Intel白皮书:UWB技术实现高速无线个人局域网
uwb物理层速率

uwb物理层速率【实用版】目录1.UWB 物理层速率的概念2.UWB 物理层速率的影响因素3.UWB 物理层速率的优缺点4.UWB 物理层速率的应用领域正文一、UWB 物理层速率的概念UWB(Ultra-Wideband,超宽带)物理层速率是指在 UWB 技术下,无线通信系统在物理层实现的数据传输速率。
UWB 技术是一种短距离高速无线通信技术,它具有带宽宽、传输速率高、抗干扰能力强、多径衰落影响小等特点。
二、UWB 物理层速率的影响因素1.带宽:UWB 技术的带宽可以达到几百 MHz 甚至 GHz 级别,带宽越大,物理层速率越高。
2.距离:UWB 通信系统的物理层速率受到距离的影响,距离越远,物理层速率越低。
3.噪声环境:在高噪声环境下,UWB 物理层速率会受到一定程度的降低。
4.调制方式:不同的调制方式对 UWB 物理层速率也有影响,例如正交频分复用(OFDM)调制方式可以提高物理层速率。
三、UWB 物理层速率的优缺点1.优点:UWB 物理层速率较高,能够满足高速无线通信的需求;抗干扰能力强,适用于多径衰落环境;传输速率稳定,受距离影响较小。
2.缺点:UWB 物理层速率受带宽限制,带宽越大,系统复杂度越高,功耗也越大;受到噪声环境和调制方式的影响,可能导致物理层速率不稳定。
四、UWB 物理层速率的应用领域1.室内定位:UWB 技术可以实现高精度的室内定位,适用于工厂、商场等需要实时定位的场景。
2.通信系统:UWB 技术可以作为高速无线通信系统,应用于无线个人局域网(WPAN)等场景。
3.无线传感器网络:UWB 技术可应用于无线传感器网络,实现低功耗、高带宽的数据传输。
4.物联网:UWB 技术可为物联网设备提供高速、稳定的无线连接,满足物联网应用场景的需求。
综上所述,UWB 物理层速率作为一种高速无线通信技术,具有广泛的应用前景。
称王短距离无线通讯技术——UWB

MBOA的提议将UWB频带分为最少三个频段,并采利正交频分复用(OFDM)方式将三个频段进一步分为大量的窄通道。这样做带来四方面的好处:
1.各频带可单独使用,方便从低速到高速的扩展,并保证升级后的后向兼容性;
2.因为每一个频带的能量分布都集中到中心区域,彼此会相隔一定的距离,从而提高抗多径干扰的能力;
UWB大概是惟一声称要达到与有线连接相同性能的无线技术,这应该接近了一定条件下无线连接可以实现的终端目标。类似的能够体现这种终极性的例子是高清晰度电视,它的目标是让电视再现的图像与肉眼直观实物的效果相同,这也是一个终极目标。这种终极性意味着它是真正的、一步至位的技术,将长久地使用下去而无需不断地升级。
速度:理论上,一个宽度为0的脉冲具有无限的带宽,因此,脉冲信号要想发射出去并有足够带宽,必须有足够陡峭的上升/下降沿和足够窄的宽度。UWB的脉冲宽度用于军事雷达系统时,最短在皮秒级水平,但在民用上,一般在纳秒级。纳秒为一秒的十亿分之一,这意味着,如果一个脉冲代表一个数位,那么UWB有能力在一秒内传送10亿个数位,即1Gbps的速率。若脉冲宽度降至0.1纳秒,则速率可达10Gbps。目前,厂家演示的实验速度在100Mbps至480Mbps之间,但理论上有达到1Gbps以上的潜力。
Freescale阵营的DS-CDMA技术为Xtreme Spectrum公司(XSI)所创建,后者于2003年11月被Freescale所收购。采用这种技术时,多个传输任务共享整个频率范围,使方便多个UWB设备建立连接更为容易。支持者认为这种方式对现有的、许可频带内的用户造成更少的干扰。不过最重要的特点是它的CDMA技术目前在其它领域已有大量应用,因此实现起来更为容易,成本更低,上市时间短。XSI公司于2003年中期就已推出可供测试的UWB芯片产品,相对其它技术先走了一步。
UWB

3.4.1 UWB无线通信技术原理
脉冲无线电技术
(1)常用UWB基带窄脉冲波形
单周期高斯脉冲对应的时域和频域的数学模型 可以表示为:
v(t) 6 A e t exp[ 6 ( t )2 ]
3
v( f ) j 2 ft 2 e exp( f 2t 2 )
32 6
式中,A为脉冲的峰值幅度, 是一个时间延迟长度,
等于脉冲持续时间。
3.4.2 UWB无线通信技术原理
脉冲无线电技术 (1)常用UWB基带窄脉冲波形
单周期高斯脉冲的时域波形和频域特性
3.4.2 UWB无线通信技术原理
脉冲无线电技术
(1)常用UWB基带窄脉冲波形
1
-40
Magnitude (dBm)
3.4.2 UWB无线通信技术原理
脉冲无线电技术
(2)UWB脉冲调制方式
UWB技术常用的脉冲调制方式包括脉位调制 (PPM)、脉幅调制(PAM)和二相调制 (BPSK)。
3.4.2 UWB无线通信技术原理
脉冲无线电技术
(2)UWB脉冲调制方式
脉位调制(PPM):
通过改变发射脉冲的时间间隔或发射脉冲相对 于基准时间的位置来传递信息,它的优点就是 简单,但是需要比较精确的时间控制。
此后研究焦点主要集中在雷达系统,并一直被 美国军方严格控制,利用占用频带极宽的超短 基带脉冲进行通信,主要应用于军用的雷达, 以及低截获率/低侦测率的通信系统。
3.4.1 UWB技术背景和概述
UWB技术背景
1989年,美国国防部首次使用超宽带UWB的名 称,规定相对带宽大于0.2或在传输的任何时 刻带宽大于500MHz的信号为超宽带信号。
超宽带(UWB)无线通信技术详解

超宽带(UWB)无线通信技术详解作者:王德强李长青乐光新近年来,超宽带(UWB)无线通信成为短距离、高速无线网络最热门的物理层技术之一。
许多世界著名的大公司、研究机构、标准化组织都积极投入到超宽带无线通信技术的研究、开发和标准化工作之中。
为了使读者对UWB技术有所了解,本讲座将分3期对UWB 技术进行介绍:第1期讲述UWB的产生与发展、技术特点、信号成形及调制与多址技术,第2期对UWB信道、系统方案及接收机关键技术进行介绍,第3期介绍UWB的应用前景及标准化情况。
1 UWB的产生与发展超宽带(UWB)有着悠久的发展历史,但在1989年之前,超宽带这一术语并不常用,在信号的带宽和频谱结构方面也没有明确的规定。
1989年,美国国防部高级研究计划署(DARPA)首先采用超宽带这一术语,并规定:若信号在-20dB处的绝对带宽大于1.5GHz 或相对带宽大于25%,则该信号为超宽带信号。
此后,超宽带这个术语才被沿用下来。
其中,fH为信号在-20dB辐射点对应的上限频率、fL为信号在-20 dB辐射点对应的下限频率。
图1给出了带宽计算示意图。
可见,UWB是指具有很高带宽比(射频带宽与其中心频率之比)的无线电技术。
为探索UWB应用于民用领域的可行性,自1998年起,美国联邦通信委员会(FCC)开始在产业界广泛征求意见。
美国NTIA等通信团体对此大约提交了800多份意见书。
2002年2月,FCC批准UWB技术进入民用领域,并对UWB进行了重新定义,规定UWB信号为相对带宽大于20%或-10dB带宽大于500MHz的无线电信号。
根据UWB系统的具体应用,分为成像系统、车载雷达系统、通信与测量系统三大类。
根据FCCPart15规定,UWB通信系统可使用频段为3.1 GHz~10.6 GHz。
为保护现有系统(如GPRS、移动蜂窝系统、WLAN等)不被UWB系统干扰,针对室内、室外不同应用,对UWB系统的辐射谱密度进行了严格限制,规定UWB系统的最高辐射谱密度为-41.3 dBm/MHz.。
什么是UWB

什么是UWB技术?作者:佚名文章来源:本站原创点击数:250 更新时间:2009-12-24超宽带(UWB)技术始于20世纪60年代兴起的脉冲通信技术,利用频谱极宽的超短脉冲进行通信,又称为基带通信、无载波通信,主要用于军用雷达、定位和通信系统中。
UWB技术是一种新颖的无线通信方式,具有传输速率高(达l Gbit/s)、抗多径能力强、穿透能力强、功耗低、成本低、低截获概率、系统复杂度低、与现有其他无线通信系统共享频谱等特点,作为短距离超宽带无线数据传输方式受到人们的普遍关注,已经成为无线个域网(WPAN)的首选技术。
UWB的特点在于不使用载波,而只在需要时发送出脉冲电波,因而大大减少了耗电量。
由于这种脉冲电波的宽度控制在1ns以下,需要占用很宽的频带,使之实现几百兆到1Gbit/s以上速率的通信成为可能。
UWB具有传统无线通信系统无法比拟的技术特点。
(1)系统结构的实现比较简单。
UWB不使用载波,它通过发送纳秒级脉冲来传输数据信号。
在发射端,UWB发射器直接用脉冲激励天线,可采用非常低廉的宽带发射器:在接收端,UWB接收机不需要中频处理。
因此,UWB系统结构的实现比较简单。
(2)高速的数据传输。
UWB以非常宽的频率带宽来换取高速的数据传输,并且不单独占用现在已经拥挤不堪的频率资源,而是共享其他无线技术使用的频带。
一般要求UWB信号的传输兰围在10m以内,其传输速率可达500Mbit/s,是实现个人通信和无线局域网的一种理想调制技术。
(3)功耗低。
UWB系统使用间歇的脉冲来发送数据,脉冲持续时间很短,一般在0.2~1.5 ns之间,有很低的占空因数,因此系统功耗很低,在高速通信时系统的耗电量仅为几百微瓦至几毫瓦。
(4)安全性高。
由于UWB把信号能量弥散在极宽的频带范围内,其信号的功率谱密度低于自然的电子噪声,有用信息完全淹没在噪声中,而采用编码对脉冲参数进行伪随机化后,被截获的概率和被检测的概率很低。
UWB技术

一、何谓UWB技术所谓UWB技术,也叫超宽带技术。
简单的说UWB技术是基于短的能量脉冲序列、通过正交频分调制或直接排序将脉冲扩展到一个频率范围,利用纳秒至微微秒级的非正弦波窄脉冲传输数据的一种无载波通信技术,由于其不适用载波,该技术传输速度较之其他的技术快很多,同时其功耗也小很多。
超宽带使用的电波带宽为数CHZ,它搞出普通的带宽20MHZ的无线LAN的带宽几百倍。
二、时间调制技术的基本原理目前的无线通信系统大多采用恒包络直接扩频调制方式,而使很多人忽略了采用脉冲跳时调制的无线通信方式,即时域通信技术。
当前,超宽带无线电的实现基本上是采用冲激无线电技术。
它不是基于正弦载波的无线电系统的概念,而是一种采用冲激脉冲作为信息载体的非正弦系统。
(一)时间调制超宽带TM-UWB的关键技术——时间调制技术。
TM-UWB技术的一般工作原理是发送和接收脉冲间隔严格受控的高斯单周期超短时脉冲,其宽度通常在200ps-500ps之间,脉冲与脉冲之间的间即,即重复周期通常在25ns-1000ns之间,超短时单周期脉冲决定了信号的带宽很宽,超宽带接收机直接将射频信号转换为墓带数字信号和模拟输出信号。
只用一级前端交叉相关器就把电磁脉冲序列转换成基带信号,不用传统通信设备中的中频级,极大地降低了设备复杂性。
单比特的信息常被扩展到多个单脉冲上,接收机将这几个脉冲相加以恢复发射信息。
(二)时间调制超宽带宽(TM--UWB)系统的性能特点。
基于时间脉冲位置调制的超宽带无线时域技术有以下特点:用超短周期脉冲进行通信,此信号本身为超宽带信号,谱密度极低,信号的中心频率在650MHz-SGHz之间,在亚毫瓦量级的平均功率下的传输距离达数英里,抗干扰和抗多径的能力强,具有很宽的带宽和多个信道可以利用,与扩频系统相比,时域通信系统结构简单,成本相对较低。
具体来讲:1、隐蔽性好。
无线电波空间传播的“公开性”是无线电通信较之有线通信的固有不足。
超宽带技术(UWB)概述

UWB的特点
2、信道容量大,传输速率高
➢ 香农信道容量公式
C
W
log2 (1
S N
)
(b / s)
➢ 超宽带信号占有数百兆赫兹(MHz)甚至几吉赫兹
(GHz)带宽,理论上可以提供极高的信道容量,达
到Gbps以上的传输速率,或者在很低的信噪比下,
以一定的传输速率实现可靠传输。假定一个超宽带信
号使用7GHz带宽,当信噪比S/N低至-10dB时,超宽 带可以提供的信道容量为C=7G×log2(1+0.1)≈ 0.963Gbps,接近1Gbps。
• 时隔这么多年后,在最近七八年中其它先 进的无线技术如蓝牙技术、WiFi、WiMAX 都先后面世,UWB为什么会重出江湖并引 起如此密切的关注呢?
UWB:由来
• UWB技术特点与时代需求的结合
– 随着网络技术的发展,网络信息传输从以文字 为主过渡到以多媒体信息为主,因此对带宽的 要求就比较高;
– 从技术层面来说,可靠地传输视频图像所需的 数据传输速度超过了蓝牙与WiFi的能力;
➢ 例如基于UWB技术的无线USB 2.0,可取代有线USB, 实现PC之间及消费类电子设备(电视、数码相机、 DVD播放器、MP3等)之间的无线数据互连与通信。
➢ 无线个域网(WPAN) 、高速智能无线局域网、智能交 通系统,公路信息服务系统,汽车检测系统,舰船、 飞机内部通信系统,楼内通信系统、室内宽带蜂窝电 话,战术组网电台,非视距超宽带电台,战术/战略 通信电台,保密无线宽带因特网接入等等
非正弦波形传输
传统无线发射信号
UWB发射信号
Signal1
Signal2
时域共享
Signal1
Signal2
超宽带技术—UWB

单击此处编辑母版标题样式 ◆UWB的发展 的发展
应用到民用领域
至今
FCC开放频带 FCC
2002年 年
第一个专利被授予
1973年 年
最早美国提出 1960年提出
单击此处编辑母版标题样式 ◆UWB的技术特点 的技术特点
工程造价低
抗干扰性能强
干扰问题 超宽带系统应用中存在一个 与现有其他无线通信系统的 传输速率高 UWB 共存问题。由于超宽带系统 使用很宽的频谱,因此与很 多其他的无线通信系统频谱 重叠。
家庭办公
电脑电话及移 动设备
单击此处编辑母版标题样式 ◆UWB的应用 的应用
军事应用 (1)UWB雷达(探测地雷、反恐穿墙雷达 )。
军事应用
单击此处编辑母版标题样式
(2)UWB生命探测雷达
军事应用
单击此处编辑母版标题样式
(3)军事通信。
战术通信网络
单兵作战示意图
单击此处编辑母版标题样式 ◆UWB的应用 的应用
单击此处编辑母版标题样式 UWB与其他的无线技术比较 与其他的无线技术比较
UWB <=1G <=1 <10
IEEE802.11a <1M 1-100 10
蓝牙 54M >=1 10-100
HomeRF 1-2M <=1 50
速率(bps)
功率(mW)
距离(m)
应用范围
探测距离 多媒体
电脑和 Internet网关
带宽极宽
发射功率小
消耗电能小
单击此处编辑母版标题样式 ◆UBW与其他无线技术的比较 与其他无线技术的比较
(1)UWB与IEEE802.11a IEEE802.11a是由IEEE指定的无线局域网标准之 一,物理层速率在54Mbps,传输层速率在25Mbps, 它的通信距离可能达到100M,而UWB的通信距离 100M UWB 在10M左右。在短距离的范围内(如10M)UWB 可以达到上千兆,是IEEE802.11a的几十倍;超过 这个距离范围(即大于10M),由于UWB的发射 功率受限。UWB就性能差了很多(目前的产品的 有 效 距 离 已 经 扩 展 到 2 0 M 左 右 ) 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Intel白皮书:UWB技术实现高速无线个人局域网
无线连接为用户新的移动生活方式注入了便捷。
消费者马上就会对这种电子家庭的便捷产生巨大需求,他们的个人电脑、数码录像机、MP3播放器、数码可携式摄像机、数码相机,高清晰电视(HDTV)、机顶盒(STB)、游戏系统、掌上电脑、手机等都可以通过无线家庭个人域网(WPAN)相互连接。
但今天的无线局域网和无线个域网技术不能满足未来大量消费电子设备对于高带宽的需求。
这就需要新的技术去满足高速WPANS的需求。
超带宽(UWB)技术能够为下一代消费电子设备的带宽、成本、耗能和物理需求提供一个解决方案。
这种新技术能够提供高带宽使多功能数码摄像和音响贯穿家庭成为现实。
在行业团体的支持下,比如USB协会,技术领头人,比如INTEL,UWB技术将努力使家居生活高速WPANS连接变得轻松,成为现实。
介绍:
手机和家用PC的无线技术所带来的移动生活方式使人们对于其他设备的无线需求越来越大。
消费者们正在享受着无线连接的便捷。
许多数字家庭所采用的技术,比如数码摄像,音频流都需要高带宽连接。
为PCs无线连接所开发的其他无线网络技术比如Wi-Fi和蓝牙,和高宽带使用模式相比都不够太优化。
虽然Wi- Fi的数据传输率可以达到54Mbps,但这个技术在消费电子环境中还有局限性,包括耗能和带宽。
当在短范围网络中或WPAN连接消费电子设备,这时的无线技术需要支持高数据流,耗能低,低成本,适合超小包装,比如PDA或手机。
新UWB无线技术和UWB应用的硅片开发将提供最佳的解决方案。
此文件描述了在数字家庭WPANs中使用UWB技术和潜在的UWB技术应用。
UWB案例:
新的数字家庭环境有许多不同的消费电子设备、移动设备、个人计算机设备组成,能够支持多样化应用。
这些设备可以归纳为三大类(表1):
-PC和网络
-消费电子和无线播放系统。