(国内标准)三相逆变器中IGBT的几种驱动电路的分析
三电平逆变器的IGBT

电能是一种极其宝贵的商品,许多市场研究表明,电能的需求正在按指数级不断地增长。
2001至2006年,能源消费增加了16.1%(数据来源:英国石油公司世界能源统计回顾, 2007年6月)。
然而,由于电能的有限以及日益高涨的石油价格,一个新的技术时代经开始了——一个以降低电能消耗和促进替代能源研究为目标的时代。
因此,迫切需要在所有的工业和消费类应用中持续不断地提高效率。
当我们谈论效率时,我们主要指的是电力效率。
然而,这种用法并不是效率一次本身的完整含义。
在电力电子应用中,工程师在开发新产品过程中的追求的主要目标是以最大限度地发挥不同类型的效率,如电效率和热效率,以及优化谐波失真和产品整体的尺寸。
上述目标必须与其他越来越严格的目标一起实现:满足经济效率和开发时间的要求。
这就产生了一个问题:具有更高效率的更为强大的模块是否能够满足所有重要的效率目标。
SEMITOP 功率模块拥有卓越的热性能,集成了最新的芯片技术和高度创新的电路拓扑结构,从而最大限度地提高效率和成本效益。
绝缘的功率模块是用于PCB焊接。
单螺钉安装和无铜基板的设计确保了良好的热性能,从而带来了无与伦比的应用可靠性。
超过10000 小时,基于17种不同测试的大量质量评定也验证了可靠性。
SEMITOP 的产品范围已经扩展,增加了一款专为三电平逆变器开发的新模块。
三电平逆变器拓扑结构正越来越多地用于UPS,包括那些中低额定功率(5-40 kVA)的产品。
多电平逆变技术是基于一个相当简单的概念:多个IGBT模块串联起来,使得额定电压远远高于单个IGBT的反向阻断电压。
这一概念首次是在高压和大功率转换器应用中引入,以便能够在数以万计的额定电压范围内使用标准的IGBT。
在DC / AC转换器中使用多电平逆变器是一种简单的提高效率的方法。
该转换器产生一个非常接近正弦波且谐波失真极小的输出波形。
这样有两个好处:开关频率比典型的两电平应用要低,从而减少了硅损耗;省去了输出滤波器,使得整体尺寸变小,成本降低。
【标准】三相逆变器中IGBT的几种驱动电路的分析

三相逆变器中IGBT的几种驱动电路的分析1 前言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪 80年代,为了给高电压应用环境提供一种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT) [1>。
在IGBT 中,用一个 MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了一种具有功率MOSFET的高输入阻抗与双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
在中小功率、低噪音和高性能的电源、逆变器、不间断电源( UPS)和交流电机调速系统的设计中,它是目前最为常见的一种器件。
功率器件的不断发展,使得其驱动电路也在不断地发展,相继出现了许多专用的驱动集成电路。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图1为一典型的IGBT驱动电路原理示意图。
因为IGBT栅极发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
广告插播信息维库最新热卖芯片:FX602D4ICM7555LM317D2T-TR TPA1517DWPR BL3207IRFR13N20D SP708REN CY2305SXC-1AD8108AST LXT970QC对IGBT驱动电路的一般要求 [2>[3>:1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,并使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
在任何情况下,开通时的栅极驱动电压,应该在 12~ 20 V之间。
当栅极电压为零时,IGBT处于断态。
三电平逆变器IGBT驱动电路电磁兼容研究

三电平逆变器IGBT驱动电路电磁兼容研究0 引言近年来,二极管箝位型三电平逆变器在高压大功率场合的应用得到广泛的研究。
与普通两电平逆变器相比,三电平逆变器改善了输出电压波形,降低了系统的电磁干扰,并且可用耐压较低的器件实现高压输出。
电路拓扑。
三电平逆变器系统结构,主要有不控整流电路、三电平逆变器、滤波器以及驱动电路、采样电路和DSP数字控制电路等。
设计时使用了6个带有两路驱动信号输出的IGBT驱动电路。
从系统结构图可以看到,IGBT的驱动电路连接着数字控制电路与逆变器主功率电路,是逆变器能否正常工作的关键所在。
由于驱动电路靠近IGBT器件,而且其中强电信号与弱电信号共存,可能受到的电磁干扰更为严重,因而IGBT驱动电路的EMC设计也是影响着整个逆变器系统工作性能的关键问题。
本文将分析三电平逆变器系统中会对IGBT驱动电路产生影响的主要干扰源及耦合途径,并重点讨论IGBT驱动电路的EMC设计。
1 干扰源及耦合途径对IGBT驱动电路进行EMC设计,必须首先考虑三电平逆变器整个系统可能存在的干扰源及干扰噪声的耦合途径。
1.1 功率半导体器件的开关噪声由图2所示的逆变器系统结构图可以看到,电网电压经过三相不控整流电路后输入三电平逆变器,经过逆变电路和滤波电路后为负载供电。
不控整流电路中的功率二极管及逆变器电路中器件(IGBT)在开关过程中均存在较高的di/dt,可能通过线路或元器件的寄生电感引起瞬态电磁噪声。
由于器件的功率容量很大,造成的开关噪声是整个系统中最主要的干扰源,对IGBT驱动电路工作的稳定性有着重要影响。
1.1.l 功率二极管的开关噪声功率二极管开通时,电流迅速增加,电压也会出现一个快速的上冲,会导致一个宽带的电磁噪声;二极管在关断时会有一个反向恢复电流脉冲,由于其幅度及di/dt都很大,在电路的寄生电感作用下会产生很高的感应电压,造成较强的瞬态电磁噪声。
由于功率二极管应用在三相不控整流电路中,输入电压较高,开关过程中的电磁噪声对系统其他部分的影响会更为严重。
几种IGBT驱动电路的保护电路原理图

几种IGBT驱动电路的保护电路原理图第一种驱动电路EXB841/840EXB841工作原理如图1,当EXB841的14脚和15脚有10mA的电流流过1us以后IGBT 正常开通,VCE下降至3V左右,6脚电压被钳制在8V左右,由于VS1稳压值是13V,所以不会被击穿,V3不导通,E点的电位约为20V,二极管VD,截止,不影响V4和V5正常工作。
当14脚和15脚无电流流过,则V1和V2导通,V2的导通使V4截止、V5导通,IGBT 栅极电荷通过V5迅速放电,引脚3电位下降至0V,是IGBT 栅一射间承受5V左右的负偏压,IGBT可靠关断,同时VCE的迅速上升使引脚6悬空.C2的放电使得B点电位为0V,则V S1仍然不导通,后续电路不动作,IGBT正常关断。
如有过流发生,IGBT的V CE过大使得VD2截止,使得VS1击穿,V3导通,C4通过R7放电,D点电位下降,从而使IGBT的栅一射间的电压UGE降低,完成慢关断,实现对IGBT的保护。
由EXB841实现过流保护的过程可知,EXB841判定过电流的主要依据是6脚的电压,6脚的电压不仅与VCE 有关,还和二极管VD2的导通电压Vd有关。
典型接线方法如图2,使用时注意如下几点:a、IGBT栅-射极驱动回路往返接线不能太长(一般应该小于1m),并且应该采用双绞线接法,防止干扰。
b、由于IGBT集电极产生较大的电压尖脉冲,增加IGBT栅极串联电阻RG有利于其安全工作。
但是栅极电阻RG不能太大也不能太小,如果RG增大,则开通关断时间延长,使得开通能耗增加;相反,如果RG太小,则使得di/dt增加,容易产生误导通。
c、图中电容C用来吸收由电源连接阻抗引起的供电电压变化,并不是电源的供电滤波电容,一般取值为47 F.d、6脚过电流保护取样信号连接端,通过快恢复二极管接IGBT集电极。
e、14、15接驱动信号,一般14脚接脉冲形成部分的地,15脚接输入信号的正端,15端的输入电流一般应该小于20mA,故在15脚前加限流电阻。
igbt模块逆变器电路图大全(六款igbt模块逆变器电路设计原理图详解)

igbt模块逆变器电路图大全(六款igbt模块逆变器电路设计原理图详解)igbt模块逆变器电路图设计(一)太阳能光伏发电的实质就是在太阳光的照射下,太阳能电池阵列(即PV组件方阵)将太阳能转换成电能,输出的直流电经由逆变器后转变成用户可以使用的交流电。
以往的光伏发电系统是采用功率场效应管MOSFET 构成的逆变电路。
然而随着电压的升高,MOSFET的通态电阻也会随着增大,在一些高压大容量的系统中,MOSFET会因其通态电阻过大而导致增加开关损耗的缺点。
在实际项目中IGBT逆变器已经逐渐取代功率场效应管MOSFET,因为绝缘栅双极晶体管IGBT通态电流大,正反向组态电压比较高,通过电压来控制导通或关断,这些特点使IGBT在中、高压容量的系统中更具优势,因此采用IGBT构成太阳能光伏发电关键电路的开关器件,有助于减少整个系统不必要的损耗,使其达到最佳工作状态。
在实际项目中IGBT逆变器已经逐渐取代功率场效应管MOSFET。
IGBT逆变器的工作原理逆变器是太阳能光伏发电系统中的关键部件,因为它是将直流电转化为用户可以使用的交流电的必要过程,是太阳能和用户之间相联系的必经之路。
因此要研究太阳能光伏发电的过程,就需要重点研究逆变电路这一部分。
如图2(a)所示,是采用功率场效应管MOSFET构成的比较简单的推挽式逆变电路,其变压器的中性抽头接于电源正极,MOSFET的一端接于电源负极,功率场效应管Q1,Q2交替的工作最后输出交流电力,但该电路的缺点是带感性负载的能力差,而且变压器的效率也较低,因此应用起来有一些条件限制。
采用绝缘栅双极晶体管IGBT构成的全桥逆变电路如图2(b)所示。
其中Q1和Q2之间的相位相差180,其输出交流电压的值随Q1和Q2的输出变化而变化。
Q3和Q4同时导通构成续流回路,所以输出电压的波形不会受感性负载的影响,所以克服了由MOSFET构成的推挽式逆变电路的缺点,因此采用IGBT构成的全桥式逆变电路的应用较为广泛一些。
IGBT驱动电路哪些种

变压器隔离,采用调制技术,次级采用调制式自给电源,无需用户提供隔离电源;PWM开关信息通过调制传递到次级。工作频率范围宽,占空比可在0-100%之间。
驱动板系列
集成了驱动器及其外围元器件,(以及辅助电源),配合用户的主控板和功率器件,构成完整的电源系统,最大可驱动1000A以上的IGBT。板上辅助电源有AC/DC、DC/DC和自给电源等多种型式。
单片式的调制驱动器,目前国外还未见有产品出售。但有一种2片组合式的,如UNITRODE公司的UC3724/25集成电路对,其中3724与驱动源相连,3725与被驱动的绝缘栅器件相连,3724与3725之间由用户接入制到约1MHz的载波上,送到隔离脉冲变压器的初级,次级输出信号在UC3725中通过直接整流得到自给电源,通过解调取得原PWM信号。
北京落木源公司也开发了一款变压器隔离的驱动器,型号为KB101,可以工作在较高的频率上,但是需要用户提供辅助电源。
变压器隔离、调制式自给电源驱动器
调制式自给电源驱动器,采用变压器进行电气隔离,通过载频传递驱动所需要的能量,通过调制信号传递PWM信息,因此可以通过0-100%占空比的PWM信号。目前的许多驱动板产品都采用这种技术,如西门康的SKHI27等。
用脉冲变压器隔离驱动绝缘栅功率器件有三种方法:无源、有源和自给电源驱动。
无源方法就是用变压器次级的输出直接驱动绝缘栅器件,这种方法很简单,也不需要单独的驱动电源,但由于绝缘栅功率器件的栅源电容Cgs一般较大,因而栅源间的波形Vgs将有明显变形,除非将初级的输入信号改为具有一定功率的大信号,相应脉冲变压器也应取较大体积。
此类产品,由于光电耦合器的速度限制,一般工作频率都在50KHz以下(TX-KA101可达80K)。它们的优点是,大部分具有过流保护功能,其过电流信号是从IGBT的管压降中取得的;共同的缺点是需要一个或两个独立的辅助电源,因而使用较为麻烦。
三电平逆变器中IGBT驱动保护电路设计的可靠性研究

三电平逆变器中IGBT驱动保护电路设计的可靠性研究[摘要]探讨三电平逆变器IGBT驱动保护电路设计的可靠性,本文分析了三电平逆变器的IGBT驱动以及其保护电路,并且分析了设计该电路时应该注意的问题,研究了本驱动电路的可靠性。
【关键词】三电平逆变器;IGBT;驱动保护三电平逆变器具有很大的优越性主要体现在其较低的耐压要求方面,使用该逆变器主元件可以具有原先一半的耐压性能,并且输出的机械波具有良好的波形。
本设计使用的逆变器有IGBT元件12个,有相同数量个驱动,另外和二极管共同构成了中性点的钳位电路。
本设计需要一种可靠、有效的实用型IGBT驱动保护电路,以确保电路的性能良好。
1.IGBT的使用条件根据不同的功能要求,可以选取不同的驱动电路,在有些重要的大电流或者是昂贵的电子设备中,我们可以选取专门的IGBT驱动及保护芯片,可靠性很高,但是在一些低成本,如家用电器中,这些驱动模块就不太实用了。
IGBT是逆变器中控制功率开和关的元件,具有非常重要的地位。
可以说全部系统的性能都由其掌控,因此驱动电路必须要有最佳的设计方案,否则整个系统就难以达到预想的性能。
一般驱动电路应满足以下条件:1)IGBT需要有一定的正反向栅极电压,并且需要足够高的正向电压值这样才能使器件的通态损耗量降到最低,不过电压不可太高,通常要求栅极电压<+20v。
IGBT被关闭之后仍然要保持反向的栅极电压-5- -15v,这样做的目的是让关断时间减到最短,让存储在器件内的电荷在最短时间内抽出,最终可以增加IGBT 耐压性能。
2)电路要对信号的输出和输入设备有隔离的作用,另外信号在传输的过程中必须要通达尽量不要存在延时的情况。
3)栅极电路的坡度一定要受到限制,这就用到了电阻,在回路中串联一个电阻就达到了这样的效果。
在做好坡度的控制之后才能够使控制器的损耗得到较好的控制。
栅极电阻↑→栅极电压坡度↑→IGBT开关过程时长↑→开关损耗↑。
栅极电阻取值范围为几Ω-几十Ω,影响其取值的因素是IGBT开关的频率和额定电压等。
igbt模块逆变器电路图大全(六款igbt模块逆变器电路设计原理图详解)

igbt模块逆变器电路图大全(六款igbt模块逆变器电路设计原理图详解)igbt模块逆变器电路图设计(一)太阳能光伏发电的实质就是在太阳光的照射下,太阳能电池阵列(即PV组件方阵)将太阳能转换成电能,输出的直流电经由逆变器后转变成用户可以使用的交流电。
以往的光伏发电系统是采用功率场效应管MOSFET构成的逆变电路。
然而随着电压的升高,MOSFET的通态电阻也会随着增大,在一些高压大容量的系统中,MOSFET会因其通态电阻过大而导致增加开关损耗的缺点。
在实际项目中IGBT逆变器已经逐渐取代功率场效应管MOSFET,因为绝缘栅双极晶体管IGBT通态电流大,正反向组态电压比较高,通过电压来控制导通或关断,这些特点使IGBT在中、高压容量的系统中更具优势,因此采用IGBT构成太阳能光伏发电关键电路的开关器件,有助于减少整个系统不必要的损耗,使其达到最佳工作状态。
在实际项目中IGBT逆变器已经逐渐取代功率场效应管MOSFET。
图1:太阳能光伏发电流程IGBT逆变器的工作原理逆变器是太阳能光伏发电系统中的关键部件,因为它是将直流电转化为用户可以使用的交流电的必要过程,是太阳能和用户之间相联系的必经之路。
因此要研究太阳能光伏发电的过程,就需要重点研究逆变电路这一部分。
如图2(a)所示,是采用功率场效应管MOSFET 构成的比较简单的推挽式逆变电路,其变压器的中性抽头接于电源正极,MOSFET的一端接于电源负极,功率场效应管Q1,Q2交替的工作最后输出交流电力,但该电路的缺点是带感性负载的能力差,而且变压器的效率也较低,因此应用起来有一些条件限制。
采用绝缘栅双极晶体管IGBT构成的全桥逆变电路如图2(b)所示。
其中Q1和Q2之间的相位相差180°,其输出交流电压的值随Q1和Q2的输出变化而变化。
Q3和Q4同时导通构成续流回路,所以输出电压的波形不会受感性负载的影响,所以克服了由MOSFET构成的推挽式逆变电路的缺点,因此采用IGBT构成的全桥式逆变电路的应用较为广泛一些。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(国内标准)三相逆变器中IGBT的几种驱动电路的分析三相逆变器中IGBT的几种驱动电路的分析1前言电力电子变换技术的发展,使得各种各样的电力电子器件得到了迅速的发展。
20世纪80年代,为了给高电压应用环境提供壹种高输入阻抗的器件,有人提出了绝缘门极双极型晶体管(IGBT)[1>。
于IGBT中,用壹个MOS门极区来控制宽基区的高电压双极型晶体管的电流传输,这就产生了壹种具有功率MOSFET 的高输入阻抗和双极型器件优越通态特性相结合的非常诱人的器件,它具有控制功率小、开关速度快和电流处理能力大、饱和压降低等性能。
于中小功率、低噪音和高性能的电源、逆变器、不间断电源(UPS)和交流电机调速系统的设计中,它是目前最为常见的壹种器件。
功率器件的不断发展,使得其驱动电路也于不断地发展,相继出现了许多专用的驱动集成电路。
IGBT的触发和关断要求给其栅极和基极之间加上正向电压和负向电压,栅极电压可由不同的驱动电路产生。
当选择这些驱动电路时,必须基于以下的参数来进行:器件关断偏置的要求、栅极电荷的要求、耐固性要求和电源的情况。
图1为壹典型的IGBT驱动电路原理示意图。
因为IGBT栅极发射极阻抗大,故可使用MOSFET驱动技术进行触发,不过由于IGBT的输入电容较MOSFET为大,故IGBT的关断偏压应该比许多MOSFET驱动电路提供的偏压更高。
广告插播信息维库最新热卖芯片:FX602D4ICM7555LM317D2T-TRTPA1517DWPRBL3207IRFR13N20DSP70 8RENCY2305SXC-1AD8108ASTLXT970QC对IGBT驱动电路的壹般要求[2>[3>:1)栅极驱动电压IGBT开通时,正向栅极电压的值应该足够令IGBT产生完全饱和,且使通态损耗减至最小,同时也应限制短路电流和它所带来的功率应力。
于任何情况下,开通时的栅极驱动电压,应该于12~20V之间。
当栅极电压为零时,IGBT处于断态。
但是,为了保证IGBT于集电极发射极电压上出现dv/dt 噪声时仍保持关断,必须于栅极上施加壹个反向关断偏压,采用反向偏压仍减少了关断损耗。
反向偏压应该于-5~-15V之间。
2)串联栅极电阻(Rg)选择适当的栅极串联电阻对IGBT栅极驱动相当重要。
IGBT 的开通和关断是通过栅极电路的充放电来实现的,因此栅极电阻值将对IGBT的动态特性产生极大的影响。
数值较小的电阻使栅极电容的充放电较快,从而减小开关时间和开关损耗。
所以,较小的栅极电阻增强了器件工作的耐固性(可避免dv/dt带来的误导通),但和此同时,它只能承受较小的栅极噪声,且可能导致栅极-发射极电容和栅极驱动导线的寄生电感产生振荡。
3)栅极驱动功率IGBT要消耗来自栅极电源的功率,其功率受栅极驱动负、正偏置电压的差值ΔUGE、栅极总电荷QG和工作频率fs的影响。
电源的最大峰值电流IGPK为:于本文中,我们将对几种最新的用于IGBT驱动的集成电路做壹个详细的介绍,讨论其使用方法和优缺点及使用过程中应注意的问题。
2几种用于IGBT驱动的集成芯片2.1TLP250(TOSHIBA公司生产)于壹般较低性能的三相电压源逆变器中,各种和电流相关的性能控制,通过检测直流母线上流入逆变桥的直流电流即可,如变频器中的自动转矩补偿、转差率补偿等。
同时,这壹检测结果也可以用来完成对逆变单元中IGBT实现过流保护等功能。
因此于这种逆变器中,对IGBT驱动电路的要求相对比较简单,成本也比较低。
这种类型的驱动芯片主要有东芝公司生产的TLP250,夏普公司生产的PC923等等。
这里主要针对TLP250做壹介绍。
TLP250包含壹个GaAlAs光发射二极管和壹个集成光探测器,8脚双列封装结构。
适合于IGBT或电力MOSFET栅极驱动电路。
图2为TLP250的内部结构简图,表1给出了其工作时的真值表。
TLP250的典型特征如下:1)输入阈值电流(IF):5mA(最大);2)电源电流(ICC):11mA(最大);3)电源电压(VCC):10~35V;4)输出电流(IO):±0.5A(最小);5)开关时间(tPLH/tPHL):0.5μs(最大);6)隔离电压:2500Vpms(最小)。
表2给出了TLP250的开关特性,表3给出了TLP250的推荐工作条件。
注:使用TLP250时应于管脚8和5间连接壹个0.1μF的陶瓷电容来稳定高增益线性放大器的工作,提供的旁路作用失效会损坏开关性能,电容和光耦之间的引线长度不应超过1cm。
图3和图4给出了TLP250的俩种典型的应用电路。
于图4中,TR1和TR2的选取和用于IGBT驱动的栅极电阻有直接的关系,例如,电源电压为24V时,TR1和TR2的Icmax≥24/Rg。
图5给出了TLP250驱动IGBT时,1200V/200A的IGBT上电流的实验波形(50A/10μs)。
可以见出,由于TLP250不具备过流保护功能,当IGBT过流时,通过控制信号关断IGBT,IGBT中电流的下降很陡,且有壹个反向的冲击。
这将会产生很大的di/dt和开关损耗,而且对控制电路的过流保护功能要求很高。
TLP250使用特点:1)TLP250输出电流较小,对较大功率IGBT实施驱动时,需要外加功率放大电路。
2)由于流过IGBT的电流是通过其它电路检测来完成的,而且仅仅检测流过IGBT 的电流,这就有可能对于IGBT的使用效率产生壹定的影响,比如IGBT于安全工作区时,有时出现的提前保护等。
3)要求控制电路和检测电路对于电流信号的响应要快,壹般由过电流发生到IGBT 可靠关断应于10μs以内完成。
4)当过电流发生时,TLP250得到控制器发出的关断信号,对IGBT的栅极施加壹负电压,使IGBT硬关断。
这种主电路的dv/dt比正常开关状态下大了许多,造成了施加于IGBT俩端的电压升高很多,有时就可能造成IGBT的击穿。
2.2EXB8..Series(FUJIELECTRIC公司生产)随着有些电气设备对三相逆变器输出性能要求的提高及逆变器本身的原因,于现有的许多逆变器中,把逆变单元IGBT的驱动和保护和主电路电流的检测分别由不同的电路来完成。
这种驱动方式既提高了逆变器的性能,又提高了IGBT的工作效率,使IGBT更好地于安全工作区工作。
这类芯片有富士公司的EXB8..Series、夏普公司的PC929等。
于这里,我们主要针对EXB8..Series做壹介绍。
EXB8..Series集成芯片是壹种专用于IGBT的集驱动、保护等功能于壹体的复合集成电路。
广泛用于逆变器和电机驱动用变频器、伺服电机驱动、UPS、感应加热和电焊设备等工业领域。
具有以下的特点:1)不同的系列(标准系列可用于达到10kHz开关频率工作的IGBT,高速系列可用于达到40kHz开关频率工作的IGBT)。
2)内置的光耦可隔离高达2500V/min的电压。
3)单电源的供电电压使其应用起来更为方便。
4)内置的过流保护功能使得IGBT能够更加安全地工作。
5)具有过流检测输出信号。
6)单列直插式封装使得其具有高密度的安装方式。
常用的EXB8..Series主要有:标准系列的EXB850和EXB851,高速系列的EXB840和EXB841。
其主要应用场合如表4所示。
注:1)标准系列:驱动电路中的信号延迟≤4μs2)高速系列:驱动电路中的信号延迟≤1.5μs图6给出了EXB8..Series的功能方框图。
表5给出了EXB8..Series的电气特性。
表6给出了EXB8..Series工作时的推荐工作条件。
表6EXB8..Series工作时的推荐工作条件图7给出了EXB8..Series的典型应用电路。
EXB8..Series使用不同的型号,可以达到驱动电流高达400A,电压高达1200V 的各种型号的IGBT。
由于驱动电路的信号延迟时间分为俩种:标准型(EXB850、EXB851)≤4μs,高速型(EXB840、EXB841)≤1μs,所以标准型的IC适用于频率高达10kHz的开关操作,而高速型的IC适用于频率高达40kHz的开关操作。
于应用电路的设计中,应注意以下几个方面的问题:——IGBT栅射极驱动电路接线必须小于1m;——IGBT栅射极驱动电路接线应为双绞线;——如想于IGBT集电极产生大的电压尖脉冲,那么增加IGBT栅极串联电阻(Rg)即可;——应用电路中的电容C1和C2取值相同,对于EXB850和EXB840来说,取值为33μF,对于EXB851和EXB841来说,取值为47μF。
该电容用来吸收由电源接线阻抗而引起的供电电压变化。
它不是电源滤波器电容。
EXB8..Series的使用特点:1)EXB8..Series的驱动芯片是通过检测IGBT于导通过程中的饱和压降Uce来实施对IGBT的过电流保护的。
对于IGBT的过电流处理完全由驱动芯片自身完成,对于电机驱动用的三相逆变器实现无跳闸控制有较大的帮助。
2)EXB8..Series的驱动芯片对IGBT过电流保护的处理采用了软关断方式,因此主电路的dv/dt比硬关断时小了许多,这对IGBT的使用较为有利,是值得重视的壹个优点。
3)EXB8..Series驱动芯片内集成了功率放大电路,这于壹定程度上提高了驱动电路的抗干扰能力。
4)EXB8..Series的驱动芯片最大只能驱动1200V/300A的IGBT,且且它本身且不提倡外加功率放大电路,另外,从图7中可以见出,该类芯片为单电源供电,IGBT的关断负电压信号是由芯片内部产生的-5V信号,容易受到外部的干扰。
因此对于300A以上的IGBT或者IGBT且联时,就需要考虑别的驱动芯片,比如三菱公司的M57962L等。
图8给出了EXB841驱动IGBT时,过电流情况下的实验波形。
可以见出,正如前面介绍过的,由于EXB8..Series芯片内部具备过流保护功能,当IGBT过流时,采用了软关断方式关断IGBT,所以IGBT中电流是壹个较缓的斜坡下降,这样壹来,IGBT关断时的di/dt明显减少,这于壹定程度上减小了对控制电路的过流保护性能的要求。
2.3M579..Series(MITSUBISHI公司生产)M579..Series是日本三菱公司为IGBT驱动提供的壹种IC系列,表7给出了这种系列的几种芯片的基本应用特性(其中有*者为芯片内部含有BOOSTER电路)。
于M579..Series中,以M57962L为例做出壹般的解释。
随着逆变器功率的增大和结构的复杂,驱动信号的抗干扰能力显得尤为重要,比较有效的办法就是提高驱动信号关断IGBT时的负电压,M57962L的负电源是外加的(这点和EXB8..Series不同),所以实现起来比较方便。