疲劳寿命试验报告OTY.doc
疲劳性能验证报告

疲劳性能验证报告1. 引言疲劳性能验证是一项对产品或材料在长时间使用过程中的耐久性进行评估的重要测试。
本报告旨在介绍疲劳性能验证的步骤和方法,并对具体案例进行分析和评估。
2. 步骤2.1 设定测试目标在进行疲劳性能验证之前,需要明确测试的目标。
这包括确定需要验证的产品或材料、测试的耐久性指标以及测试的时间和工况。
2.2 设计测试方案在设计测试方案时,需要考虑以下几个方面: - 选择适当的试验方法,如拉伸试验、弯曲试验等,以模拟实际使用中的应力状态。
- 确定测试样品的尺寸和数量,以及测试所需的设备和仪器。
- 制定测试的加载模式和加载频率,以模拟实际使用中的加载条件。
2.3 进行实验测试根据设计的测试方案,进行实际的疲劳性能验证实验。
在测试过程中,需要记录测试样品的加载次数、加载幅值以及可能出现的损伤情况。
2.4 数据分析和评估对实验测试的数据进行分析和评估,以确定产品或材料的疲劳性能。
常用的评估方法包括: - 构建S-N曲线,分析加载次数与样品寿命之间的关系。
- 计算疲劳强度指数,评估样品在特定加载条件下的疲劳寿命。
- 检测样品的表面和内部损伤情况,如裂纹、断裂等。
2.5 结果总结和报告编写根据数据分析和评估的结果,对疲劳性能进行总结。
编写疲劳性能验证报告,包括测试目标、实验方案、测试结果和数据分析等内容。
报告应清晰、准确地描述疲劳性能验证的过程和结果。
3. 案例分析3.1 测试目标本次疲劳性能验证的目标是评估某型号汽车发动机的曲轴在使用过程中的耐久性。
3.2 测试方案本次测试选用弯曲试验方法,测试样品为某型号汽车发动机的曲轴。
测试采用恒幅加载模式,频率为10Hz。
共进行10个样品的测试。
3.3 实验测试根据测试方案,使用相应的试验设备和仪器对样品进行弯曲试验。
记录样品的加载次数和加载幅值,并检测样品的损伤情况。
3.4 数据分析和评估根据实验测试得到的数据,构建S-N曲线,分析加载次数与样品寿命之间的关系。
疲劳试验报告

疲劳试验报告一、实验目的本次实验旨在研究材料在反复受力情况下的变化规律,验证其疲劳寿命,并探究不同应力水平对疲劳寿命的影响。
二、实验方法1. 实验材料:本次实验使用的是工程塑料材料。
2. 实验设备:万能试验机、计数器、计时器、电脑数据采集系统。
3. 实验步骤:(1)将实验样品加工成标准梁形状。
(2)将试样放入电子拉力试验机中,在预设的负载范围内进行往复载荷试验。
(3)记录试验过程中的应力、应变、位移等数据,并通过电脑数据采集系统保存到电脑中。
(4)当试样发生裂纹或断裂时,停止试验,并记录下此时的载荷数和疲劳寿命。
(5)根据实验得到的数据,绘制应力-循环数曲线,计算出试样的疲劳极限、疲劳寿命等指标。
三、实验结果分析1. 实验数据处理:根据实验记录的数据,我们绘制了应力-循环数曲线,并计算出了不同应力水平下试样的疲劳极限和疲劳寿命等指标。
详见下表:应力水平(MPa)疲劳极限(MPa)疲劳寿命(循环数)50 80 2000070 75 500090 70 1000110 65 2002. 结果分析:通过对实验得到的数据进行分析,可以得出以下结论:(1)随着应力水平的提高,试样的疲劳极限和疲劳寿命均明显降低。
(2)在低应力水平下,材料的疲劳寿命较长,可以长时间稳定地工作。
而在高应力水平下,材料易发生断裂和破坏,疲劳寿命也明显缩短。
四、实验总结本次实验通过对工程塑料材料的疲劳试验,探究了材料在反复受力情况下的变化规律,验证了其疲劳寿命,并研究了不同应力水平对疲劳寿命的影响。
实验结果表明,在低应力水平下,材料可稳定地工作较长时间;而在高应力水平下,材料易发生断裂和破坏,疲劳寿命明显缩短。
通过这次实验,我们对材料的疲劳特性有了更深入的了解,对于材料的选用和应用具有一定的参考价值。
疲劳分析报告

1 概述***是用来完成***分离的设备,常常需要通过变温或变压来改变吸附剂的吸附容量,从而完成吸附与解吸。
***是在交变载荷作用下工作的,除强度分析外,还需进一步进行疲劳分析。
***安装后,***上封头筒体对接焊缝部位最大直线度偏差满足相关要求,要保证***顶部的直线度偏差在一定的范围之内。
如图1所示。
*****************有限公司(甲方)的委托,***************研究院(乙方,以下简称****)拟对甲方生产的化工设备-***进行疲劳分析,计算***直线度对整体结构的影响,为甲方顺利安全的生产运行提供数据支持。
2 材料参数整体结构合金钢Q345:主体材料的参数设置为,弹性模量E=2.045E5MPa,泊松比μ=0.3,材料密度为ρ=7.85E-9t/mm3 。
***中吸附填料的质量为**t,将此质量转化到筒体和下封头的上部,则对应的筒体和下封头的密度为ρ=***t/mm3。
1考虑到腐蚀的影响,***壳体的壁厚取**mm,***内径取****mm。
疲劳特性参数如表1所示,S-N曲线如图2所示。
表1 疲劳曲线数据S-N曲线的绘制受到平均应力的影响,可以执行通过平均应力修正理论实现。
Q345R是韧性材料,Goodman理论适用于韧性材料的平均应力修正理论。
因此,利用Goodman理论来考虑平均应力的影响。
如图3所示。
3 有限元疲劳分析结果***的最高工作压力2.7Mpa,最低工作压力0.05Mpa。
***上封头与裙座的直线度偏差在一定范围内变化,根据企业的要求,分别对直线度偏差L为*mm、**mm和**mm进行疲劳分析。
使用通用结构分析软件ANSYS Workbench Environment(AWE)13.0中的疲劳分析模块Fatigue Tool,根据***对称性,可仅对结构的二分之一进行疲劳分析。
3.1直线度偏差L=*mm的疲劳分析结果在交变载荷作用下,***整体的等效交变应力,即疲劳应力幅如图4(a)所示。
最新整理疲劳寿命试验法和评价法.doc

疲劳寿命试验法和评价法4.4 疲劳寿命试验法和评价法(l)热循环加速试验和疲劳寿命评价方法作为接合部热循环疲劳强度评价的试验方法,最好使用热循环加速试验,为验证上述采用应力解析方法说明非线性应变振幅和热循环疲劳试验对接合部疲劳寿命的关系,利用非线性应变振幅施行的接合部热循环疲劳试验结果由图4.9 表示。
图示说明采用几种不同的条件得到的疲劳寿命结果差不多在相同的直线上,评价应力应变首先要正确评价各试验区间(温度变化和温度保持)对蠕变的影响,同时还需考虑焊料材料的温度依存性。
在材料的时间依存性和温度依存性正确评价的基础上,利用接合部生存的非线性应变振幅,再根据Coffin-Manson 法则得到接合部的热疲劳强度,热疲劳强度评价公式见下面。
这里的Nf表示接合部的疲劳寿命,△εeqin 是根据材料的时间依存性和温度依存性评价后得到的接合部非线性等效应变振幅。
用热循环疲劳实验可以减少表示强度特性的△εeo、m系数,这是试验时需注意的一点。
(2)机械性疲劳试验和疲劳寿命评价方法在研究接合部热疲劳寿命时,常用热冲击试验机进行循环试验,但是热冲击试验机的高温、低温保持时间比较容易控制,由高温到低温或由低温到高温的温度变化时间较难控制,因焊料接合部形状的不同有时要实行不同的疲劳寿命试验,就需改变试验温度等级,原来设定的高温侧温度为125℃-150℃ ,针对使用温度20℃-80℃ 的共晶焊料(熔点183℃)这样对上面的热循环试验条件有必要重新考虑。
热循环试验存在的问题是,对接合部采用的是热疲劳寿命加速试验,很少采用作为实际使用时的模拟试验。
另外,在实际使用场合设计的接合部疲劳寿命最少为10周期(循环),每试验一个周期最短时间为20 分钟,10的周期需要4-5 个月以上的试验时间,这种评价方法化费的代价太大。
在新产品投产期间,投资商所希望的热循环疲劳试验至多1-2 个月。
近年来,作为热循环疲劳试验的替代方式,有人提出了机械等温疲劳试验方法,即考虑到焊接材料的温度依存性,使用经应力/应变评价得到的非线性应变振幅,按统一的热循环疲劳寿命评价方式一一接合部低循环热疲劳强度评价来获得结论。
轴承疲劳寿命3

河南科技大学实习报告(3)学院_______________专业班级_______________学生姓名_______________指导教师_____________________学年第______学期【实验名称】:滚动轴承疲劳寿命试验【实验目的】:1、滚动轴承的疲劳寿命是轴承的一个非常重要的质量指标;2、通过实验和现场收集有价值的数据;3、目前,随着经济全球化,资源本地化的加剧,为了满足轴承制造商和轴承大用户对提高轴承综合质量的要求,我国轴承行业必须对轴承寿命激发试验做更多的尝试。
【实验设备】:ABLT-1A轴承寿命试验机该仪器主要用于滚动轴承疲劳寿命强化(快速)试验。
由试验头、试验头座、传动系统、加载系统、润滑系统、计算机控制系统等组成。
试验轴承类型:球轴承和滚子轴承试验轴承内径:10~60mm试验轴承转速:1000~10000r/min最大径向加载:100KN最大轴向加载:50KN【实验原理和方法】:轴承的寿命与载荷间的关系可表示为下列公式:L10=(f t*C/P)ε或 L h=(106/60*n)* (f t*C/P)ε式中: L10──基本额定寿命(106转); L h──基本额定寿命(小时h);C──基本额定动载荷,由轴承类型、尺寸查表获得;P──当量动载荷(N),根据所受径向力、轴向力合成计算;f t──温度系数,由表1查得;n──轴承工作转速(r/min);ε──寿命指数(球轴承ε=3 ,滚子轴承ε=10/3 )。
6308实验条件的确定:额定动载荷Cr=22200N;取当量动载荷P=6720N;极限转速n l=14000r/min;取实验转速n=6000r/min;基本额定寿命:L10=(106/60*n)*(C/P)ε=100h(球轴承ε=3)试验结果计算:按GB/T24607-2009按检验水平2,实验套数E=8为布尔分布斜率:b=1.5 设K=1.4L=K*L10b/0.10536=1.4*1001.5/0.10536=13288T1i=(L/E)*U a=(13288/8)U a=2674T0=1941.5=2702T0=2702> T1i=2674符合达到K=1.4要求,所以轴承做实验要转够194个小时。
材料疲劳实验报告

材料疲劳实验报告1. 实验目的材料疲劳实验是为了研究材料在长期重复加载下的性能变化规律,探究材料的疲劳寿命及疲劳行为。
本次实验旨在通过不同载荷条件下对金属材料进行疲劳实验,分析其疲劳寿命及疲劳失效模式。
2. 实验原理疲劳材料学认为,在材料受到交变载荷作用时,由于局部应力和变形的聚焦作用,会造成材料内部微小损伤积累,最终导致材料疲劳失效。
实验中常用的参数包括应力幅、载荷周期、载荷频率等。
3. 实验设备及材料本次实验采用了一台电子疲劳试验机,可实现不同载荷条件下的疲劳加载。
实验材料选用了工业中常见的金属材料,如钢、铝等,以进行疲劳实验。
4. 实验方法(1)根据实验要求确定不同载荷条件下的疲劳试验方案,包括载荷幅值、载荷周期等参数;(2)将待测材料制备成标准试样,并在试验机上装夹好;(3)依据设定的疲劳试验方案进行试验,并根据试验机读数记录实验数据;(4)当达到设定的疲劳寿命或发生疲劳失效时停止试验,记录试验结果。
5. 实验结果及分析经过一系列的疲劳实验,我们得到了不同载荷条件下金属材料的疲劳寿命数据。
通过对数据进行分析,我们可以发现随着载荷幅值的增加,材料的疲劳寿命逐渐减小,疲劳失效模式也呈现出明显的变化。
此外,不同金属材料在疲劳实验中表现出不同的特性,例如某一种金属在高强度载荷下疲劳寿命更长等。
6. 实验结论通过本次材料疲劳实验,我们深入了解了材料在疲劳加载下的性能表现及疲劳寿命规律。
我们可以通过调整载荷条件来延长材料的疲劳寿命,提高其耐久性。
疲劳实验为材料科学领域的研究提供了重要的参考依据。
7. 结语本次实验不仅增进了我们对材料疲劳行为的认识,同时也对未来的相关研究工作起到了积极的推动作用。
期待通过更多的研究和实验,为材料科学领域的发展做出更大的贡献。
疲劳试验报告

疲劳试验报告
北京兴达波纹管有限公司
设备编号: XD/386
试验件名称: 12m-DN350发泡管路补偿器
试验件名称:HTFZQT0411
试验件长度: 350mm
位移量: X=±10mm
试验压力: (PN:
操作时间:(9:00~12:)(12:45~13:39)(2:13~2:32)
最终疲劳寿命:2228 次
波纹管循环次数达到2倍疲劳寿命时发生泄漏(见下图)。
操作者:焦莲
日期: 2012-7-10
疲劳试验报告
北京兴达波纹管有限公司
设备编号: XD/386
试验件名称: DN150真空管补偿器
试验件名称:HTFZQT0344-03
试验件长度: 216mm
位移量: X=±18mm
试验压力:
操作时间:(9:28~11:25)(14:00~16:08)
最终疲劳寿命:2000次
波纹管循环次数达到2倍疲劳寿命无破裂、失稳现象(见下图)。
操作者:焦莲
日期: 2012-7-10
疲劳试验报告
北京兴达波纹管有限公司
设备编号: XD/386
试验件名称: DN150真空管补偿器
试验件名称:HTFZQT0344-01
试验件长度: 216mm
位移量: X=±18mm
试验压力:
操作时间:(10:26~16:20)(8:00~12:10)
最终疲劳寿命:5110次
波纹管循环次数达到5110次时泄漏。
(见下图)。
操作者:焦莲
日期: 2012-7-10。
疲劳实验报告

疲劳实验报告疲劳实验报告引言疲劳是现代社会中普遍存在的问题,随着工作和生活的压力增加,人们越来越容易感到疲劳。
为了深入了解疲劳的原因和对策,我们进行了一项疲劳实验。
本报告将详细介绍实验的目的、方法、结果和讨论。
实验目的本次实验的目的是探究不同因素对人体疲劳程度的影响。
我们希望通过实验数据的收集和分析,了解疲劳的产生机制,为疲劳管理提供科学依据。
实验方法实验采用了随机分组设计,共招募了50名健康成年人参与。
实验分为两个部分:身体疲劳和认知疲劳。
身体疲劳部分,参与者需进行一小时的体力活动,包括跑步、举重和踢球等。
在活动前、中、后,我们使用了一种被动式疲劳评估仪器,通过测量参与者的心率、体温和皮肤电阻等指标,来评估身体疲劳程度。
认知疲劳部分,参与者需进行一小时的认知任务,包括逻辑推理、记忆测试和反应速度等。
在任务完成前、中、后,我们使用了一种主观疲劳评估问卷,要求参与者根据自己的感受评价自己的疲劳程度。
实验结果在身体疲劳部分,我们发现参与者的心率和体温在活动后明显升高,皮肤电阻值也明显下降。
这些结果表明,身体疲劳会导致生理指标的变化,从而影响身体的正常功能。
在认知疲劳部分,参与者在任务进行到后期时普遍感到疲劳。
问卷结果显示,参与者在任务结束后的疲劳评分明显高于任务开始时的评分。
这表明,认知疲劳会对个体的注意力、记忆和思维能力产生负面影响。
讨论通过本次实验,我们可以得出以下结论:1. 身体疲劳和认知疲劳是两个相互关联的概念。
身体疲劳会导致认知疲劳,而认知疲劳也会加重身体的疲劳感。
2. 疲劳的产生机制是多方面的,包括肌肉疲劳、神经疲劳和心理疲劳等。
不同的疲劳因素会对个体的身体和认知功能产生不同的影响。
3. 疲劳管理需要综合考虑身体和认知两个方面。
通过合理的休息、饮食和运动,可以有效减轻疲劳感。
结论本次疲劳实验为我们深入了解疲劳的原因和对策提供了重要的数据支持。
通过对身体疲劳和认知疲劳的研究,我们可以更好地管理自己的疲劳状态,提高工作和生活的质量。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
离合器分离轴承
疲劳寿命试验报告
(2016)试验第012号
产品名称:离合器分离轴承产品型号:50RCTS3502
产品件号:491Q-1602060
试验类型:寿命质量考核
哈尔滨天烨轴承有限公司
2016年12 月18 日
哈尔滨天烨轴承有限公司产品开发部
离合器轴承寿命试验报告共2页第2页
7 试验结果
该分离轴承经过100万次分离、结合试验后,各零部件无任何损坏,轴承总成工作正常。
8 试验结论
根据JB/T5312-2001《汽车离合器分离轴承及其单元》的规定,离合器分离轴承动态分离耐久性试验达到100万次为合格品,该分离轴承与原车离合器进行配套试验,经过100万次分离、结合试验后没有任何损坏,旋转灵活、无异响。
证明该轴承满足使用要求。
9试验时间
2016年11月25日至2016年12月17日
10试验地点
本公司轴承寿命试验区
11试验参加人员
姜利涛陈庆峰张学涛
编制张学涛审核陈庆峰
哈尔滨天烨轴承有限公司产品开发部
离合器轴承寿命试验报告共2页第1页
离合器分离轴承寿命试验报告
1试验报告
任务单号:LHQ—012/2007
2试验目的
对本公司生产的50RCTS3502自调心离合器分离轴承进行寿命试验。
3试验对象
本公司成品库里的50RCTS3502自调心离合器分离轴承任抽2套中的第2套。
4试验项目
离合器分离轴承寿命试验。
5试验方法及实验条件
5.1评价依据标准
现参考我国JB/T5312-2001《汽车离合器分离轴承及其单元》
5.2试验设备
本公司2014年自制的TY-03-04离合器分离轴承耐久性试验台。
5.3试验条件
与原车离合器总成配套进行动态分离耐久性试验。
主轴转速:3000r/min
分离频率:70次/min
分离行程:7.5mm
试验区温度:100℃±5℃
试验总次数: 100万次
6试验过程
试验从2016年11月25日开始。
每20万次停机对实验轴承检查一次。
直至1001500次试验结束。