应用数理统计--第三章习题及答案

合集下载

应用数理统计课后答案

应用数理统计课后答案
抗压强度是多少?
(2)检验线性回归效果的显著性( 0.05 ); (3)求回归系数 b 的区间估计(置信度为1 0.95 );
(4)求 x0 225kg 时,0 的预测值及预测区间(置信度为1 0.95 )。
(参考数据:)
5-5. 解:解:(1)计算得
求未知参数 a、b 的估计值,并求回归方程的残差平方和。
5-14.
解:两边对 y
b
ae x
取对数,有: ln y
ln a
ln
y

A

ln a
,
t

1 x

得 z A bt
将数据整理如下表:
xi
0.05 0.06 0.07 0.10 0.14 0.20 0.25 0.31 0.38 0.43 0.47
xi2 518600 ,
x

1 12
xi 205 ,
y

1 12
yi 72.6 ,
xi yi 182943 ,
yi2 64572 .84 ,
所以 lxx xi2 nx 2 518600 12 2052 14300
lxy xi yi nxy 182943 12 205 72.6 4347
(参考数据:)
6-2. 解:检验问题 H0 :1 2 3
工厂
寿命
Ti

Ti
2
或 i
n
i
S
2 i

40 48 38 42 45 (1600 2304 1444 1764 2025
213
45369 42.6
63.2

应用数理统计习题答案_孙荣恒(全)

应用数理统计习题答案_孙荣恒(全)

2214243.(1)[||]0.140(2)[||]0.144(,4),(,),(0,)[||]20.1800255(3){||0.1}2(10.9521.9615372tnE a D nnE aN a N a t a NnnE t t dtnP tPnξξξξξξπ-+∞-==≤⇒=-≤=-==≤==≤=≤=Φ-≥=⇒≥⎰《应用数理统计》参考答案习题一0.51.(,0.5)(,){||0.1}0.9972.97442N a N anP a Pnξξξξ⇒-<=<==⇒=2242.(,4)(,)100||(1)(||)()0.90,0.330.20.2(2):P(||)N a N aa UP a U P Uaξξξξσξεε⇒--<=<==-≥≤挈比学夫不等式(5)(5)125515(3){15}1{15}1{15,15,,15}1215121[{}]221[1(1.5)]0.292P P P P ξξξξξξ>=-≤=-≤≤≤--=->=--Φ=1121212111()(1){}{,,,}{1,1,,1}()()(1)(1)k n n nn m nm n m n m ni i P k pq P M m P m m m P m m m pqpq q q ξξξξξξξ----======≤≤≤-≤-≤-≤-=-=---∑∑4.5. 6. 13.0)25(1}8.012138.012{}13{)54,12(~)1()4,12(~=Φ-=->-=>ξξξξP P N N (1)(1)1255511515(2){10}1{10}1{10,10,,10}1[{10}]1[1{10}]1210121[1{}]221[11(1)]0.579P P P P P P ξξξξξξξξ<=-≥=->>>=->=--≤--=--≤=--+Φ=6(1)0.001567.2800~(0.0015)(1){800}[{800}][0.0015]x E P P e dx e ξξξ∞-->=>==⎰6(6)30000.00156 4.56(2){3000}[{3000}][0.0015](1)x P P e dx e ξξ--<=<==-⎰1212(2){}{,,,}{1,1,,1}n n nn P K k P k k k P k k k ξξξξξξ==≥≥≥-≥+≥+≥+7.8.均值的和(差)等于和的均值,方差的和差都等于方差的和9.由中心极限定理:10.11.22222(1)(1)(1)()222~()()()[()](,)it itit n e n n e n e it i t t tn it it n n nn p t e t t ee n e e e N n λξλλξξλλλλλξλϕϕϕλξλ---+--∴=∴======∴12121233~(20,3),~(20,),~(20,)10151~(0,)2{||0.3}1220.67N N N N P P ξξξξξξξξξ-∴->=->=-Φ=2(),(),E a D ξξσ==121(0,1)(0,1)~(,)n n i i i ni i na a n N N N a n nξξσξσξ==--∴∴=∑∑∑22222222,(),()()(),(),(),(,)k k k k k k k k k k k k k kk k E a E a D E E a a a a E A a D A n a a A N a nξξξξξ===-=--∴==-∴22121212222(),()(),()0,()()()2,()()()2,i i E E a D D E D D D E E D ξξξξσξξξξξξσξξξξξξσ====∴-=-=+=∴-=-+-=13.14.15.16.2212221221,(),(),()()0,()()()(1),11[()](1)1niii ii i iniiniiE a E a D DnE D D DnDn D nDES n Dn nE ES Dn n nσξξξσξξξξξξξσξξξξξξξ=======∴-=-=+--===--==--∑∑∑222222222424222(1),11()(1)()2(1)21 ()2(1)() nsnns nE n Es On nns nD n Ds On n n χσσσσσσσ--=-⇒==+-=-⇒==+112323''' '2(121)(1)()()()()5231()(121)23023021AD E E E EA E E A AVar Aξξξξξξηξηηηηηξξξξξ⎛⎫⎪-+=-==⎪⎪⎝⎭=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11223''''110(2)(,)111()()()()5231()(121)23023021BE E E EB E E B BVar Bξηηηξξξηηηηξξξξξ⎛⎫⎛⎫ ⎪===⎪ ⎪⎝⎭ ⎪⎝⎭∑=--=--⎛⎫⎛⎫⎪⎪==--=⎪⎪⎪⎪⎝⎭⎝⎭11222211()2822121(2)||2241128116xx xxe dx dxπ⎛⎫⎛⎫- ⎪⎪∞∞⎝⎭⎝⎭-∞-∞-=∑-⎛⎫⎛⎫∑==⎪ ⎪-⎝⎭⎝⎭⎰⎰17.18.21.22.()11223'122'111110(,),211151,1101221111111100130111100310110N A A AAA Aξηξηξηηθθ⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎝⎭∑⎛⎫⎛⎫⎛⎫⎪==⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪⎝⎭⎝⎭⎪⎪⎝⎭⎝⎭‘=,由引理1.2.3,则-的联合分布为--11223''12111111~(,),1011111432111111121301111210.2N A A AA Aξηξξηξηθρρρρρρρρρηη⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪ ⎪-⎝⎭⎝⎭ ⎪⎝⎭∴∑⎛⎫⎛⎫+--⎛⎫⎛⎫⎪⎪∑=-=⎪ ⎪⎪⎪---⎝⎭⎝⎭⎪⎪-⎝⎭⎝⎭∴--=⇒=-==A,--时与独立2''44''22'''''' 44224(0,)(,)()()2()()()()()cov(,)(,)()() ()()2()()()2()nN IE A B tr A tr B tr ABE A E B tr A tr BA B E A B E A E Btr A tr B tr AB tr A tr B tr AB ζσζζζζσσζζζζσσζζζζζζζζζζζζσσσσσ=+=∴=-=+-=()11112222121122,1,1,0822177,122477yay y Qyba babθθθθθθθ--⎛⎫⎛⎫--=⎪⎪-⎝⎭⎝⎭⇒===-=⎛⎫⎪⎛⎫⎛⎫∴=∑== ⎪⎪ ⎪⎪⎝⎭⎝⎭⎪⎝⎭23.24.又 则 令 则与 独立,则 与独立,且26.则2212221~(,),~(0,),~(1),(0,1)/(1)n n N a N n n ns n N T t n σξξξσξξχσξξ++----=-'11111(,,),(,,)111(,,),()11n n n ij n n n n i i i ia a B D nn n ξξθξσσσσδσσ⨯======-∑∑'2,0,D D D BD ===221(,)(,)1()n ni i nnB N a N I ηξθσσ===∑,i i i a ξγσ-=2'11,()()()ni i i a D n ηγζγγξθξθσ=-==-=--∑∑B nηξ=ξηζ)1(~2-n χζ11(,)22U ξθθ-+(1)()121111221111()2201()121()()[1()]1[]21()()[()][]2(,)(1)()()[()()](1)[]n x n n n n n n n x f x other F x dx x f x nf x F x n x f x nf x F x n x f x y n n f x f y F y F x n n y x ξξθξξθθθθθ-------⎧-<<+⎪=⎨⎪⎩==-+∴=-=⋅⋅-+==⋅+-=--=⋅-⋅-⎰27.33.2222122222212222(0,),1()||2 ()()()()22(1)iyniniiY a NE d Y dynaD dE d E d Ennn nσξσσξσσσπσσσππ-∞-∞===-==-=-=-=⋅-=-∑⎰∑2222122122210.3(0,0.3),(0,)1010()(9)0.310()100.18{}0.30.3{(2}0.01iniiniiniN NPPξξξξχξξξ===--⨯<=<=∑∑∑222(2)(0,1),(1)0.3(9){0.9}0.9932nsN ntP Psnξχσξξξ--<=<=12121222221221212(3)(0,0.18),(0,0.18)(0,1),(0,1)0.18(1),()(1)0.18{()40}0.9N NN NPξξξξξξξξχχξξξξ+-+--+<=-224132244(4)~(1),~(0,0.12),10.73 {10.73}{}0.95NP Pξχξξξξ-<=<=34.《应用数理统计》参考答案2211222212222211(1)(0,),(0,)(1),()(1)11,()()(2)nn miii i n nniii nn mi i i i n N n N m n m m a b n m a b n m ξσξσξξχχσσσξξχ+==+=+==+--==++-∑∑∑∑∑∑222211112(2)(),(0,)(0,1),/(),n mni ii n i nniii i i m N n N t m c m n ξχξσσξξξσσ+=+===∴=∑∑∑∑∑2222221121221(3)(),()()/(1,1),/nn mi i i i n ni i n mi i n n m n mF n m d nm ξξχχσσξσξσ+==+=+=+--∴=∑∑∑∑1. 由矩估计法2. (1) 由矩估计法(2)(3)(4)(5)818226212266174.00281610(74.002)88610 6.85710181ii i i a X x S x n S S n σ=-=--⎧===⎪⎪⎨⎪==⨯=-⎪⎩∴==⨯⨯=⨯--∑∑11'1202()33A x EX x dx θαξθθαξθθξ==-====∴=⎰111'101(1)2211A EX x x dx θαξθαθξθξθξ==+==+==+-∴=-⎰1211211122222221212222222121112()2x x n i i e xdx e x dx A X n A S S S θθθθθθαθθξθαθθξθξθξθθξθξθ--+∞--+∞==⋅=+==⋅===+∴=+==-+⎧=-⎪∴⎨=⎪⎩⎰∑⎰111(1)122Ni N NA x N NN ξξ=+===⋅⇒=∑11102()1A dx ξξθξ===⇒=-⎰2∞3.4.2()2{0},(){0}{}()0.7,110.7,0.525x aA X AP A P dxa aP a pp aξξξ--=<=<=--=<=Φ-=≈∴≈=-⎰设表示出现的次数,(1)11111(1)()ln()[ln ln(1)ln]ln()1[ln ln]ln ln0 ln lnniiniin ni ii iniiL c xL c xLc x n c xnnx n cθθθθθθθθθθθθθ-+=======+-+∂=+-=+-=∂=-∏∑∑∑∑1111221(2)()ln()[ln1)ln]ln()]0(ln)niniiniiniiLL xLxnxθθθθθ======+∂=+=∂=∑∑∑11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏11()()()()11(3)()ln()lnln()11,,,,()0,0,11,()()nnin nn nnn nnnLL nL nLother otherL Lθθθθθθθθξξθξθθθθθξθξθξ====-∂=-=∂⎧⎧≤≤⎪⎪==⎨⎨⎪⎪⎩⎩≤≤=∏5.221()212212241(5)()()ln()[ln]22()2()ln()[022in xiniini iiLxLx xLθθθθθθθθθθθθθξθ--====-=-----∂==∂=∑∑(1)11(1)11(1)(1)(6)()ln()[ln ln(1)ln]ln()(),,,()()nc ciiniinc ci niL c xL c c c xL ncL c xL Lθθθθθθθθθθθξξθξθξ-+==-+===--+∂=-=∂=≤≤⇒=∏∑∏不能解出,所以由22111(7)()1)(1)ln()[2ln(2)ln(1)ln(1)]2ln()22]01inxiini iiniiL xL x xx nL nθθθθθθθθθθθξ-====--=+--+--∂=-=⇒=∂-∏∑∑(~(,0)11nUξθ∏6.7.所以不唯一。

概率论与数理统计习题及答案 第三章

概率论与数理统计习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以 11()(1)(1),2,3,.k k P X k p p p p k --==-+-=L2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有kr kb aC C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+L , 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

概率论与数理统计第三章习题答案

概率论与数理统计第三章习题答案
⎛ 3⎞ 3 ⎛ 3⎞ 3 = ⎜1 − ⎟ ⋅ + ⎜1 − ⎟ ⋅ + " ⎝ 4⎠ 4 ⎝ 4⎠ 4 3 5 ⎤ 3 ⎡1 ⎛ 1 ⎞ ⎛ 1 ⎞ = ⎢ + ⎜ ⎟ + ⎜ ⎟ + "⎥ 4⎣ ⎢4 ⎝ 4 ⎠ ⎝ 4 ⎠ ⎥ ⎦
3
3 = ⋅ lim 4 n→∞
1⎡ ⎛1⎞ ⎢1 − ⎜ ⎟ 4⎣ ⎢ ⎝4⎠
0, 1, 2, 5,由题意,显然 ξ ~ B(5,0.2) 解:设 ξ代表设备使用的个数, ξ= ",
2 2 3 2 (1) P (ξ = 2) = C 5 p q = C5 ⋅ (0.2) 2 ⋅ (0.8) 3 = 0.2048
( 2) P (ξ ≤ 2) = P (ξ = 0) +P (ξ = 1) +P (ξ = 2)
2⎡ ⎛2⎞ ⎢1 − ⎜ ⎟ k ∞ 3⎣ ⎢ ⎝3⎠ ⎛2⎞ 而 ∑ ⎜ ⎟ = lim n →∞ 2 k =1 ⎝ 3 ⎠ 1− 3 1 所以, 2 c=1,从而 c = . 2
n −1
⎤ ⎥ ⎥ ⎦
=
2 1− 3
2 3
=2
3 ,以 ξ 表示首次取得成功的试 验 4 次数序号,试写出 ξ 的分布律,并求出 ξ 为偶数的概率 p。 7.设在某种试验中,试验 成功的概率为
0 1 2 = C5 (0.2) 0 (0.8) 5 + C 5 (0.2)1 (0.8) 4 + C 5 (0.2) 2 (0.8) 3 = 0.94208
( 3) P (ξ ≥ 2) = 1 − P (ξ = 0) − P (ξ = 1)
0 1 = 1 − C5 (0.2) 0 (0.8) 5 − C 5 (0.2)1 (0.8) 4 = 0.26272

概率论与数理统计习题解答(第3章)

概率论与数理统计习题解答(第3章)

习 题 三 (A )三、解答题1. 设口袋中有3个球,它们上面依次标有数字1,1,2,现从口袋中无放回地连续摸出两个球,以X ,Y 分别表示第一次与第二次摸出的球上标有的数字,求(X ,Y )的分布律. 解:(X ,Y )取到的所有可能值为(1,1),(1,2),(2,1)由乘法公式: P {X =1,Y =1}=P {X =1}P {Y =1|X =1}=2/3⨯1/2=/3, P {X =1,Y =2}= P {X =1}P {Y =2|X =1}=2/3⨯1/2=1/3, P {X =2,Y =1}= P {X =2}P {Y =1|X =2}=1/3⨯2/2=1/3. (X ,Y )的分布律用表格表示如下:2.设盒中装有8支圆珠笔芯,其中3支是蓝的,3支是绿的,2支是红的,现从中随机抽取2支,以X ,Y 分别表示抽取的蓝色与红色笔芯数,试求: (1) X 和Y 的联合分布律;(2) P {X ,Y } ∈ A },其中A = {(x ,y )| x + y ≤ 1}. 解:X ,Y 所有可能取到的值是0, 1, 2(1) P {X =i , Y =j }=P {X =i }P {Y =j |X =i }=282223C C C C j i j i --, i , j =0,1,2, i +j ≤2 或者用表格表示如下:(2)P{(X ,Y )∈A }=P {X +Y ≤1}=P {X =0, Y =0}+P {X =1,Y =0}+P {X =0,Y =1}=3/28+9/28+6/28=9/14.3.设事件B A 、满足,21)|(,21)|(,41)(===A B P B A P A P 记X ,Y 分别为一次试验中A ,B 发生的次数,即⎩⎨⎧=不发生,发生A A X 0,1,⎩⎨⎧=不发生,发生,B B Y 0 1,求:二维随机变量(X ,Y )的分布律.解:因为P (A )=1/4,,21)|(=A B P 由P (B |A )=2/14/1)()()(==AB P A P AB P 得P (AB )=1/8, 由P (A |B )=2/1)()(=B P AB P 得P(B)=1/4.(X ,Y )取到的所有可能数对为(0,0),(1,0),(0,1),(1,1),则 P {X =0,Y =0}=)(1)()(B A P B A P B A P -===1-P (A )-P (B )+P (AB )=5/8, P {X =0,Y =1}=)(B A P =P (B -A )=P (B )-P (AB )=1/8, P {X =1,Y =0}=)(B A P =P (A -B )=P (A )-P (AB )=1/8, P {X =1,Y =1}=P (AB )=1/8.4.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=.,0,10,10 ,),(其它y x Axy y x f 试求: (1) 常数A (2) P {X = Y } (3) P {X < Y }(4) (X ,Y )的分布函数. 解:(1)由归一性知:1=, 故A=4(2) P {X =Y }=0, (3) P {X <Y }=.(4)F (x ,y )=即F (x ,y )=5.设二维随机变量),(Y X 的联合概率密度为⎪⎩⎪⎨⎧<<<<+=其它0,20,10 ,3),(2y x xyx y x f求P {X + Y ≥ 1}. 解:P{X+Y ≥1}=7265)3(),(102121=+=⎰⎰⎰⎰-≥+dydx xy x dxdy y x f xy x 6.将一枚硬币掷3次,以X 表示前2次中出现正面的次数,以Y 表示3次中出现正面的次数,求X ,Y 的联合分布律及(X ,Y )的边缘分布律.解:X 的所有可能取值为0,1,2,Y 的所有可能取值为0,1,2,3. P {X =0,Y =0}=0.53=0.125; P {X =0,Y =1}=0.53=0.125P {X =1,Y =1}=25.05.05.0212=⨯C , P {X =1,Y =2}=25.05.05.0212=⨯C P {X =2,Y =2}=0.53=0.125, P {X =2,Y =3}==0.53=0.125 X ,Y 的分布律及边缘分布律可用表格表示如下:Y X 0 1 2 3 P i . 0 0.125 0.125 0 0 0.25 1 0 0.25 0.250.52 00.125 0.125 0.25P .j0.125 0.375 0.375 0.125 1解法2:,21)21()21(}|{}{},{22⨯=======-iiiC i X j Y P i X P j Y i X P.1,0,3,2,1,0,2,1,0=-==i j j i7.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<=-其它,00,),(yx e y x f y 求边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<<=-其它,00,),(yx e y x f y⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==-+∞-∞+∞-⎰⎰0,00,0,00,),()(x x e x x dy e dy y x f x f xxy X ⎩⎨⎧<≥=⎪⎩⎪⎨⎧<≥==--∞+∞-⎰⎰0,00,0,00,),()(0y y ye y y dx e dx y x f y f y y yY 8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧≤≤=其它,01,),(22y x y cx y x f 求:(1) 确定常数c(2) 边缘概率密度f X (x ),f Y (y ).解:⎩⎨⎧<≤≤=0,01,),(22x y x y cx y x f(1)214212),(1104211122cdx x x c ydydx cx dxdy y x f x =-===⎰⎰⎰⎰⎰-∞+∞-∞+∞-所以 c=21/4(2) ⎪⎩⎪⎨⎧<-=⎪⎩⎪⎨⎧<==⎰⎰∞+∞-其它其它,,01||,8)1(2101||,421),()(42122x x x x ydy x dy y x f x f x X⎪⎩⎪⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰-∞+∞-其它其它,,010********),()(252y y y ydx x dx y x f y f y yY 9.设平面区域D 由曲线xy 1=及直线y = 0,x = 1,x = e 2围成,二维随机变量(X ,Y )在区域D 上服从均匀分布,求边缘概率密度f X (x ),f Y (y ). 解:2|ln 12211===⎰e e D x dx xS (X ,Y )在区域D 上服从均匀分布,故f (x ,y )的概率密度为⎪⎩⎪⎨⎧∈=其它,0),(,21),(Dy x y x f ⎪⎩⎪⎨⎧≤≤==⎰⎰∞+∞-其它(,01,21),()210X e x dy dy y x f x f x⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤≤≤-=-===--∞+∞-⎰⎰⎰其它(10,0),11(2121,2121),()221112X 2y e e y y dx e dx dx y x f x f y e 10.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f 试求条件概率密度f (y | x ).解:⎩⎨⎧<<<<=其它,00,10,3),(xy x x y x f)0)(( )(),()|(|>=x f x f y x f x y f X X X Y ⎪⎩⎪⎨⎧≤<===⎰⎰∞+∞-其它,010,233),()(20x x xdy dy y x f x f x X当0<x ≤1时,⎪⎩⎪⎨⎧<<==其它,00,233)(),()|(2|xy x x x f y x f x y f X X Y即,⎪⎩⎪⎨⎧≤<<=其它,010,2)|(|x y x x y f X Y11.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<=其它,0,10,1),(xy x y x f 求条件概率密度f (x | y ).解:⎩⎨⎧<<<=其它,0||,10,1),(xy x y x f⎪⎩⎪⎨⎧>-=≤+===⎰⎰⎰-∞+∞-0,10,1),()(11y y dx y y dx dx y x f y f y y Y当y ≤0时,⎪⎩⎪⎨⎧<<-<<+==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X当y >0时,⎪⎩⎪⎨⎧<<-<<-==其它,0,10,11)(),()|(|x y x x y x f y x f y x f Y Y X所以,⎪⎩⎪⎨⎧<<<-==其它,01||0,||11)(),()|(|x y y x f y x f y x f Y Y X12.已知随机变量Y 的概率密度为⎩⎨⎧<<=其它,010,5)(4y y y f Y 在给定Y = y 条件下,随机变量X 的条件概率密度为⎪⎩⎪⎨⎧<<<=其它,010,3)(32y x y x y x f 求概率P {X > 0.5}. 解:由)(),()|(|x f y x f y x f Y Y X =得 ⎩⎨⎧<<<<==其它,00,10,15)()|(),(2|yx y yx y f y x f y x f Y Y X644715),(}5.0{15.0125.0===>⎰⎰⎰⎰+∞+∞∞-xdydx yx dydx y x f X P 13.设二维随机变量(X ,Y )的分布律为试分别求),max(Y X Z =和),min(Y X W =的分布律. 解:Z =max(X ,Y ),W =min(X ,Y )的所有可能取值如下表Z =max(X ,Y ),W =min(X ,Y )的分布律为14.设X 和Y 是相互独立的随机变量,且)(~),(~θθE Y E X ,如果定义随机变量Z 如下:⎩⎨⎧>≤=Y X YX Z ,0,1 求Z 的分布律.解:⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X θθ ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f yY θθ 由独立性得X ,Y 的联合概率密度为⎪⎩⎪⎨⎧>>=+-其它,00,0,1),(2y x e y x f yx θθ 则P {Z =1}=P {X ≤Y }=211),(002==⎰⎰⎰⎰∞++-≤xyx yx dydx edxdy y x f θθ P {Z =0}=1-P {Z =1}=0.5故Z 的分布律为15.设二维随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π求边缘概率密度f X (x ),f Y (y );并问X 与Y 是否独立?解:⎪⎩⎪⎨⎧≤+=其它,01,1),(22y x y x f π⎪⎩⎪⎨⎧<-===⎰⎰---∞+∞-其它,01||,121),()(222112x x dy dy y x f x f x x X ππ 同理,⎪⎩⎪⎨⎧<-=其它,01||,12)(2y y y f Y π显然,)()(),(y f x f y x f Y X ≠,所以X 与Y 不相互独立16.设随机变量X 和Y 相互独立,试在以下情况下求Y X Z +=的概率密度, (1) )1,0(~),1,0(~U Y U X ; (2) )1(~),1,0(~Exp Y U X .解:(1)⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧<<=其它,010,1)(Y y y f利用卷积公式:⎰+∞∞--=dx x z f x f z f Y X Z )()()(求f Z (z ))()(x z f x f Y X -=⎩⎨⎧+<<<<其它,01,10,1x z x x⎪⎪⎩⎪⎪⎨⎧<≤<≤-===-=⎰⎰⎰-∞+∞-其它2110,02,)()()(110z z z dx z dx dx x z f x f z f z z Y X Z(2) ⎩⎨⎧<<=其它,010,1)(x x f X ⎩⎨⎧≤>=-0,00,)(Y y y e y f y 利用卷积公式:⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎩⎨⎧+<<>=--其它,01,0,)()(y z y y e y f y z f y Y X⎰+∞∞--=dy y f y z f z f Y X Z )()()(⎪⎪⎩⎪⎪⎨⎧⎪⎩⎪⎨⎧≥<≤--=≥<≤=-----⎰⎰其它其它110,0,)1(,1110,0,,10z z e e e z z dy e dy e z zzz y z y17.设)1,1(~),1,0(~N Y N X ,且X 与Y 独立,求}1{≤+Y X P . 解:由定理3.1(P75)知,X +Y ~N (1,2),故5.0)0(}21121{}1{=Φ=-≤-+=≤+Y X P Y X P 18.设随机变量(X ,Y )的概率密度为⎪⎩⎪⎨⎧>>+=+-. ,0;0,0,)(21),()(其它y x e y x y x f y x(1) 问X 和Y 是否相互独立? (2) 求Y X Z +=的概率密度. 解:(1) )1(21)(21),()0)(X +=+==-+∞+-+∞∞-⎰⎰x e dy e y x dx y x f x f x y x ((x>0) 同理,)1(21)(+=-y e y f yY y>0 显然,)()x (),(y f f y x f Y X =,所以X 与Y 不相互独立 (2).利用公式⎰+∞∞--=dx x z x f z f Z )()(,被积函数⎪⎩⎪⎨⎧>>=⎪⎩⎪⎨⎧>->-+=---+-其它其它,0,0,21,00,0,)(21),()(xz x ze x z x e x z x x z x f z x z x所以⎰+∞∞--=dx x z x f z f Z )()(,⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧≤>=≤>=--⎰0,00,210,00,2120z z e z z z dx ze z z z19. 设某系统L 由两个相互独立的系统L 1,L 2联合而成,各连接方式如图所示.已知L 1,L 2的使用寿命X 与Y 分别服从参数为α,β 的指数分布,求以下各系统L 使用寿命Z 的分布函数及概率密度.解:并联时,系统L 的使用寿命Z=max{X ,Y} 因X ~Exp (α),Y ~Exp (β),故⎪⎩⎪⎨⎧≤>=-0,00,1)(x x e x f x X αα, ⎪⎩⎪⎨⎧≤>=-0,00,1)(y y e y f y Y ββ ⎪⎩⎪⎨⎧≤>-=-0,00,1)(x x e x F xX α, ⎪⎩⎪⎨⎧≤>-=-0,00,1)(y y e y F y Y β ⎪⎩⎪⎨⎧≤>--==--0,00),1)(1()()()(z z e e z F z F z F z z Y X Z βα⎪⎩⎪⎨⎧≤>+-+=⎪⎪⎭⎫⎝⎛+---0,00,)11(11)(11z z e e e z f z z z Z βαβαβαβα 串联时,系统L 的使用寿命Z =min{X ,Y }⎪⎩⎪⎨⎧≤>-=---=⎪⎪⎭⎫⎝⎛+-0,00,1)](1)][(1[1)(11z z e z F z F z F z Y X Z βα ⎪⎩⎪⎨⎧≤>⎪⎪⎭⎫ ⎝⎛+=⎪⎪⎭⎫⎝⎛+-0,00,11)(11z z e z f zZ βαβα (B )1.设二维随机变量(X ,Y )的分布律为已知随机事件{X = 0}与{X + Y = 1}相互独立,求a ,b 的值.解:P {X =0}=a +0.4,P {X +Y =1}=P {X =1,Y =0}+P {X =0,Y =1}=a +b. P {X =0,X +Y =1}=P {X =0,Y =1}=a 由于{X =0}与{X +Y =1}相互独立,所以 P {X =0, X +Y =1}=P {X =0} P {X +Y =1}即 a =(a +0.4)(a +b ) (1) 再由归一性知:0.4+a +b +0.1=1 (2) 解(1),(2)得 a =0.4, b =0.1 2.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<--=其它 ,010,10 ,2),(y x y x y x f (1) 求P {X > 2Y }(2) 求Z = X + Y 的概率密度f Z (z ). 解: (1) 247)2(),(}2{10202=--==>⎰⎰⎰⎰>xyx dydx y x dxdy y x f Y X P (2) 利用公式dx x z x f z f Z ⎰+∞∞--=),()(计算⎩⎨⎧<-<<<-=-其它,010,10,2),(x z x z x z x f ⎪⎩⎪⎨⎧≥<≤-<<-=⎪⎪⎩⎪⎪⎨⎧≥<≤-<<-=-=⎰⎰⎰-∞+∞-2,021,)2(10),22,021,)2(10,)2(),()(2110z z z z z z z dx z z dx z dx x z x f z f z z Z (3.设随机变量X 的概率密度为⎪⎪⎪⎩⎪⎪⎪⎨⎧<≤<<-=其它,020,4101,21)(x x x f X令2X Y =,),(y x F 为二维随机变量(X ,Y )的分布函数,求 (1) Y 的概率密度)(y f Y ;(2) )4,21(-F .解:(1) F Y (y )=P {Y ≤y }=P {X 2≤y } 当y <0时,f Y (y )=0当y ≥0时,)()(}{)(y F y F y X y P y F X X Y --=<<-=从而,⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧>≤<≤<=⎪⎩⎪⎨⎧-+=4041,8110,83)]()([21)(y y y y y y f y f yy f X X Y ,(2) F (-1/2,4)=P {X ≤-1/2,Y ≤4}= P {X ≤-1/2,X 2≤4} =P {-2≤X ≤-1/2}=4121)(211212==⎰⎰----dx dx x f X 4.设(X ,Y )为二维离散型随机变量,X 和Y 的边缘分布律分别如下:如果1}0{==XY P ,试求 (1) (X ,Y )的分布律; (2) 问X 与Y 是否独立. 解:P {XY ≠0}=1-P {XY =0}=0 即 P {X =-1,Y =1}+P {X =1,Y =1}=0由概率的非负性知,P {X =-1,Y =1}=0,P {X =1,Y =1}=0由边缘分布律的定义,P {X =-1}= P {X =-1,Y =0}+ P {X =-1,Y =1}=1/4 得P {X =-1,Y =0}=1/4再由P {X =1}= P {X =1,Y =0}+ P {X =1,Y =1}=1/4 得P {X =1,Y =0}=1/4再由P {Y =1}=P {X =-1,Y =1}+ P {X =0,Y =1}+ P {X =1,Y =1}= P {X =0,Y =1} 知P {X =0,Y =1}=1/2最后由归一性得:P {X =0,Y =0}=0(X ,Y )的分布律用表格表示如下:(2) 显然,X 和Y 不相互独立,因为P {X =-1,Y =0}≠ P {X =-1}P {Y =0}5.设随机变量X 与Y 相互独立,且),(~),,(~2ππσμ-U Y N X ,求Z = X + Y 的概率密度(计算结果用标准正态分布分布函数)(x Φ表示).解:X 与Y 相互独立,利用卷积公式dx x z f x fz f Y XZ ⎰+∞∞--=)()()(计算,21)(222)(σμσπ--=x X ex f ⎪⎩⎪⎨⎧-∈=其它,0),(,21)(πππy y f Y ⎪⎩⎪⎨⎧<-<-=---其它,0,221)()(222)(ππππσσμx z e x z f x f x Y X⎰⎰⎰+---+---+∞∞-==-=ππσμπππσμπσππσz z x z z x Y X Z dx edx edx x z f x f z f 22222)(212)(21221)()()()]()([21}{21ππππππ--+=+<<-=z F z F z X z P ⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛--Φ-⎪⎭⎫ ⎝⎛-+Φσμπσμππz z 21 6.设二维随机变量(X ,Y )在矩形}10,20),{(≤≤≤≤=y x y x G 上服从均匀分布,试求边长为X 和Y 的矩形面积S 的概率密度)(s f S . 解:(X ,Y )~U(G )⎪⎩⎪⎨⎧∈=其它,0),(,21),(Gy x y x f设F (x )和f (s )分别表示S =XY 的分布函数和密度函数 F (s )=P {XY <s} s<0时,F S (s)=0s ≥0时,⎪⎩⎪⎨⎧+≥=⎰⎰⎰⎰s s xs S dydxdydx s F 010*******,1, 所以,⎪⎪⎩⎪⎪⎨⎧≥≥+<=2,12,2ln 220,0s s s s s s F S于是,S =XY 概率密度为⎪⎩⎪⎨⎧<<=其它,020,2ln 21)(s ss f S 7.设随机变量X 与Y 相互独立,其中X 的分布律为而Y 的概率密度为f (y ),求随机变量Y X U +=的概率密度)(u g . 解:由全概率公式: F U (u )=P {U ≤u }={X +Y ≤u }=P {X =1}P {X +Y ≤u |X =1}+ P {X =2}P {X +Y ≤u |X =2} = P {X =1}P {1+Y ≤u }+ P {X =2}P {2+Y ≤u } =0.3⨯F Y (u -1)+0.7⨯F Y (u -2)所以,f U (u ) =0.3⨯f Y (u -1)+0.7⨯f Y (u -2)8.设二维随机变量(X ,Y )的概率密度为⎩⎨⎧<<<<=其它,,,020,10 ,1),(x y x y x f 求:(1) (X ,Y )的边缘概率密度f X (x ),f Y (y ); (2) Y X Z -=2的概率密度)(z f Z ; 解:(1) ⎩⎨⎧<<<<=其它,00,10,1),(x y x y x f⎩⎨⎧<<=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,2,010,1),()(20x x x dy dy y x f x f x X ⎪⎩⎪⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,020,21,020,1),()(12y yy dx dx y x f y f y Y (2) ⎰⎰≤-=≤-=≤=zy x Z dxdy y x f z Y X P z Z P z F 2),(}2{}{)(如图所示,当z<0时,F Z (z)=0; 当z ≥2时,F Z (z)=1 当0≤z<2时:411)(212222020z z dydx dydx z F z xz x zx Z -=+=⎰⎰⎰⎰- 综上所述,⎪⎪⎩⎪⎪⎨⎧≥<≤-<=2,120,40.0)(2z z z z z z F Z 所以Z 的概率密度为:⎪⎩⎪⎨⎧<≤-=20,21,0)(z zz f Z 其它 9.设随机变量X 在区间(0,1)上服从均匀分布,在X = x (0 < x < 1)的条件下,随机变量Y 在区间),0(x 上服从均匀分布,求: (1) 随机变量X 和Y 的联合概率密度; (2) Y 的概率密度; (3) 概率P {X + Y > 1}. 解:(1) ⎩⎨⎧<<=其它,010,1)(x x f X⎪⎩⎪⎨⎧<<<<=其它,010,0,1)|(|x x y xx y f X Y ⎪⎩⎪⎨⎧<<<==其它(,010,1)()|),(|x y xx f x y f y x f X X Y(2) ⎩⎨⎧<<-=⎪⎩⎪⎨⎧<<==⎰⎰∞+∞-其它其它,010,ln ,010,1),()(1y y y dx x dx y x f y f y Y (3) 2ln 11),(}1{P 15.011-===≥+⎰⎰⎰⎰-≥+xx y x dydx xdxdy y x f Y X10. 设随机变量X 与Y 相互独立,X 的分布律为31}{==i X P ,(i = – 1,0,1),Y 的概率密度为⎩⎨⎧<≤=其它,010,1)(y y f Y ,记Y X Z +=,求:(1) 求}021{=≤X Z P (2) 求Z 的概率密度)(z f Z .解:(1) P {Z ≤1/2|X =0}=P {X +Y ≤1/2|X =0}=P {Y ≤1/2}=1/2 (2) 由全概率公式:F Z (z )=P {Z ≤z }=P {X +Y ≤z }=P {X =1}P {X +Y ≤z |X =1} +P {X =0}P {X +Y ≤z |X =0}=P {X =-1}P {X +Y ≤z|X =-1} = P {X =1}P {1+Y ≤z }+P {X =0}P {Y ≤z }=P {X =-1}P {-1+Y ≤z } =1/3⨯[F Y (z -1)+ F Y (z )+ F Y (z +1)]从而,f Z (z ) =1/3⨯[f Y (z -1)+ f Y (z )+ f Y (z +1)]=⎪⎩⎪⎨⎧<<-其它,021,31z11.设X 与Y 的联合概率密度为⎩⎨⎧<<<<=.,0;0,10 ,3),(其它x y x x y x f 试求Y X Z -=的概率密度. 解:⎩⎨⎧<<<<=其它,00,10,3).(xy x x y x f⎰⎰-≥=-≥=≤-=≤=zx y Z dxdy y x f Z X Y P z Y X P z Z P z F ),(}{}{}{)(如图,当z<0时,F Z (z)=0; 当z ≥1时,F Z (z )=1当0≤z<1时:22333)(3100z z xdydx xdydx z F z xz x zxZ -=+=⎰⎰⎰⎰-综上得:⎪⎪⎩⎪⎪⎨⎧≥<≤-<=1,010,2230,0)(3z z z z z z F Z 12Z 的概率密度为⎪⎩⎪⎨⎧<≤-=其它,010),1(23)(2z z z f Z12.设X 与Y 独立同分布,且都服从标准正态分布N (0,1),试求22Y X Z +=的分布. 解:,21)(22x X ex f -=π,21)(22y Y ey f -=π22221)()(),(y x Y X e y f x f y x f +-==π}{}{)(22z y x P z Z P z F Z ≤+=≤=当z<0时,F Z (z)=0; 当z ≥0时,220222222222121),(}{)(z zr z y x Z erdrd edxdy y x f z Y X P z F --≤+-===≤+=⎰⎰⎰⎰πθπ所以,Z 的概率密度为⎪⎩⎪⎨⎧≥=-其它,00,)(22z ze z f z Z。

概率论与数理统计浙大四版习题答案第三章

概率论与数理统计浙大四版习题答案第三章

第三章 多维随机变量及其分布1.[一] 在一箱子里装有12只开关,其中2只是次品,在其中随机地取两次,每次取一只。

考虑两种试验:(1)放回抽样,(2)不放回抽样。

我们定义随机变量X ,Y 如下:⎪⎩⎪⎨⎧= 若第一次取出的是次品若第一次取出的是正品,1,,0X ⎪⎩⎪⎨⎧=若第二次取出的是次品若第二次取出的是正品,1,,0Y试分别就(1)(2)两种情况,写出X 和Y 的联合分布律。

解:(1)放回抽样情况由于每次取物是独立的。

由独立性定义知。

P (X=i , Y=j )=P (X=i )P (Y=j ) P (X=0, Y=0 )=362512101210=⋅ P (X=0, Y=1 )=3651221210=⋅ P (X=1, Y=0 )=3651210122=⋅ P (X=1, Y=1 )=361122122=⋅ 或写成(2)不放回抽样的情况P {X=0, Y=0 }=66451191210=⋅ P {X=0, Y=1 }=66101121210=⋅P {X=1, Y=0 }=66101110122=⋅ P {X=1, Y=1 }=661111122=⋅ 或写成3.[二] 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示Y 的联合分布律。

解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C CP {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=05.[三] 设随机变量(X ,Y )概率密度为⎪⎩⎪⎨⎧<<<<--=其它,042,20),6(),(y x y x k y x f(1)确定常数k 。

《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案  第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。

解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。

解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。

3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。

解 设i A =‘第i 个零件是合格品’1,2,3i =。

则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。

《概率论与数理统计答案》第三章

《概率论与数理统计答案》第三章
第三章
习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
1.设随机变量 X 的概率分布为
X
-3 0.1
0 0.2
1 0.3
5 0.4
pk 试求 EX 。
答案与提示: EX = 2 。 2.已知随机变量 X 的分布列为
X
0 0.1
1
p
2 0.4
3 0.2
Pk
答案与提示:(1)由归一性, p = 0.3 ; (2) EX = 1.7 ; (3) DX = 0.81 3.已知随机变量 X 的分布列为


D X −Y = 1−
26.设灯管使用寿命 X 服从指数分布,已知其平均使用寿命为 3000 小时,现有
—5—

若一周 5 个工作日里无故障可获利 10 万元,发生一次故障仍获利 5 万元,发生二次2π网

ww w
3 ; 2
.k
hd a
EZ =
1 , DZ = 3 ; 2
w. c
解:(1)由数学期望、方差的性质及相关系数的定义( ρ XY =
第三章
习题参考答案与提示
求:(1) Y = 2 X 的数学期望;(2) Y = e −2 X 的数学期望。 答案与提示:(1) EY = E 2 X = 2 ;(2) EY = Ee −2 X = 1/ 3 。
1 11.试证明事件在一次试验中发生的次数的方差不超过 。 4
答案与提示:事件在 n 次独立重复试验中发生的次数服从参数为 n , p 的二项分 布 B ( n, p ) ,当然在一次试验中发生的次数应服从 B (1, p ) ,即为(0-1)分布。
f ( x) = 1 − x− β e 2α
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

习题三2.设总体的分布密度为:(1),01(;)0,x x f x ααα+<<=⎧⎨⎩其它1(,,)n X X 为其样本,求参数α的矩估计量1ˆα和极大似然估计量2ˆα .现测得样本观测值为:0.1,0.2,0.9,0.8,0.7,0.7,求参数α的估计值 .解 计算其最大似然估计:()()11111(,)11ln (,)ln(1)ln nnnn i i i i nn ii L x x x x L x x n x αααααααα===⎡⎤=+=+⎣⎦=++∏∏∑1121ln (,)ln 01ˆ10.2112ln nn i i n ii d n L x x x d nx ααααα====+=+=--=∑∑ 其矩估计为:()1 3.40.10.20.90.80.70.766X =+++++= 3077.0121ˆ,212)1()1(110121=--==++=++=+=⎰++X XX x dx x EX αααααααα所以:12112ˆˆ,11ln n ii X nX X αα=⎛⎫⎪- ⎪==-+-⎪ ⎪⎝⎭∑, 12ˆˆ0.3077,0.2112αα≈≈.3. 设元件无故障工作时间X 具有指数分布,取1000个元件工作时间的记录数据,经分组后得到它的频数分布为:如果各组中数据都取为组中值,试用最大似然法求参数的点估计. .解 最大似然估计:11(,),ln ln i nx n nx n i L x x e e L n nx λλλλλλλ--====-∏711120000ˆln 0,,2010001000i i i d n L nx X x v d X λλλ==-=====∑ 1ˆ0.05X λ==.4. 已知某种灯泡寿命服从正态分布,在某星期所生产的该种灯泡中随机抽取10只,测得其寿命(单位:小时)为:1067,919,1196,785,1126,936,918,1156,920,948 设总体参数都未知,试用极大似然法估计这个星期中生产的灯泡能使用1300小时以上的概率.解 设灯泡的寿命为x ,2~(,)x N μσ,极大似然估计为:2211ˆˆ,()ni i x x x n μσ===-∑ 根据样本数据得到:2ˆˆ997.1,17235.81μσ== . 经计算得,这个星期生产的灯泡能使用1300小时的概率为0.0075.5. 为检验某种自来水消毒设备的效果,现从消毒后的水中随机抽取50升,化验每升水中大肠杆 菌的个数(假定一升水中大肠杆菌个数服从Poisson 分布),其化验结果如下:试问平均每升水中大肠杆菌个数为多少时,才能使上述情况的概率为最大? 解 设x 为每升水中大肠杆菌个数,~()x P λ,Ex λ=,由3题(2)问知,λ的最大似然估计为x ,所以().150/1*42*310*220*117*0ˆ=++++==X L λ所以平均每升氺中大肠杆菌个数为1时,出现上述情况的概率最大 .8. 设1,...,n X X 是来自总体X 的样本,并且EX =μ,DX = 2σ,2,X S 是样本均值和样本方差,试确定常数c ,使22X cS -是2μ的无偏估计量 .解2222222222()E X cS EX cES DX E X c c nσσμσμ-=-=+-=+-=所以1c n =.9. 设1ˆθ,2ˆθ是θ的两个独立的无偏估计量,并且1ˆθ的方差是2ˆθ的方差的两倍 .试确定常数c 1, c 2,使得11ˆc θ+22ˆc θ为θ的线性最小方差无偏估计量 . 解: 设22122,2D D θσθσ==112212121221(()11E c c c c c c c c c c θθμμμμ+=+=+=+==-),,()()222222211221211(2221D c c c c c c θθσσσ+=+=+-)()222111121321c c c c +-=-+当1212*33c -=-=,上式达到最小,此时21213c c =-= .10. 设总体X 具有如下密度函数,1,01(,)0,x x f x θθθθ-<<=>⎧⎨⎩,0其它1,...,n X X 是来自于总体X的样本,对可估计函数1()g θθ=,求()g θ的有效估计量ˆ()gθ,并确定R-C 下界 .解 因为似然函数1111L(,),ln ln (1)ln i i nn n n n i i x x x x L n x θθθθθ--====+-∑∏∏111ln ln ln ln ()0i i i d n L x n x n x g d n n θθθθ⎛⎫⎛⎫=+=---=---= ⎪ ⎪⎝⎭⎝⎭∑∑∑ 所以取统计量1ln i T x n=-∑ 11111101ln ln ln ln i E X x x dx xdx x x x dx θθθθθθ--===-=-⎰⎰⎰得1ET θ==()g θ,所以1ln i T x n=-∑是无偏估计量 令()c n θ= 由定理2.3.2知 T 是有效估计量,由221()1()g DT c n n θθθθ-'===- 所以 C-R 方差下界为21n θ.11. 设1,...,n X X 是来自于总体X 的样本,总体X 的概率分布为:||1||(,)()(1),1,0,1,012x x f x x θθθθ-=-=-≤≤1) 求参数θ的极大似然估计量ˆθ;2) 试问极大似然估计ˆθ是否是有效估计量?如果是,请求它的方差ˆD θ和信息量()I θ;3 试问θ是否是相合估计量?(书上没有这个问题) 解 1)()()111(,)1122ln ln (n )ln(1)iii ix x nx n x n i i i L x x L x x θθθθθθθ--=∑⎛⎫⎛⎫∑=-=- ⎪ ⎪⎝⎭⎝⎭=+--∏∑∑n 1ln 01(1)n xi xi d n L xi d θθθθθθ-⎛⎫=-=-= ⎪--⎝⎭∑∑∑ 得到θ最大似然估计量1ˆxi nθ=∑ 2)()()110011,10122Exi E xi E xi n n θθθθθ⎛⎫⎛⎫==-++-= ⎪ ⎪⎝⎭⎝⎭∑∑所以11Exi E xi n nθ==∑∑ 所以ˆθ是无偏估计量,()(1)n c θθθ=-,由定理2.3.2得到1ˆxi n θ=∑是θ有效估计量信息量c()1()(1)I n θθθθ==-3)1(1)ˆD 0,(n )c()nθθθθ-==→→∞ 所以,T 也是相合估计量 .12 从一批螺钉中随机地取16枚,测得其长度(单位:cm)为:2.14,2.10,2.13,2.15,2.13,2.12,2.13,2.10,2.15, 2.12,2.14,2.10,2.13,2.11,2.14,2.11设钉长分布为正态,在如下两种情况下,试求总体均值μ的90%置信区间,1)若已知σ=0.01cm ; 2)若σ未知;解 因为 2.125,16,0.171,X n s ===()0.950.9510.95, 1.65,15 1.7532t αμ===-1) 计算0.950.952.1209, 2.1291X b a X αμμ-===+== 所以 置信区间为[]1.1212.129,2) 计算((0.950.9515 2.1175,15 2.1325X t b X t α-==+== 所以 置信区间为[]2.1152.135,.13 随机地取某种炮弹9发做试验,测得炮口速度的样本标准差s=11(m/s),设炮口速度服从正态分布,求这种炮弹的炮口速度的标准差σ的置信度为95%的置信区间 .解 由题意标准差σ的置信度为0.95的置信区间为0.9750.0252222(1)(1)(,)(8)(8)n S n S χχ-- 计算得0.9750.0252222(1)(1)11,9,0.05,7.431,21.072(8)(8)n S n S S n a b αχχ--=======所以 置信区间为 [7.431,21.072].14. 随机地从A 批导线中抽取4根,并从B 批导线中抽取5根,测得其电阻(Ω)为:A 批导线:0.143,0.142,0.143,0.137B 批导线:0.140,0.142,0.136,0.138,0.140设测试数据分别服从21(,)N μσ和22(,)N μσ,并且它们相互独立,又212,,μμσ均未知,求参数12μμ-的置信度为95%的置信区间 .解 由题意,这是两正太总体,在方差未知且相等条件下,对总体均值差的估计:置信区间为121221(2)X Y tn n S n α--±+- 计算得2626A B 120.14125,0.1392,8.25*10, 5.2*10,4,5,0.05x y S S n n α--======= 26W W 0.9756.5710,0.00255,(7) 2.365,0.0022,0.0063S S t a b -====-=所以[0.0022,0.0063]-.15. 有两位化验员A 、B ,他们独立地对某种聚合物的含氯量用相同方法各作了10次测定,其测定值的方差2s 依次为0.5419和0.6065,设2A σ与2B σ分别为A 、B 所测量数据的总体的方差(正态总体),求方差比2A σ/2B σ的置信度为95%的置信区间 .解 由题意,这是两正太总体方差比的区间估计:置信区间为22AA22BB1212(,)1(1,1)(1,1)22S S S S F n n Fn n -----计算得22A B 120.5419,0.6065,10,0.05S S n n α=====22AA22B B0.9750.0250.2217, 3.6008(9,9)(9,9)S S S S a b F F ====所以置信为 [0.2217,3.6008].。

相关文档
最新文档