矩阵分析引论习题

合集下载

矩阵分析引论(第四版)

矩阵分析引论(第四版)
3 矩阵的标准形……………………………………………………………………………… 46 3 .1 矩阵的相似对角形…………………………………………………………………… 46 3 .2 矩阵的约当标准形…………………………………………………………………… 50 3 .3 哈密顿—开莱定理及矩阵的最小多项式…………………………………………… 58 3 .4 多项式矩阵与史密斯标准形………………………………………………………… 61 3 .5 多项式矩阵的互质性和既约性……………………………………………………… 68 3 .6 有理分式矩阵的标准形及其仿分式分解…………………………………………… 74 3 .7 系统的传递函数矩阵 * ……………………………………………………………… 78 3 .8 舒尔定理及矩阵的 Q R 分解 ……………………………………………………… 80 3 .9 矩阵的奇异值分解…………………………………………………………………… 84 习题三 ……………………………………………………………………………………… 85
作者感谢王进儒教授在审校本书第一版时的热情指导 , 感谢使用本教材的 老师们的批评和鼓励 ,感谢本书的责任编辑在编印本书时的出色工作。
作者 2006 年 5 月 30 日于华工
目录
1 线性空间与线性变换 ……………………………………………………………………… 1 1 .1 线性空间的概念 ……………………………………………………………………… 1 1 .2 基变换与坐标变换 …………………………………………………………………… 4 1 .3 子空间与维数定理 …………………………………………………………………… 5 1 .4 线性空间的同构 ……………………………………………………………………… 9 1 .5 线性变换的概念……………………………………………………………………… 11 1 .6 线性变换的矩阵……………………………………………………………………… 15 1 .7 不变子空间…………………………………………………………………………… 17 习题一 ……………………………………………………………………………………… 18

矩阵论习题课答案

矩阵论习题课答案

习题课答案 一1). 设A 为n 阶可逆矩阵, λ是A 的特征值,则*A 的特征根之一是(b )。

(a) 1||n A λ- (b) 1||A λ- (c) ||A λ (d) ||n A λ2). 正定二次型1234(,,,)f x x x x 的矩阵为A ,则( c )必成立.()a A 的所有顺序主子式为非负数()b A 的所有特征值为非负数 ()c A 的所有顺序主子式大于零()d A 的所有特征值互不相同3).设矩阵11111A ααββ⎛⎫⎪= ⎪ ⎪⎝⎭与000010002B ⎛⎫⎪= ⎪ ⎪⎝⎭相似,则,αβ的值分别为( a )。

(a) 0,0 (b) 0,1 (c) 1,0 (d) 1,1二 填空题4)若四阶矩阵A 与B 相似,A 的特征值为1111,,,2345,则1B E --= 24 。

5)设532644445A -⎛⎫ ⎪=- ⎪ ⎪-⎝⎭,则100A =10010010010010010010010010010010010010032(21)223312(23)442232(31)2(31)2(13)231⎛⎫+---- ⎪+---⋅-⎪ ⎪--⋅-⎝⎭三 计算题3.求三阶矩阵1261725027-⎛⎫⎪ ⎪⎪--⎝⎭的Jordan 标准型解 1261725027E A λλλλ+--⎛⎫ ⎪-=--- ⎪ ⎪+⎝⎭,将其对角化为210001000(1)(1)λλ⎛⎫⎪⎪ ⎪+-⎝⎭.故A 的若当标准形为100110001-⎛⎫ ⎪- ⎪ ⎪⎝⎭.■4.设A 是3阶对称矩阵,且A 的各行元素之和都是3,向量()()0,1,1,1,2,1T Tαβ=-=--是0AX =的解,求矩阵A 的特征值,特征向量,求正交阵Q 和矩阵B 使得TQ BQ A = 依题意有011003121003111003A -⎛⎫⎛⎫ ⎪ ⎪-= ⎪ ⎪ ⎪ ⎪-⎝⎭⎝⎭因而1003011111003121111003111111A --⎛⎫⎛⎫⎛⎫ ⎪⎪ ⎪=-= ⎪⎪ ⎪ ⎪⎪ ⎪-⎝⎭⎝⎭⎝⎭其特征多项式为2()||(3)f E A λλλλ=-=-.故特征值为120,3λλ==.⑴10λ=,解特征方程0AX -=得()11,0,1TX =-,()21,1,0TX =-.特征向量为1122l X l X +.⑵23λ=,解特征方程(3)0E A X -=得()31,1,1TX =.特征向量为33l X . 以上123,,l l l R∈.把向量12,X X 正交并单位化得1(η=,2η⎛= ⎝.把向量3X 单位化得3η=.以123,,ηηη作为列向量作成矩阵P ,则P 为正交矩阵且000000003T P AP B ⎛⎫⎪== ⎪ ⎪⎝⎭.0T Q P ⎛⎫ ⎪ ⎪ ⎪== ⎪⎪⎝⎭,则Q 满足T Q BQ A =.■ 5解:A 的行列式因子为33()(2)D λλ=+, 21()()1D D λλ==.所以,不变因子为33()(2)d λλ=+, 21()()1d d λλ==,初等因子为3(2)λ+,因而A 的Jordan 标准形为21212J -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦8.设A 是n 阶特征值为零的若当块。

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案

矩阵分析引论第四版课后练习题含答案简介《矩阵分析引论》是矩阵分析领域的经典教材之一,已经发行了四个版本。

该书主要以线性代数、矩阵理论和应用为主要内容,重点介绍了矩阵分析的基本概念、原理和应用。

本文主要介绍该书第四版中的课后练习题及其答案。

提供的资料本文为矩阵分析引论第四版课后练习题及其答案,包含了第一章到第五章的所有习题和答案。

其中,习题从简单到复杂,大部分习题都有详细的解答过程和答案。

内容概述第一章引言第一章主要介绍了矩阵分析的历史和基本概念、性质、符号等。

本章习题主要涉及了矩阵、向量、矩阵运算等基本概念和性质。

第二章基本概念和变换第二章主要介绍了线性变换的基本概念和性质,以及线性代数中的一些重要定理和定理的证明。

本章习题主要涉及了线性变换、矩阵的秩和标准型、特征值和特征向量等内容。

第三章矩阵运算第三章主要介绍了矩阵运算的基本概念和性质,包括矩阵乘法、逆矩阵、行列式等。

本章习题主要涉及矩阵运算的基本操作和应用。

第四章矩阵分解第四章主要介绍了矩阵分解的基本概念和应用,包括特征值分解、奇异值分解、QR分解等。

本章习题主要涉及了矩阵特征值和特征向量、矩阵的奇异值分解等内容。

第五章线性方程组和特征值问题第五章主要介绍了解线性方程组和求特征值的方法,包括高斯消元法、LU分解、带状矩阵、雅可比迭代等。

本章习题主要涉及了线性方程组的解法、矩阵的特征值问题等内容。

结语本文介绍了矩阵分析引论第四版课后练习题及其答案。

对于学习矩阵分析的同学,课后习题是一个非常重要的练习和提升自己能力的途径。

本文所提供的习题和答案可以帮助读者巩固和提高自己的矩阵分析能力。

同时,本文也希望能够帮助更多的人学习矩阵分析,并成为矩阵分析领域的专家。

研究生矩阵论试题及答案与复习资料大全

研究生矩阵论试题及答案与复习资料大全

B.
1 2 1
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
……………………………………………………………………………………………………………………………
0 0 0
五、(15 分)求矩阵
的满秩分解:
1 0 1 2 A 1 2 1 1
2 2 2 1
解:
A
E


1 1
0 2
1 1
2 1

1 0
0 1
0 0
2 2 2 1 0 0 1
1 0 1 2 1 0 0
令 g n n2 2 1 n2 2 1 2 1
2 1 n2 1 2 1 1 n3 n4 1 3
由 Hamilton-Cayley 定理知 gA 0
et e 2t
a0 a0
a1 2a1
于是解得:
a0 a1
2et e2t

e 2t et
从而:
f A e At gA a0 E a1 A

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案

矩阵论及其应用习题四答案矩阵论及其应用习题四答案矩阵论是数学中重要的分支之一,它研究的是矩阵的性质、运算规律以及在各个学科中的应用。

在学习矩阵论的过程中,习题是不可或缺的一部分,通过解答习题可以加深对矩阵理论的理解和应用。

下面是习题四的答案,希望能对大家的学习有所帮助。

1. 设A、B、C为同阶矩阵,证明:(AB)C=A(BC)解答:我们需要证明(AB)C的每个元素与A(BC)的对应元素相等。

设(AB)C的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b,C的第k行第j列元素为c。

则有:x = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

而A(BC)的第i行第j列元素为y,可表示为:y = Σ(ai * bk * cj),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)C=A(BC)。

2. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)A=A。

解答:我们需要证明(AB)A的每个元素与A的对应元素相等。

设(AB)A的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

而A的第i行第j列元素为y,可表示为:y = Σ(ai * bk * ak),其中i、j、k为矩阵元素的下标。

由于x和y的表达式相同,所以(AB)A=A。

3. 设A为m×n矩阵,B为n×m矩阵,证明:(AB)B=B。

解答:我们需要证明(AB)B的每个元素与B的对应元素相等。

设(AB)B的第i行第j列元素为x,A的第i行第k列元素为a,B的第k行第j列元素为b。

则有:x = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

而B的第i行第j列元素为y,可表示为:y = Σ(ak * bi * bj),其中i、j、k为矩阵元素的下标。

矩阵论的习题集

矩阵论的习题集

其中 aij = a ji = 1, (1 ≤ i ≤ n,1 ≤ j ≤ i ) ,其它元素为 0。 ′, ε 2 ′ ,ε3 ′,ε 4 ′ ] = [ε 1 , ε 2 , ε 3 , ε 4 ] A ,可得 6、[解]由 [ε 1 1 0 −1 ′, ε 2 ′ ,ε 3 ′ ,ε 4 ′] = A = [ε 1 , ε 2 , ε 3 , ε 4 ] [ε 1 0 0 1 0 0 0 1 0 2 = 0 0 1 0 0 0 0 3 0 4 0 1 1 2 2 1 0 3 2 1 2 0 4 1 3 2 2 = 3 1 4 1 1 0 3 1 0 2 0 0 1 1 0 2 0 0 1 0 0 0 0 2
2
3、对于 ∀B, C ∈ V 和 ∀λ ∈ F ,满足 BA = AB , CA = AC ,并且 A( B + C ) = AB + AC = BA + CA = ( B + C ) A , A( µB) = µAB = µBA = (µB ) A , 即 B + C ∈ V , µB ∈ V ,从而由第 1.2 节定理 1 可知,V 是 F n×n 的子空间。 满足 trB = 0 , 并且 tr ( B + C ) = trB + trC = 0 , 4、 对于 ∀B, C ∈ V 和 ∀λ ∈ R , trC = 0 , tr (λB) = λ tr ( B) = 0 ,从而由第 1.2 节定理 1 可知,V 是 R 2×2 的子空间。 1 0 0 1 0 0 dim V = 3 ,并且 V 的一组基为 , 0 − 1 和 。 0 0 1 0 5 、 对 于 ∀B, C ∈ V 和 ∀λ ∈ R , 满 足 B = B T , C = C T , 并 且 ( B + C ) T = B T + C T = B + C , (λB) T = λB T = λB ,从而由第 1.2 节定理 1 可知, V 是 R n×n 的子空间。 dim V = n(n + 1) ,并且 V 的一组基为 Vij = (a ij ) n×n , 2

矩阵分析第4章习题解

矩阵分析第4章习题解

第4章1、 求矩阵A 的满秩分解2123111010(1)25141,(2)01111;131212313112101212011101221333614236(3),(4)2431452402227486281061217573A A A A -⎡⎤⎡⎤⎢⎥⎢⎥=-=⎢⎥⎢⎥⎢⎥⎢⎥-⎣⎦⎣⎦⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦解:21231(1)2514113121A -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦用行初等变换10806~011010514-⎡⎤⎢⎥-⎢⎥⎢⎥-⎣⎦所以213254132B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,108060110100514C -⎡⎤⎢⎥=-⎢⎥⎢⎥-⎣⎦,即A B C = 11010(2)0111123131A ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦用行初等变换11010~0111100⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦所以取100121B ⎡⎤⎢⎥=⎢⎥⎢⎥⎣⎦,1101001111C ⎡⎤=⎢⎥⎣⎦,即A B C = 121012122133(3)2431454862810A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦121012001121,~00000000⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦10112142B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦,121012001121C ⎡⎤=⎢⎥⎣⎦12011103614236(4)240222761217573A ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦120110001110~00000100⎡⎤⎢⎥-⎢⎥⎢⎥⎢⎥⎣⎦1010313620276173B ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦, 12011000111001C ⎡⎤⎢⎥=-⎢⎥⎢⎥⎣⎦2、 已知矩阵(1)111111A ⎡⎤=⎢⎥⎣⎦, (2)212304112524A -⎡⎤⎢⎥=⎢⎥⎢⎥-⎣⎦此题计算太繁 求A 的奇异值分解。

解:(1)H A A 的特征值为6、0。

A的奇异值。

H AA 的单位化特征向量为,⎛⎛⎫ ⎪ ⎪ - ⎝⎝。

矩阵论(华中科技大学)课后习题问题详解(1)

矩阵论(华中科技大学)课后习题问题详解(1)

习题一1.判断下列集合对指定的运算是否构成R 上的线性空间 (1)11{()|0}nij n n iii V A a a⨯====∑,对矩阵加法和数乘运算;(2)2{|,}n n T V A A R A A ⨯=∈=-,对矩阵加法和数乘运算;(3)33V R =;对3R 中向量加法和如下定义的数乘向量:3,,0R k R k αα∀∈∈=; (4)4{()|()0}V f x f x =≥,通常的函数加法与数乘运算。

解: (1)、(2)为R 上线性空间(3)不是,由线性空间定义,对0α∀≠有1α=α,而题(3)中10α= (4)不是,若k<0,则()0kf x ≤,数乘不满足封闭性。

2.求线性空间{|}n nT V A R A A ⨯=∈=的维数和一组基。

解:一组基10001010101010000000100..................0010010⎧⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎬⎪⎪⎪⎪⎪⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎪ ⎪⎪ ⎪⎪⎪ ⎪⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎩⎪⎪⎪⎪⎭dim W =n (n +1)/23.如果U 1和U 2都是线性空间V 的子空间,若dim U 1=dim U 2,而且12U U ⊆,证明:U 1=U 2。

证明:因为dim U 1=dim U 2,故设{}12,,,r ααα为空间U 1的一组基,{}12,,,r βββ为空间U 2的一组基2U γ∀∈,有()12r X γγβββ=而()()1212r r C αααβββ=,C 为过渡矩阵,且可逆于是()()()11212121r r r X C X Y U γγγγβββαααααα-===∈由此,得 21U U ⊆又由题设12U U ⊆,证得U 1=U 2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档