⎩B .343x y =⎧⎪⎨=⎪⎩C .243x y =⎧⎪⎨=-⎪⎩D .323x y =⎧⎪⎨=⎪⎩【答案】B 【解析】 【分析】根据整体思想和方程组ax by c ex fy d+=⎧⎨+=⎩的解可得:112x -=和322=y,分别求解方程即可得出结果. 【详解】解:方程组()()132132a x by c e x fy d ⎧-+=⎪⎨-+=⎪⎩可化为:()()13221322a x by c e x fy d⎧-+=⎪⎪⎨-⎪+=⎪⎩,令12-=x m ,32=yn ,则am bn c em fn d+=⎧⎨+=⎩, ∵方程组ax by c ex fy d +=⎧⎨+=⎩的解为12x y =⎧⎨=⎩,∴方程组am bn c em fn d +=⎧⎨+=⎩的解为12m n =⎧⎨=⎩,即112322x y -⎧=⎪⎪⎨⎪=⎪⎩,解得:343x y =⎧⎪⎨=⎪⎩,故选:B . 【点睛】本题主要考查了解二元一次方程组中的同解方程组问题,能把二元一次方程组转化成关于m ,n 的方程组是解此题的关键.2.《孙子算经》中有一道题,原文是:“今有木,不知长短.引绳度之,余绳四足五寸;屈绳量之,不足一尺.木长几何?”意思是:用一根绳子去量一根长木,绳子还剩余4.5尺.将绳子对折再量长木,长木还剩余1尺,问木长多少尺,现设绳长x 尺,木长y 尺,则可列二元一次方程组为( )A . 4.5112y x y x -=⎧⎪⎨-=⎪⎩B . 4.5112x y y x -=⎧⎪⎨-=⎪⎩ C . 4.5112x y x y -=⎧⎪⎨-=⎪⎩D . 4.5112y x x y -=⎧⎪⎨-=⎪⎩【答案】B 【解析】 【分析】本题的等量关系是:绳长-木长 4.5=;木长12-绳长1=,据此可列方程组求解. 【详解】设绳长x 尺,长木为y 尺,依题意得 4.5112x y y x -=⎧⎪⎨-=⎪⎩, 故选B . 【点睛】此题考查二元一次方程组问题,关键是弄清题意,找准等量关系,列对方程组,求准解.3.若是关于x 、y 的方程组的解,则(a+b)(a ﹣b)的值为( ) A .15 B .﹣15C .16D .﹣16【答案】B 【解析】 【分析】把方程组的解代入方程组可得到关于a 、b 的方程组,解方程组可求a ,b ,再代入可求(a+b )(a-b )的值. 【详解】 解:∵是关于x 、y 的方程组的解,∴ 解得∴(a+b )(a-b )=(-1+4)×(-1-4)=-15. 故选:B . 【点睛】本题考查方程组的解的概念,掌握方程组的解满足方程组中的每一个方程是解题关键.4.若关于x , y 的方程组2{ x y m x my n -=+=的解是2{ 1x y ==,则m n -为( )A .1B .3C .5D .2【答案】D 【解析】解:根据方程组解的定义,把21x y =⎧⎨=⎩代入方程,得:412m m n -=⎧⎨+=⎩,解得:35m n =⎧⎨=⎩.那么|m -n |=2.故选D .点睛:此题主要考查了二元一次方程组解的定义,以及解二元一次方程组的基本方法.5.x=2y=7⎧⎨⎩是方程mx-3y=2的一个解,则m 为( )A .8B .232C .-232D .-192【答案】B 【解析】 【分析】把x 与y 的值代入方程计算即可求出m 的值. 【详解】 解:把x=2y=7⎧⎨⎩代入方程得:2m-21=2, 解得:m=232, 故选:B . 【点睛】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.6.甲乙两人同解方程 2{78ax by cx y +=-= 时,甲正确解得 3{2x y ==- ,乙因为抄错c 而得 2{2x y =-= ,则a+b+c 的值是( )A .7B .8C .9D .10【答案】A 【解析】 【分析】根据题意可以得到a 、b 、c 的三元一次方程组,从而可以求得a 、b 、c 的值,本题得以解决. 【详解】解:根据题意可知,∴3a-2b=2,3c+14=8,-2a+2b=2∴c=-2,a=4,b=5∴a+b+c=7.故答案为:A.【点睛】此题考查二元一次方程组的解,解题的关键是明确题意,找出所求问题需要的条件.7.二元一次方程2x+y=5的正整数解有()A.一组B.2组C.3组D.无数组【答案】B【解析】【分析】由于要求二元一次方程的正整数解,可分别把x=1、2、3分别代入方程,求出对应的值,从而确定二元一次方程的正整数解.【详解】解:当x=1,则2+y=5,解得y=3,当x=2,则4+y=5,解得y=1,当x=3,则6+y=5,解得y=-1,所以原二元一次方程的正整数解为,.故选B.【点睛】本题考查了解二元一次方程:二元一次方程有无数组解;常常要确定二元一次方程的特殊解.8.重庆育才中学2019年“见字如面读陶分享会” 隆重举行,初一年级得到了一定数量的入场券,如果每个班10张,则多出15张,如果每个班12张,则差5张券,假设初一年级共有x个班,分配到的入场券有y张,列出方程组为()A.1051215x yx y+=⎧⎨-=⎩B.1051215x yx y-=⎧⎨+=⎩C.1051215x yx y=-⎧⎨+=⎩D.1051215x yx y-=⎧⎨=+⎩【答案】A【解析】【分析】假设初一班级共有x个班,分配到的入场券有y张,根据“如果每个班10张,则多出5张券;如果每个班12张,则差15张券”列出方程组.【详解】设初一班级共有x 个班,分配到的入场券有y 张, 则1051215x yx y+=⎧⎨-=⎩.故选:A . 【点睛】此题考查由实际问题抽象出二元一次方程组,解题的关键是明确题意,列出相应的方程组.9.若方程组32232732x y k x y k -=-⎧⎨+=-⎩的解满足2020x y +=,则k 等于( )A .2018B .2019C .2020D .2021【答案】D 【解析】 【分析】把两个方程相加,可得5x +5y =5k-5,再根据2020x y +=可得到关于k 的方程,进而求k 即可. 【详解】 解:32232732x y k x y k -=-⎧⎨+=-⎩①②①+②得 5x +5y =5k-5, ∴x +y =k -1. ∵2020x y +=, ∴k -1=2020, ∴k=2021. 故选:D . 【点睛】本题考查了二元一次方程组的特殊解法,依据方程系数特点整体代入是求值的关键.10.某人购买甲种树苗12棵,乙种树苗15棵,共付款450元,已知甲种树苗比乙种树苗每棵便宜3元,设甲种树苗每棵x 元,乙种树苗每棵y 元.由题意可列方程组( ) A .12154503x y x y +=⎧⎨-=⎩B .12154503x y y x +=⎧⎨-=⎩C.12154503x yy x+=⎧⎨=-⎩D.12154503x yx y+=⎧⎨=-⎩【答案】B【解析】【分析】根据“购买甲种树苗12棵,乙种树苗15棵,共付款450元”可列方程12x+15y=450;由“甲种树苗比乙种树苗每棵便宜3元”可列方程y﹣x=3,据此可得.【详解】设甲种树苗每棵x元,乙种树苗每棵y元.由题意可列方程组12154503x yy x+=⎧⎨-=⎩,故选:B.【点睛】本题主要考查了由实际问题抽象出二元一次方程组,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组.11.《九章算术》是我国古代数学的经典著作,书中有一个问题:“今有黄金九枚,白银一十一枚,称之重适等.交易其一,金轻十三两.问金、银一枚各重几何?”.意思是:甲袋中装有黄金9枚(每枚黄金重量相同),乙袋中装有白银11枚(每枚白银重量相同),称重两袋相等.两袋互相交换1枚后,甲袋比乙袋轻了13两(袋子重量忽略不计).问黄金、白银每枚各重多少两?设每枚黄金重x两,每枚白银重y两,根据题意得()A.11910813x yy x x y=⎧⎨+-+=⎩()()B.108 91311y x x y x y+=+⎧⎨+=⎩C.91181013x yx y y x ()()=⎧⎨+-+=⎩D.91110813 x yy x x y=⎧⎨+-+=⎩()()【答案】D【解析】【分析】根据题意可得等量关系:①9枚黄金的重量=11枚白银的重量;②(10枚白银的重量+1枚黄金的重量)-(1枚白银的重量+8枚黄金的重量)=13两,根据等量关系列出方程组即可.【详解】设每枚黄金重x两,每枚白银重y两,由题意得:91110813x y y x x y =⎧⎨+-+=⎩()(),故选:D . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是正确理解题意,找出题目中的等量关系.12.若215(3)()x mx x x n +-=++,则m 的值为() A .-2 B .2 C .-5 D .5【答案】A 【解析】 【分析】将等式右边的整式展开,然后和等式左边对号入座进行对比:一次项系数相等、常数项相等,从而得到关于m 、n 的二元一次方程组,解方程组即可得解. 【详解】解:∵()()()2215333x mx x x n x n x n +-=++=+++∴3315m n n =+⎧⎨=-⎩①②由②得,5n =-把5n =-代入①得,2m =- ∴m 的值为2-. 故选:A 【点睛】本题考查了多项式乘以多项式法则、两个多项式相等即各项对应相等、解二元一次方程组等知识点,能够得到关于m 、n 的二元一次方程组是解决问题的关键.13.为丰富同学们的课余活动,某校计划成立足球和篮球课外兴趣小组,现需购买篮球和足球若干个,已知购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元,问篮球和足球各买了多少个?设购买篮球x 个,购买足球y 个,可列方程组( )A .x y 160x 30y 480-=⎧+=⎨⎩B .x y 160x 30y 480=-⎧+=⎨⎩C .x y 130x 60y 480=-⎧+=⎨⎩D .x y 130x 60y 480-=⎧+=⎨⎩【答案】B 【解析】 【分析】根据“购买篮球的数量比足球的数量少1个,篮球的单价为60元,足球的单价为30元,一共花了480元”找到等量关系列出方程即可. 【详解】设购买篮球x 个,购买足球y 个,根据题意可列方程组:x y 160x 30y 480=-⎧+=⎨⎩, 故选:B . 【点睛】本题考查了由实际问题抽象出二元一次方程组的知识,解题的关键是能够找到题目中的等量关系,难度不大.14.如图,10块相同的长方形墙砖拼成一个大长方形,设长方形墙砖的长和宽分别为x 厘米和y 厘米,则依题意所列方程组正确的是( )A .2753x y y x+=⎧⎨=⎩B .2753x y x y +=⎧⎨=⎩C .2753x y y x-=⎧⎨=⎩D .2753x y x y+=⎧⎨=⎩【答案】B 【解析】 【分析】根据图示可得:矩形的宽可以表示为x+2y ,宽又是75厘米,故x+2y=75,矩的长可以表示为2x ,或x+3y ,故2x=3y+x ,整理得x=3y ,联立两个方程即可. 【详解】 根据图示可得,2753x y x y +=⎧⎨=⎩故选B . 【点睛】此题主要考查了由实际问题抽象出二元一次方程组,关键是看懂图示,分别表示出长方形的长和宽.15.某次知识竞赛共有20道题,规定:每答对一题得+5分,每答错一题得-3分,不答的题得-1分.已知欢欢这次竞赛得了72分,设欢欢答对了x 道题,答错了y 道题,则( )A .5372x y -=B .5372x y +=C .6292x y -=D .6292x y +=【答案】C【解析】 【分析】设欢欢答对了x 道题,答错了y 道题,根据“每答对一题得+5分,每答错一题得-3分,不答的题得-1分,已知欢欢这次竞赛得了72分”列出方程. 【详解】解:设答对了x 道题,答错了y 道题,则不答的题有()20x y -- 道, 依题意得:()532072x y x y ----=, 化简得:6292x y -=. 故选:C . 【点睛】本题考查了由实际问题抽象出二元一次方程,关键是读懂题意,根据题目中的数量关系,列出方程,注意:本题中的等量关系之一为:答对的题目数量+答错的题目数量+不答的题目数量=20.16.学校八年级师生共466人准备参加社会实践活动,现已预备了49座和37座两种客车共10辆,刚好坐满.设49座客车x 辆,37座客车y 辆,根据题意可列出方程组( ) A .104937466x y x y +=⎧⎨+=⎩B .103749466x y x y +=⎧⎨+=⎩C .466493710x y x y +=⎧⎨+=⎩ D .466374910x y x y +=⎧⎨+=⎩【答案】A 【解析】 【分析】设49座客车x 辆,37座客车y 辆,根据49座和37座两种客车共10辆,及10辆车共坐466人,且刚好坐满,即可列出方程组. 【详解】解:设49座客车x 辆,37座客车y 辆, 根据题意得 :104937466x y x y +=⎧⎨+=⎩故选:A . 【点睛】本题考查了由实际问题抽象出二元一次方程组,根据实际问题中的条件列方程组时,要注意抓住题目中的一些关键性词语,找出等量关系,列出方程组.17.《九章算术》中记载:“今有甲乙二人持钱不知其数,甲得乙半而钱五十,乙得甲太半而亦钱五十.问甲乙持钱各几何?”其大意是:今有甲、乙两人各带了若干钱.如果甲得到乙所有钱的一半,那么甲共有钱;如果乙得到甲所有钱的三分之二,那么乙也共有.问甲、乙两人各带了多少钱?设甲带钱为,乙带钱为,根据题意,可列方程组为( )A.B.C.D.【答案】A【解析】【分析】设甲需带钱x,乙带钱y,根据题意可得,甲的钱+乙的钱的一半=50,乙的钱+甲所有钱的,据此列方程组可得.【详解】解:设甲需带钱x,乙带钱y,根据题意,得:故选:A.【点睛】本题考查了由实际问题抽象出二元一次方程组,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列出方程组.18.A地至B地的航线长9360km,一架飞机从A地顺风飞往B地需12h,它逆风飞行同样的航线要13h,则飞机无风时的平均速度是()A.720km/h B.750 km/h C.765 km/h D.780 km/h【答案】B【解析】【分析】设飞机无风时的平均速度为x千米/时,风速为y千米/时,根据飞机顺风速度×时间=路程,飞机逆风速度×时间=路程,列方程组进行求解.【详解】设飞机无风时的平均速度为x千米/时,风速为y千米/时,由题意得,12()9360 13()9360x yx y+=⎧⎨-=⎩,解得,75030xy=⎧⎨=⎩,答:飞机无风时的平均速度为750千米/时,故选B.【点睛】本题考查二元一次方程组的应用,熟练掌握顺风速度=静风速度+风速,逆风速度=静风速度-风速是解题的关键.19.某商店对一种商品进行促销,促销方式:若购买不超过10件,按每件a 元付款:若一次性购买10件以上,超出部分按每件b 元付款.小明购买了14件付款90元;小聪购买了19件付款115元,则a ,b 的值为( )A .7,5a b == B .5,7a b == C .8,5a b == D .7,4a b ==【答案】A【解析】【分析】根据题意可列出关于a 、b 的二元一次方程组,解方程组即可.【详解】解:由题意得: 10490109115a b a b +=⎧⎨+=⎩①②, 由②−①得:525=b ,解得:5b =,将5b =代入①得:104590+⨯=a ,解得:7a =,∴方程组的解为75a b =⎧⎨=⎩, 故选:A .【点睛】此题考查了二元一次方程组的应用,解题的关键是读懂题意,找出题目中的数量关系,列出方程组.20.下列4组数值,哪个是二元一次方程2x+3y =5的解?( )A .035x y =⎧⎪⎨=⎪⎩B .11x y =⎧⎨=⎩C .23x y =⎧⎨=-⎩D .41x y =⎧⎨=⎩【答案】B【解析】【分析】 二元一次方程2x+3y =5的解有无数个,所以此题应该用排除法确定答案,分别代入方程组,使方程左右相等的解才是方程组的解.【详解】A 、把x =0,y =35代入方程,左边=0+95=95≠右边,所以不是方程的解; B 、把x =1,y =1代入方程,左边=右边=5,所以是方程的解;C、把x=2,y=﹣3代入方程,左边=﹣5≠右边,所以不是方程的解;D、把x=4,y=1代入方程,左边=11≠右边,所以不是方程的解.故选B.【点睛】此题考查二元一次方程的解的定义,要理解什么是二元一次方程的解,并会把x,y的值代入原方程验证二元一次方程的解.。

(完整版)二元一次方程组知识点及典型例题

(完整版)二元一次方程组知识点及典型例题

二元一次方程组小结与复习一、知识梳理(一)二元一次方程组的有关概念1.二元一次方程:含有两个未知数,并且所含未知数的项的次数都是1的方程叫作二元一次方程。

2.二元一次方程的一个解:适合一个二元一次方程的一对未知数的值,叫这个二元一次方程的一个解。

任何一个二元一次方程都有无数个解。

3.方程组和方程组的解(1)方程组:由几个方程组成的一组方程叫作方程组。

(2)方程组的解:方程组中各个方程的公共解,叫作这个方程组的解。

4.二元一次方程组和二元一次方程组的解(1)二元一次方程组:含有两个未知数的两个一次方程所组成的一组方程,叫作二元一次方程组。

(2)二元一次方程组的解:二元一次方程组中各个方程的公共解,叫作这个二元一次方程组的解。

(二)二元一次方程组的解法: 1.代入消元法 2.加减消元法二、典例剖析题型一1.二元一次方程及方程组的概念。

二元一次方程的一般形式:任何一个二元一次方程经过整理、化简后,都可以化成0=++c by ax (a,b,c 为已知数,且a ≠0,b ≠0)的形式,这种形式叫二元一次方程的一般形式。

练习1、下列方程,哪些是二元一次方程,哪些不是?12).().(711)(6526)(=++-=++=-y x xy D y x C yx B x z x A练习2、若方程的值。

的二元一次方程,求、是关于)(n n mm y x y xm 43195=+--练习3、(1)若方程(2m -6)x |n |-1+(n +2)y 82-m =1是二元一次方程,则m =_______,n =__________.专题二:二元一次方程组的解法:解二元一次方程组的基本思想是消元转化。

(一)、代入消元法:1、直接代入 例1 解方程组②①y x x y ⎩⎨⎧=--=.134,32跟踪训练:解方程组:(1)90152x y x y+=⎧⎨=-⎩ (2)⎩⎨⎧-==+73825x y y x2、变形代入 例2 解方程组②①y x y x ⎩⎨⎧=+=-.1043,95跟踪训练:(1)⎩⎨⎧-=--=-.2354,42y x y x (2)⎩⎨⎧=+=+②①77322y x y x(3) ⎩⎨⎧=-=+.123,205y x y x (4) ⎩⎨⎧=-=+②①5231284y x y x(二)、加减消元法例题、解方程组(1)⎩⎨⎧=+=-524y x y x (2)⎩⎨⎧=-=-322543y x y x (3).⎩⎨⎧=+=+.1034,1353y x y x跟踪训练:(1) (2) (3)⎩⎨⎧=+=-1023724y x y x(4) (5)⎪⎩⎪⎨⎧=++-=--9275320232y y x y x (6)11,233210;x y x y +⎧-=⎪⎨⎪+=⎩(三)、选择适当的方法解下列方程组 (1)⎩⎨⎧=+---=+.5)3()1(2),1(32x y x y (2)⎩⎨⎧-=+---=+--23)3(5)4(44)3()4(2y x y x(3)⎪⎩⎪⎨⎧-=+-++=+3)43(4)1(3)2(311y x y x (4)x 2y+2=02y+22x536⎧⎪⎨⎪⎩---=题型三:代数式的变形 1、在方程=5中,用含的代数式表示为:= ,当=3时,= 。

二元一次方程组行程问题类型全知识点加练习

二元一次方程组行程问题类型全知识点加练习

二元一次方程组行程问题类型全知识点加练习1、相遇问题:两者所走的路程之和=两者原相距路程2、追及问题:快者所走路程-慢者所走路程=两者原相距路程例1、某站有甲乙两辆汽车,若甲车先出发1小时后乙车出发,则乙车出发后5小时追上甲车;若甲车先开出30千米后,乙车出发,则乙车出发4小时后乙车所走的路程比甲车所走的路程多10千米。

求两车的速度。

例2、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇。

相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机。

这时,汽车、拖拉机各自行驶了多少千米?3、环形跑道问题:环形跑道追及、相遇问题等同于直线追及、相遇问题。

(1)同时同地相向而行第一次相遇(相当于相遇问题):甲的路程+乙的路程=跑道一圈长(2)同时同地同向而行第一次相遇(相当于追及问题):快者的路程-慢者的路程=跑道一圈长例1、甲、乙两人在周长为400米的环形跑道上练跑,如果同时同地相向出发,每隔2.5分钟相遇一次;如果同时同地同向出发。

每隔10分钟相遇一次,假定两人速度不变,且甲快乙慢,求甲、乙两人的速度。

4、航行、飞行问题:(1)顺流(风):航速=静水(无风)中的速度+水(风)速(2)逆流(风):航速=静水(无风)中的速度-水(风)速例1、已知A、B两码头之间的距离为240千米,一艘船航行于A、B 两码头之间,顺流航行需4小时;逆流航行需6小时,求船在静水中的速度及水流的速度。

【练一练】1、甲、乙两人相距36千米,相向而行,如果甲比乙先走2小时,那么他们在乙出发2.5小时后相遇;如果乙比甲先走2小时,那么他们在甲出发3小时后相遇,甲、乙两人每小时各走多少千米?2、甲乙两人练习赛跑如果甲让乙先跑10m,甲跑5s就能追上乙,如果乙先跑2s,那么甲跑4s就能追上乙,求两人每秒各跑多少米。

3、甲、乙两人在一条长400米的环形跑道上跑步,如果同向跑,每隔133分钟相遇一次,,如果反向跑,则每隔40秒相遇一次,已知甲比乙跑的快,求甲、乙两人的速度?4、甲、乙两地相距160千米,一辆汽车和一辆拖拉机同时由甲、乙两地相向而行,1小时20分相遇. 相遇后,拖拉机继续前进,汽车在相遇处停留1小时后调转车头原速返回,在汽车再次出发半小时后追上了拖拉机. 这时,汽车、拖拉机各自行驶了多少千米?5、某部队执行任务,以8千米/时的速度前进,通讯员在队尾接到命令后把命令传给排头,然后立即返回排尾,通讯员来回的速度均为12千米/小时,共用14.4分钟,求队伍的长是多少?6、一架飞机在两城之间飞行,风速为24千米 /小时 ,顺风飞行需2小时50分,逆风飞行需要3小时。

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)

2023年中考数学----二元一次方程组之解二元一次方程组知识点及专项练习题(含答案解析)知识点1. 解二元一次方程组的思想:消元思想:将方程组中的未知数由多化少,逐一解决的思想。

2. 解二元一次方程组的方法:①代入消元法:将其中一个方程的其中一个未知数用另一个未知数表示出来代入另一个方程中,实现消元,进而求出方程组的解的方法叫做代入消元法。

(通常适用于有未知数的系数是±1的方程组)②加减消元法:当方程组中的两个方程的同一个未知数的系数相同或相反时,则可以利用将两个方程相减或相加的方法消掉这个未知数的方法叫做加减消元法。

专项练习题1、.(2022•株洲)对于二元一次方程组⎩⎨⎧=+−=721y x x y ,将①式代入②式,消去y 可以得到( ) A .x +2x ﹣1=7 B .x +2x ﹣2=7C .x +x ﹣1=7D .x +2x +2=7 【分析】将①式代入②式,得x +2(x ﹣1)=7,去括号即可.【解答】解:,将①式代入②式,得x +2(x ﹣1)=7,∴x +2x ﹣2=7,故选:B .2、(2022•潍坊)方程组⎩⎨⎧=−=+0231332y x y x 的解为 . 【分析】由第一个方程得4x +6y =26,由第二个方程得9x ﹣6y =0,两个方程相加消去y ,解出x ,再进一步解出y 即可.【解答】解:,由①×2得4x +6y =26③,由②×3得9x ﹣6y =0④,由③+④得13x =26,解得x =2,将x =2代入②得3×2﹣2y =0,解得y =3,所以原方程组的解为. 故答案为:. 3、(2022•沈阳)二元一次方程组⎩⎨⎧==+x y y x 252的解是 . 【分析】用代入消元法解二元一次方程组即可.【解答】解:,将②代入①,得x +4x =5,解得x =1,将x =1代入②,得y =2,∴方程组的解为,故答案为:. 4、(2022•无锡)二元一次方程组⎩⎨⎧=−=+121223y x y x 的解为 .【分析】根据代入消元法求解即可得出答案.【解答】解:,由②得:y =2x ﹣1③,将③代入①得:3x +2(2x ﹣1)=12,解得:x =2,将x =2代入③得:y =3,∴原方程组的解为. 故答案为:. 5、(2022•随州)已知二元一次方程组⎩⎨⎧=+=+5242y x y x ,则x ﹣y 的值为 . 【分析】将第一个方程化为x =4﹣2y ,并代入第二个方程中,可得2(4﹣2y )+y =5,解得y =1,将y =1代入第一个方程中,可得x =2,即可求解.【解答】解:解法一:由x +2y =4可得:x =4﹣2y ,代入第二个方程中,可得:2(4﹣2y )+y =5,解得:y =1,将y =1代入第一个方程中,可得x +2×1=4,解得:x =2,∴x ﹣y =2﹣1=1,故答案为:1;解法二:∵,由②﹣①可得:x﹣y=1,故答案为:1.6、(2022•安顺)若a+2b=8,3a+4b=18,则a+b的值为.【分析】直接利用已知解方程组进而得出答案.【解答】解:方法一、∵a+2b=8,3a+4b=18,则a=8﹣2b,代入3a+4b=18,解得:b=3,则a=2,故a+b=5.方法二、∵a+2b=8,3a+4b=18,∴2a+2b=10,∴a+b=5,故答案为:5.本课结束。

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组知识点整理、典型例题练习总结

二元一次方程组(拓展与提优)1、二兀一次方程:含有两个未知数(x和y),并且含有未知数①项①次数都是1,像这样①整式方程叫做二元一次方程,它①一般形式是ax by c(a 0,b °).例1、若方程(2m-6)x|n|-1 +(n+2)y m2-8=1是关于x、y①二元一次方程,求m、n①值.2、二元一次方程①解:一般地,能够使二元一次方程①左右两边相等①两个未知数①值,叫做二元一次方程①解.【二元一次方程有无数组解】3、二元一次方程组:含有两个未知数(x和y),并且含有未知数①项①次数都是1,将这样①两个或几个一次方程合起来组成①方程组叫做二元一次方程组•4、二元一次方程组①解:二元一次方程组中①几个方程①公共解,叫做二元一次方程组①解•【二元一次方程组解x y 1 x y 1 x y1x y 1 O情况:①无解,例如:x y 6, 2x 2y 6;②有且只有一组解,例如:2x y 2;③有无数组解,例如:2x 2y 2】是关于x、y O二元一次方程组2x+(m-1)y=2nx+ y=1O解,试求(m+r)2016O值例3、方程x 3y 10在正整数范围内有哪几组解?5、二元一次方程组O解法:代入消元法和加减消元法。

例4、将方程10 2(3 y) 3(2 x)变形,用含有x O代数式表示y.例5、用适当O方法解二元一次方程组x+1+3 2例6、若方程组ax y 1有无数组解,则a、b O值分别为()6x by 2例2、已知x 2y 1B. a 2,b 1C.a=3,b=-2D. a 2,b 2 A. a=6,b=-16、三元一次方程组及其解法: 方程组中一共含有三个未知数,含未知数①项①次数都是1,并且方程组中一共有 两个或两个以上①方程,这样①方程组叫做三元一次方程组。

解三元一次方程组① 关键也是“消元”:三元T 二元T 元x y z 6 例10、3x 求解方程组y z 22x 3y z 117、二元 一次方程与一次函数关系:例11、一次函数y=kx+2①图像总过定点 _____________ ,二元一次方程kx-y=-2有无数组解,其中必有一个解为 ___________ 。

二元一次方程组经典例题

二元一次方程组经典例题

二元一次方程组经典例题一、例题例1:解方程组2x + y = 5 x - y = 1解析:1. 观察方程组的特点- 这个方程组中y的系数分别为1和-1,可以采用加减消元法。

2. 消元求解- 将方程2x + y = 5与方程x - y = 1相加,得到(2x + y)+(x - y)=5 + 1。

- 化简得2x+y+x - y=6,即3x=6,解得x = 2。

3. 回代求y- 把x = 2代入x - y = 1中,得到2 - y = 1,解得y=1。

所以方程组的解为x = 2 y = 1例2:解方程组3x+2y = 8 2x - 3y=-5解析:1. 选择消元方法- 为了消去其中一个未知数,我们可以给第一个方程乘以3,第二个方程乘以2,然后再相加来消去y。

2. 消元计算- 方程3x + 2y = 8两边乘以3得9x+6y = 24。

- 方程2x - 3y=-5两边乘以2得4x-6y=-10。

- 将这两个新方程相加:(9x + 6y)+(4x-6y)=24+( - 10)。

- 化简得9x+6y + 4x-6y = 14,即13x=14,解得x=(14)/(13)。

3. 回代求y- 把x=(14)/(13)代入3x + 2y = 8中,得到3×(14)/(13)+2y = 8。

- 即(42)/(13)+2y = 8,移项得2y = 8-(42)/(13)。

- 2y=(104 - 42)/(13)=(62)/(13),解得y=(31)/(13)。

所以方程组的解为x=(14)/(13) y=(31)/(13)例3:某班有40名同学去看演出,购买甲、乙两种票共用去370元,其中甲种票每张10元,乙种票每张8元,问购买甲、乙两种票各多少张?设购买甲种票x张,购买乙种票y张。

根据题意可列方程组x + y = 40 10x+8y = 370解析:1. 消元方法选择- 由第一个方程x + y = 40可得y = 40 - x,我们可以采用代入消元法。

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳 (1)

二元一次方程组知识点归纳、解题技巧汇总、练习题及答案1、二元一次方程的定义:含有两个未知数,并且未知数的项的次数都是1,像这样的方程叫做二元一次方程。

2、二元一次方程组的定义:含有两个未知数并且含有未知数的项的次数都是1,系数不为零的整式方程叫做二元一次方程。

注意:二元一次方程组应同时满足以下两点1、两个方程都是一次方程,2、方程组中共含有两个未知数。

也就是说二元一次方程组一共含有两个未知数,而不是每个方程都必须含有两个未知数。

2、二元一次方程的解:一般地,使二元一次方程两边的值相等的两个未知数的值,叫做二元一次方程的解,二元一次方程有无数个解。

4、二元一次方程组的解:一般地,二元一次方程组的两个方程的公共解,叫做二元一次方程组的解。

1有一组解如方程组x+y=5①x=-24/76x+13y=89②y=59/7 为方程组的解2.有无数组解如方程组x+y=6①因为这两个方程实际上是一个方程2x+2y=12②(亦称作“方程有两个相等的实数根”),所以此类方程组有无数组解。

3.无解如方程组x+y=4①因为方程②化简后为x+y=52x+2y=10②,这与方程①相矛盾,所以此类方程组无解。

一般解法,消元:将方程组中的未知数个数由多化少,逐一解决。

消元的方法有两种:1、代入消元法:把二元一次方程组中一个方程的未知数用含另一个未知数的式子表示出来,再代入另一个方程,实现消元,进而求得这个二元一次方程组的解。

这个方法叫做代入消元法,简称代入法。

例:解方程组x+y=5①6x+13y=89②解:由①得x=5-y③把③带入②,得6(5-y)+13y=89 y=59/7把y=59/7带入③,x=5-59/7 即x=-24/7x=-24/7y=59/7 为方程组的解基本思路:未知数又多变少。

消元法的基本方法:将二元一次方程组转化为一元一次方程。

代入法解二元一次方程组的一般步骤:从方程组中选出一个系数比较简单的方程,将这个方程中的一个未知数(例如y )用含另一个未知数(例如x )的代数式表示出来,即写成y=ax+b 的形式,即“变” 将y=ax+b 代入到另一个方程中,消去y ,得到一个关于x 的一元一次方程,即“代”。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.某一天该同学上街,恰好赶上商家促销,超市 A 所有商品打 8 折销售,超市 B 全厂购物满 100 元返还 30 元购物券, 但他只带了 400 元钱, 如果他只在一家超市 购买他看中的两种物品, 你能说明他可以选择哪一家购买吗?若两家都可以选购, 在哪一家购买更省钱?
2.小平在蔬菜批发市场上了解到以下信息: 蔬菜品种 批发价(元/千克) 零用价(元/千克) 红辣椒 4 5 黄瓜 1.2 1.4 西红柿 1.6 2.0 茄子 1.1 1.3
2 x ay 16, 19.当 a 为何值时,方程组 有正整数解?并求出正整数解. x 2 y 0
14.小红和小丽共同解方程组
ax 5 y 15 ,由于小红看错了 a 的值,求得的 4 x by 2
20.关于 x,y 的方程组
解是
x 3 x 5 ,小丽看错了 b 的值,求得的解是 , (1)你能求出 a,b 的 y 4 y 1
=4 是关于 x、y 的二元一次方程,则 m 为多少?
4.方程(k -4)x +(k+2)x+(k-6)y=k+8 是关于 x、y 的方程,则:当 k 为何值时, 方程为一元一次方程?当 k 为何值时,方程为二元一次方程?
2
2
x 2, 2 x y , 9.方程组 的解为 则被遮盖的两个数分别为多少? y . x y 3
7.已知
x 2 ax by 7 是方程组 的解,求 a b 的值。 y 1 ax by 1
(2) xy 3 +3y
4n-7
(3) 2x2 - y 9
1 (4) x y 2
(5) x y y
8.已知等式 y kx b ,当 x 2 时, y 1 ;当 x 1 时, y 3 ;求 k,b 的值.
【典型例题五】利润问题: 1.一件商品如果按定价打九折出售可以盈利 20%;如果打八折出售可以盈利 10 元,问此商品的定价是多少?
【典型题型二】行程问题: 1.甲、乙两人在东西方向的公路上行走,甲在乙的西边 300 米,若甲、乙两人同 时向东走 30 分钟后,甲正好追上乙;若甲、乙两人同时相向而行,2 分钟后相遇, 问甲、乙两人的速度是多少?
2.某服装厂生产一批某款式的秋装,已知每 2 米的某种布料可做上衣的衣身 3 个或衣袖 5 只。现计划用 132 米这种布料生产这批秋装(不考虑布料的损耗) ,应 分别用多少布料才能使做的衣身和衣袖恰好配套?
2. 现在父母年龄的和是子女年龄的 6 倍, 2 年前父母年龄的和是子女年龄和的 10 倍;6 年后,父母年龄的和是子女年龄和的 3 倍,问共有子女多少人。
ax by 4

3 x y 5
4 x 5 y 2 z 0 ,且 xyz 0 ,则 x : y : z 的值为多少? x 4 y 3z 0
13.若方程组
4 x y 5 ax by 3 与方程组 有相同的解,求 a,b 的值。 ax by 1 3x 2 y 1
【典型例题六】分类讨论题: 某水果批发市场香蕉的价格如下表: 购买香蕉 每千克价格 不超过 20 千克 6元 20 到 40 千克 5元 40 千克以上 4元
张强两次共购买香蕉 50 千克(第二次多于第一次)共付出 264 元,请问张强第一 次第二次分别购买香蕉多少千克?
【典型例题五】图标信息题: 1. 下表为北京奥运会官方票务网站公布的几种球类比赛的门票价格, 球迷小李用 8000 元作为预订下表中比赛项目门票的资金。 若全部资金用来预订篮球门票和乒 乓球门票 10 张,问男篮球门票和乒乓球门票各订多少张? 小李想用全部资金预订男篮,足球和乒乓球三种门票共 10 张,他的想法能实现 吗?请说明理由 比赛项目 男篮 足球 乒乓球 票价(元/场) 1000 800 500
他共用了 116 元钱从市场上批发了红辣椒和西红柿共 44 千克到菜市场去卖, 当天 卖完,请你计算出小平能挣多少钱? 3.某地生产一种绿色蔬菜,若在市场上直接销售,每吨利润为 1000 元;经粗加 工后销售,每吨利润可达 4500 元;经精加工后销售,每吨利润涨至 7500 元.当 地一家农工商公司收购这种蔬菜 140 吨,该公司加工厂的生产能力是:如果对蔬 菜进行粗加工,每天可加工 16 吨;如果进行精加工,每天可加工 6 吨,但两种加 工方式不能赔不是进行. 受季节条件的限制, 公司必须在 15 天之内将这批蔬菜全 部销售或加工完毕,为此公司研究了三种加工方案: 方案一:将蔬菜全部进行粗加工; 方案二:尽可能多地进行精加工,来不及加工的蔬菜在市场上全部销售; 方案三:将部分蔬菜进行粗加工,其余蔬菜进行精加工,并恰好在 15 天完成. 你认为哪种方案获利最多?为什么?
【典型例题七】古诗类题型: 1.古题: “我问开店李三公,众客都来到店中,一房七客多七客,•一房九客一房 空. ”有房几间,有客几何?
2. 《希腊文集》有这样一则童话:驴和骡子驮着货物并排走在路上,驴不住地埋 怨自己驮的货物太重,压得受不了.骡子对驴说: “你发什么牢骚啊!我驮的货物 比你重,假若你的货物给我一口袋,我驮上的货就比你驮的重一倍,而我若给你 一口袋,咱俩驮的才一样多. ”那么驴和骡子了一项引水工程,就是把 200 千米以外的一条 大河的水引到城市中。把这个工程交给了甲、乙两个施工队,工期为 50 天。甲、 乙两队合作了 30 天后,乙队因另外有任务需要离开 10 天,于是甲队加快速度, 每天多修 0.6 千米;10 天后,乙队回来后,为了保证工期,甲队保持现在的速度 不变,乙队每天比原来多修 0.4 千米,结果如期完成。问:甲乙两队原计划每天 各修多少千米?
【典型例题四】配套问题: 1.一张方桌由 1 个桌面,4 条桌腿组成,如果一立方米木料可以做方桌的桌面 50 个或做桌腿 300 条,现有 5 立方米木料,那么要用多少立方米木料做桌面。多少 立方米木料做桌腿,做出的桌面和桌腿恰好能配成方桌?能配成多少张方桌?
【典型例题七】经营决策问题: 1.某同学在 AB 两家超市发现他看中的随身听的单价相同,书包单价也相同,随 身听和书包单价之和是 452 元,且随身听的单价是书包单价的 4 倍还少 8 元 求该同学看中的随身听和书包的单价各是多少?
2.甲、乙两件服装的成本共 500 元,商店老板为获取利润,决定将甲服装按 50 ﹪的利润定价,乙服装按 40﹪的利润定价。在实际出售时,应顾客要求,两件服 装均按 9 折出售, 这样商店共获利 157 元, 求甲、 乙两件服装的成本各是多少元?
2.甲乙两人以不变的速度在环形路上跑步, 相向而行每隔两分钟相遇一次; 同向 而行,每隔 6 分相遇一次,已知甲比乙跑的快,求甲乙每分钟跑多少圈? 【典型例题三】百分比问题: 1.有甲、乙两种债券,年利率分别是 10%与 12%,现有 400 元债券,一年后获 利 45 元,问两种债券各有多少?
10.若方程组
3x 5 y k 2 的解 x 和 y 的和为 0,求 k 的值。 2 x 3 y k
2 15.若 | 3a 2b 7 | (5a 2b 1) 0 ,则 a b 的值为多少?
11.已知方程组


16.求二元一次方程 3x 2 y 15 的正整数解。
5 x 3 y 23 的解是正整数,求整数 p 的值。 x y p
正确的值吗?(2)方程组的正确的解为多少?
三、二元一次方程组的应用: 【典型题型一】简单的“和差积倍”问题: 1.一个两位数,比它十位上的数与个位上的数的和大 9;如果交换十位上的数与 个位上的数,所得两位数比原两位数大 27,求这个两位数.
二元一次方程组 一、知识回顾: 1、含有 个未知数,并且含有未知数的项的次数都是 的方程叫做二元一 次方程;能使二元一次方程 的两个未知数的值叫做二元一次方 程的解。 2、把具有 未知数的 方程合在一起就组成了一个二元一次方 程组; 能使二元一次方程组 的未知数的值叫做二元一次方程组 的解。 3、解二元一次方程组的基本思想是 ,它有 和 两种方法;把二元一次方程组中一个方程的一个未知数用含 的式子表示出来,{再 另一个方程,实现消元进而求得这个二元一次方 程组的解, 这种方法叫做 ; 当两个二元一次方程中同一个未知数的系 数 (或 ) 时, 将两个方程的两边分别 (或 ) , 就能消去这个未知数得到一个一元一次方程,这种方法叫做 。 4、列方程组解应用题的步骤可概括为 这几大步骤。 5、由 个方程组成,并且方程组中含有 个相同未知数,每个方程中含 未知数的项的次数都为 ,这样的方程组叫做三元一次方程组。 6、 解三元一次方程组的基本思路是: 通过 或 进 行消元,将三元一次方程组问题转化为二元一次方程组,再将二元一次方程组转 化为 求解。 二、典型例题: 1.在方程 4 x 2 y 7 中,如果用含有 x 的式子表示 y ,则 y 2.下列方程中,那些是二元一次方程? (1) 8x - y y 3.已知方程 2x
2m+3
x 5 5.请写出一个以 y 1 为解的二元一次方程组
6. (1)
x 4 y 1 2 x y 16
(2) x
y 2 3 2 x y 7
3a b 2a b 2 (3) 4 5
x y z 3 (4) 2 x 3 y z 2 3 x y z 4
【典型例题六】工程问题: 1.加工一批零件,甲先单独做 8 小时,然后又与乙一起加工 5 小时完成任务。已 知乙每小时比甲少加工 2 个零件,零件共 350 个。问甲、乙两人每小时各加工多 少个零件?
2.东风农场的两块试验田,去年共产花生 470kg.改用良种后,今年共产花生 523kg, 已知第一块田的产量比去年增产 16%, 第二块田的产量比去年增产 10%, 这两块田改良种前每块田产量分别为多少千克?今年每块田各增产多少千克?
相关文档
最新文档