无线局域网技术白皮书
中国全屋Wi-Fi技术白皮书

7
家庭Wi-Fi
家庭Wi-Fi对路由器提出新要求
场景层
办公、通信、购 物等线上化转型
办公、通信、购物、休 闲娱乐、学习等线上化
办公、通信、购物、休闲娱乐、 学习、生活、安全等线上化
产品层
硬件层(路由器情况)
普通路由器
智能路由器
智慧路由器
覆盖特点
单点Wi-Fi覆盖
全屋Wi-Fi覆盖
智慧路由器不仅需要实现从单点Wi-Fi覆盖到全屋Wi-Fi覆盖, 还需要扮演“家庭中枢”的作用未来,随着办公、学习、娱乐、生活、安全等各类场景逐步走向智能化,路由器的Wi-Fi覆盖能力和承接管理能力将是重 点。从单点Wi-Fi覆盖到全屋Wi-Fi覆盖、从简单连网功能到连网兼具管理(即“家庭中枢”功能)功能等能力是路由器从 普通路由器到智慧路由器进化的主要方向。智慧路由器升级主要体现在以下三个方面:1)服务对象:从服务设备到服务人(含不同家庭成员)转变;2)覆盖能力:从空间上的单点Wi-Fi覆盖,到基于多路由组网的全屋Wi-Fi及异构协议扩展的全栈覆盖,满足复杂智慧家庭业务的全程全 网联接要求;3)硬件能力:作为智慧家庭网络的中枢,多核CPU和边缘计算将会成为标配,感知、安全能力也会增强。家庭Wi-Fi路由器的演进情况
中国全屋Wi-Fi技术白皮书
数智赋能,变革加速
2
摘要
中国家庭Wi-Fi现状:运营商提速、 Wi-Fi 6技术升级、异构组网为智慧家庭多样化、多场景智 能互联需求提供了技术基础;智慧家庭时代,学习、工作、生活、娱乐等场景全面智能化也需 要更高要求的家庭Wi-Fi;目前家庭Wi-Fi主要痛点是受电磁波传输特性影响,在Wi-Fi稳定性和 覆盖方面存在不足。全屋Wi-Fi是家庭Wi-Fi的演进方向:全屋Wi-Fi主要由多个智慧路由器组网实现,短期内强调 稳定且无上网盲点,未来强调家庭连接中心生态;目前全屋Wi-Fi主要是AC+AP有线组网、电 力猫子母路由、多路由Mesh无线组网,其适用环境和体验各有优劣势。全屋Wi-Fi主要适用场景:全屋Wi-Fi对于大平层、复式和别墅等大户型用户已成为刚需,完美 覆盖各种户型;中小户型但是对网络使用要求较高的年轻用户,也有意愿从原来的单路由升级 为多路由组网的全屋Wi-Fi;此外,全屋Wi-Fi还能完美满足移动中用网的稳定网络需求,以及 满足越来越多智能设备同时接入网络的需求;全屋Wi-Fi能满足用户对防蹭网、用网信息安全、 上网保护和智能加速等需求,让家庭上网更加安全和智能。全屋Wi-Fi能力要求:全屋Wi-Fi基础能力及体验建议分解为五个关键维度:全屋高速覆盖、高 效稳定组网、智慧、易用、安全,我们称之为全屋Wi-Fi的“基础能力及体验五维模型”。全屋Wi-Fi发展建议:当前尚缺少合适的标准和认证体系支撑,相关标准和认证的缺乏,将会导 致消费者对全屋Wi-Fi缺乏量化的认知,不利于聚焦产业各环节力量解决消费者场景体验的核心 问题,也不利于技术创新的持续发展。因此,倡议产业各参与方尽快成立相应标准认证组织, 健全全屋Wi-Fi网络性能、用户场景体验相关标准及认证体系,推动产业健康快速发展。
无线局域网的安全技术白皮书

无线局域网的安全技术白皮书一、引言在当今数字化时代,无线局域网(WLAN)已成为人们生活和工作中不可或缺的一部分。
无论是在家庭、办公室、商场还是公共场所,我们都能轻松地连接到无线网络,享受便捷的互联网服务。
然而,随着无线局域网的广泛应用,其安全问题也日益凸显。
未经授权的访问、数据泄露、网络攻击等安全威胁给用户和企业带来了巨大的风险。
因此,了解和掌握无线局域网的安全技术至关重要。
二、无线局域网的基本原理无线局域网是利用无线通信技术在一定范围内建立的网络连接。
它通过无线接入点(AP)将设备连接到有线网络,实现数据的传输和共享。
无线局域网采用的通信标准主要有 WiFi(IEEE 80211)系列,如80211a、80211b、80211g、80211n 和 80211ac 等。
三、无线局域网面临的安全威胁(一)未经授权的访问未经授权的用户可以通过破解无线密码或利用网络漏洞接入无线局域网,获取网络资源和敏感信息。
(二)数据泄露在无线传输过程中,数据可能被窃取或篡改,导致用户的个人隐私、商业机密等重要信息泄露。
(三)网络攻击攻击者可以通过发送恶意数据包、进行拒绝服务攻击(DoS)等方式,使无线局域网瘫痪,影响正常的网络服务。
(四)AP 劫持攻击者可以伪装成合法的无线接入点,诱导用户连接,从而获取用户的信息。
四、无线局域网的安全技术(一)加密技术1、 WEP(Wired Equivalent Privacy)WEP 是早期的无线加密协议,但由于其安全性较弱,已逐渐被淘汰。
2、 WPA(WiFi Protected Access)WPA 采用了更强大的加密算法,如 TKIP(Temporal Key Integrity Protocol),提高了无线局域网的安全性。
3、 WPA2WPA2 是目前广泛应用的无线加密标准,采用了 AES(Advanced Encryption Standard)加密算法,提供了更高的安全性。
WLAN安全技术白皮书(V1.00)-技术白皮书-产品技术-H3C

WLAN安全技术白皮书(V1.00)-技术白皮书-产品技术-H3CWLAN安全技术白皮书(V1.00)WLAN安全技术白皮书关键词:WLAN、Station、SSID、PSK、EAP、AP。
摘要:现在WLAN应用已经非常普遍,在很多场所被部署,例如公司、校园、工厂、咖啡厅等等。
本文介绍了H3C WLAN解决方案能够提供的多种无线安全技术。
缩略语:目录1 H3C WLAN分层安全体系简介2 物理层安全3 用户接入安全3.2 802.1x接入认证3.3 PSK接入认证3.4 MAC接入认证3.5 EAP终结和本地认证4 网络安全4.1 端点准入防御4.2 无线入侵检测系统4.3 安全策略统一部署4.4 无线控制器和AP间下行流量限速4.5 IPSEC VPN5 设备安全6 安全管理1 H3C WLAN分层安全体系简介H3C公司的WLAN安全解决方案在遵循IEEE 802.11i协议和国家WAPI标准的基础上,创新性的提出了分层的安全体系架构,将WLAN的安全从单一的物理层安全延伸到了物理层安全、用户接入安全、网络层安全、设备安全、安全管理多个层面上,使用户在使用WLAN网络时能够像使用有线网络一样安全、可靠。
2 物理层安全为了保证物理层的通信安全H3C公司的无线产品支持以下的加密机制:(1) WEP加密:该种加密方式在IEEE802.11协议中定义。
WEP加密机制需要WLAN设备端以及所有接入到该WLAN网络的客户端配置相同的密钥。
WEP加密机制采用RC4算法(一种流加密算法),最初WLAN仅支持WEP40(WEP40算法的密钥长度仅为64bits),当前WLAN还可以支持WEP104(WEP104算法的密钥长度仅为128bits)。
(2) TKIP加密:该加密方式主要在WPA相关协议中定义。
TKIP加密机制除了提供数据的加密处理,还提供了MIC和Countermeasure功能实现对WLAN服务的安全保护。
无线局域网技术白皮书

无线局域网技术白皮书目录第1章、前言 (4)第2章、无线网络概述 (4)1.无线网络概述 (4)2.无线网络的特点 (4)3.无线数据网络种类 (6)第3章、无线局域网络 (6)1.无线局域网(WLAN)概述 (6)2.无线局域网络的益处 (9)3.典型的无线局域网络应用 (10)第4章、无线局域网络技术 (11)1.无线局域网标准概述 (11)802.11a标准 (11)802.11g标准 (12)802.11系列新标准 (14)2无线局域网标准进展 (15)3.三种流行无线网络技术的比较 (15)4.下一代无线网络技术:H IPER LAN/2 (17)5.无线局域网频道分配与调制技术 (22)6.无线局域网拓扑结构 (23)7.无线局域网的几个主要工作过程 (24)8.影响无线局域网性能的因素 (25)9.无线局域网络的安全性 (25)1.无线局域网(WLAN)面临哪些威胁? (25)2.常见的无线网络安全的分类 (25)3.如何保障无线局域网安全 (26)4.保护企业无线网络 (27)第5章、无线局域网络产品的兼容性 (28)第6章、CISCO无线局域网络解决方案 (28)1.思科无线局域网技术指南 (28)下一代无线局域网 (28)无线技术的到来 (28)无线移植方案的选择 (29)802.11a标准 (29)802.11g标准 (30)兼容性 (30)双频Cisco Aironet 1200:全球最佳 (30)今天的无线应用 (30)计算的新纪元 (31)2.思科无线安全解决方案指南 (31)第8章、CISCO AIRONET扩频无线网络产品 (39)一、扩频收发工作站 (39)二、扩频天线馈线系统 (44)第9章、无线网络典型联接方式与实例 (45)一、CISCO AIRONET (46)二、其它无线网案例 (48)第10章、无线联网的现状及发展前景 (49)一、无线网络的需求及实现 (49)二、计算机无线网络的应用现状 (50)三、计算机无线网络目前存在的问题和解决 (50)四、计算机无线网络的标准化 (51)五、计算机无线网络的发展与应用的前景 (51)第11章、计算机无线网技术应用介绍 (51)一、计算机无线网技术适用范围: (51)二、应用介绍 (52)第12章、总结 (54)第八章、无线网络产品选购指南 (54)附录一、无线局域网常用品牌及产品简介 (56)附录一、AIRONET无线网产品安全性说明 (60)附录二、国家无线电委员会对2.4GHZ频段的管理办法 (60)附录三、AIRONET无线网产品参考报价(部分) (62)第1章、前言信息革命到今天,我们越来越离不开计算机网络,无论是信息共享、合作伙伴交流、还是移动用户办公,都有网络价值的体现。
WLAN技术白皮书-QOS

WLAN技术白皮书-QOSwlan技术白皮书QOS1.00修订记录日期修订版本修改章节修改描述作者 08/8/5 1.00 第一稿沈翀目录1. Wlan QOS需求背景 (4)2. 名词解释 (4)3. qos背景知识 (5)3.1. 无线qos难点 (5)3.2. PCF介绍 (6)3.3. 802.11协议Qos的局限性 (6)3.4. Qos种类 (7)3.5. 无线qos标准 (7)4. 无线qos帧格式 (8)4.1. Qos Control域 (8)4.2. TID (8)4.3. EOSP (9)4.4. Ack策略 (10)4.5. TXOP限制 (10)5. 无线qos mac功能 (11)5.1. HCF (11)5.2. TXOP (11)5.3. EDCA (11)5.4. HCCA (14)5.5. APSD (15)5.6. TSPEC (16)5.7. 新确认规则 (17)5.8. 直接链路协议 (19)6. 参考文献 (20)7. 附录 WMM介绍 (20)1.Wlan QOS需求背景随着越来越丰富的视、音频业务的出现和无线通信技术的发展,在任何时间、任何地点以各种方式享用服务的议题再次成为人们追求的热点,原来实现于有线和固定网络中的多媒体视、音频实时业务,正日益向无线、移动的趋势发展。
最初人们进行WLAN的协议设计主要是针对数据业务的,对于诸如视频、音频等实时业务应用并没有做充分的考虑。
2005年,IEEE 802.11e标准针对实时业务的QOS保证作出补充方案。
2.名词解释CP:contention period,竞争周期。
在竞争周期内,STA通过竞争取得媒介控制权。
CFP:Contention-Free Period,无竞争周期,由中央机制(central authority)控制的周期称为无竞争周期。
TXOP﹕发送时机(transmission opportunity),定义了STA可以发送数据的时间段,包括开始时间和最大持续时间。
无线-WiFi7-技术白皮书

目 录概述0101Wi-Fi 7 是什么 02Wi-Fi 7 的修订进度 02Wi-Fi 7 的技术目标0302技术白皮书Wi-Fi 7Wi-Fi 7 的新特性 0403总结 1404更快更高速 05 ·PPDU 改进 05 ·支持更大的带宽 07 ·更高的调制阶数 07 ·更高的空间流 08 ·小结08更高效、更灵活 09 ·多 RU 机制 09 ·多链路操作 10 ·多 AP 间协同调度 11 ·增强的重传机制 12 ·时间敏感网络13概述本技术白皮书主要介绍 Wi-Fi 7 引入的新技术和新功能。
名词解释Wi-Fi 7 是什么IEEE 802. 11be(Extremely High Throughput,简称 EHT)是修订中的下一代 Wi-Fi 协议, 即“Wi-Fi 7” 。
作为 Wi-Fi 6 的继任者,在协议修订之初,工作组定下最高吞吐速率超过 30Gbps、时延低于 5ms 的工作目标。
因此 Wi-Fi 7 引入更大的无线带宽(320MHz) ,更高阶的调制方式(4K-QAM) ,更灵 活的频谱利用方式(Multi-RU) ,更高的时空复用(16X16 MIMO) ,更多的链路操作(MLO) ,以及多 AP 协作等等新技术,使得 Wi-Fi 7 能够提供更高的数据传输速率和更低的时延。
各协议版本的信息Wi-Fi 7 的修订进度IEEE 802. 11be EHT 工作组已于 2019 年 5 月成立,802. 11be (Wi-Fi 7) 的开发工作仍在进行中。
目前, 第一版草案 Draft1.0 已经在 2021 年 3 月发布;Draft2.0 预计在 2022 年底发布;在 2024 年底 完成最终标准定稿。
TGbe 当前的进展P802. 11be PARWi-Fi 7 的技术目标下图是 802. 11be 项目授权请求 (Project Authentication Request, PAR) 的截图,指出 802.11be 功能目标:The main candidate features that have been discussed are:-320 MHz bandwidth and more efficient utilization of non-contiguous spectrum.- Multi-band/multi-channel aggregation and operation.-16 spatial streams and Multiple Input Multiple Output (MIMO) protocols enhancements.-Multi-Access Point (AP) Coordination (e.g. coordinated and joint transmission).-Enhanced link adaptation and retransmission protocol(e.g. Hybrid Automatic Repeat Request (HARQ).-If needed, adaptation to regulatory rules specific to 6 GHz spectrum.• 320MHz 的信号带宽,更高效的使用非连续频谱• 多频段、多信道聚合操作• 16 条空间流 MIMO • 多 AP 协同工作• 链路自适应增强和 HARQ 重传协议•新开放的 6GHz 频段(国内未授权)Wi-Fi 7 的新特性Wi-Fi 7 协议的目标是将 WLAN 网络的吞吐率提升到 30Gbps,并且提供低时延的接入保障。
WLAN安全服务技术白皮书 v2.00

WLAN安全服务技术白皮书杭州华三通信技术有限公司目录WLAN安全服务技术白皮书 (1)第1章WLAN概述 (4)第2章WLAN用户接入介绍 (5)2.1 802.11链路协商 (5)2.1.1 WLAN服务发现 (6)2.1.2 链路认证 (6)2.1.3 链路服务协商 (7)2.2 用户接入认证 (7)2.2.1 802.1x接入认证 (7)2.2.2 MAC接入认证 (9)2.2.3 PSK接入认证 (10)2.3 密钥协商 (10)第3章H3C公司的WLAN服务 (11)3.1 集中管理WLAN架构 (11)3.2 自治WLAN架构 (12)3.3 WLAN接入认证 (13)3.4 WLAN服务的数据安全 (14)3.5 WLAN接入服务 (14)3.5.1 明文WLAN服务 (14)3.5.2 WEP加密WLAN服务 (15)3.5.3 WPA WLAN服务 (17)3.5.4 RSN WLAN服务 (18)3.5.5 WPA和RSN组合WLAN服务 (19)第4章H3C公司WLAN的优势 (20)摘要现在WLAN应用已经非常普遍,在很多场所被部署,例如公司,校园,工厂,甚至咖啡厅等等。
本文介绍了WLAN的基本概念和技术原理,以及H3C WLAN解决方案能够提供的多种无线安全接入服务。
关键词WLAN, Station, ESS, SSID, RSN, OSA, IE, PSK, EAP, AC, AP, WTP缩略语WLAN 无线局域网(Wireless Local Area Network)Station 本文指WLAN的客户端ESS 扩展服务集(Extended Service Set)SSID 服务标示(Service Set ID)RSN Robust安全网络(Robust Security Network)OSA 开放系统认证(Open System Authentication)IE 信息单元(Information Element)PSK 预共享密钥(Pre-Shared Key)EAP 扩展认证协议(Extensible Authentication Protocol)AC 接入控制器(Access Controller)AP 接入控制点(Access Point)WTP 无线终端控制点(Wireless Termination Points)IV 初始向量(Initialization Vector)第1章WLAN概述WLAN,全称是Wireless Local Area Network,即无线局域网,和传统的有线接入方式相比无线局域网让网络使用更自由:1、无线局域网彻底摆脱了线缆和端口位置的束缚,用户不在为四处寻找有线端口和网线而苦恼,接入网络如喝咖啡般轻松和惬意。
802.11n技术白皮书-wifi

Wi-Fi CERTIFIED™ n:覆盖范围更远,流量更快,多媒体级Wi-Fi®网络2009年9月下文及其所包含的有关Wi-Fi Alliance项目的信息以及预期发布日期有可能在不预先通知的情况下被修改或删除。
本文以“按原样”、“按可用条件”以及“不保证无瑕疵”为基础编写。
WI-FI ALLIANCE不对本文及其所包含信息的有用性、质量、适用性、真实性、准确性或完整性提供任何陈述、保证、前提要求或担保。
摘要Wi-Fi CERTIFIED n可互操作性测试项目认证产品以IEEE 802.11 标准(802.11n)的802.11n修正版本为基础。
802.11n是无线局域网(WLAN)技术的最新发展成果。
本文旨在介绍802.11n的技术概况,详细描述Wi-Fi CERTIFIED n项目。
802.11n修正使Wi-Fi性能获得显著改进。
今天的Wi-Fi CERTIFIED n设备的吞吐量已达到传统802.11技术的五倍以上,覆盖范围达到后者的两倍,且连接更为稳定。
今天,经改进的Wi-Fi技术性能已经而且正在运用于多种产品,满足多元化的市场需求。
随着越来越多的制造商将802.11n关键功能集成于产品之中,802.11n的优势将得到日益明显的体现。
功能全面的Wi-Fi CERTIFIED n 产品能够在房间内传输高清(HD)视频流,同时为多位用户提供高服务质量(QoS)的IP语音(VoIP)流与数据传输服务。
Wi-Fi CERTIFIED n设备还拥有最先进的安全保护性能。
无论是企业网络、校园网络还是城市网络,802.11n都能提供IT管理者孜孜以求的稳健、快速、安全而优质的网络性能。
Wi-Fi CERTIFIED n项目是Wi-Fi CERTIFIED 802.11n 草案 2.0项目的改进版本,后者于2007年6月发布(草案-n项目)。
项目的基准要求未变,更新后的项目增加了对标准包含的部分可选特性的支持。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
无线局域网技术白皮书无线局域网是计算机网络与无线通信技术相结合的产物。
它利用射频(RF)技术,取代旧式的双绞铜线构成局域网络,提供传统有线局域网的所有功能,网络所需的基础设施不需再埋在地下或隐藏在墙里,也能够随需移动或变化。
无线局域网是计算机网络与无线通信技术相结合的产物。
它利用射频(RF)技术,取代旧式的双绞铜线构成局域网络,提供传统有线局域网的所有功能,网络所需的基础设施不需再埋在地下或隐藏在墙里,也能够随需移动或变化。
使得无线局域网络能利用简单的存取构架让用户透过它,达到“信息随身化、便利走天下”的理想境界。
WLAN是20世纪90年代计算机与无线通信技术相结合的产物,它使用无线信道来接入网络,为通信的移动化,个人化和多媒体应用提供了潜在的手段,并成为宽带接入的有效手段之一。
一、IEEE802.11无线局域网标准1997年IEEE802.11标准的制定是无线局域网发展的里程碑,它是由大量的局域网以及计算机专家审定通过的标准。
IEEE802.11标准定义了单一的MAC层和多样的物理层,其物理层标准主要有IEEE802.11b,a和g。
1.1 IEEE802.11b1999年9月正式通过的IEEE802.11b标准是IEEE802.11协议标准的扩展。
它可以支持最高11Mbps的数据速率,运行在2.4GHz的ISM频段上,采用的调制技术是CCK。
但是随着用户不断增长的对数据速率的要求,CCK调制方式就不再是一种合适的方法了。
因为对于直接序列扩频技术来说,为了取得较高的数据速率,并达到扩频的目的,选取的码片的速率就要更高,这对于现有的码片来说比较困难;对于接收端的RAKE接收机来说,在高速数据速率的情况下,为了达到良好的时间分集效果,要求RAKE接收机有更复杂的结构,在硬件上不易实现。
1.2 IEEE802.11aIEEE802.11a工作5GHz频段上,使用OFDM调制技术可支持54Mbps的传输速率。
8 02.11a与802.11b两个标准都存在着各自的优缺点,802.11b的优势在于价格低廉,但速率较低(最高11Mbps);而802.11a优势在于传输速率快(最高54Mbps)且受干扰少,但价格相对较高。
另外,11a与11b工作在不同的频段上,不能工作在同一AP的网络里,因此11a与11b互不兼容。
1.3 IEEE802.11g为了解决上述问题,为了进一步推动无线局域网的发展,2003年7月802.11工作组批准了802.11g标准,新的标准终于浮出水面成为人们对无线局域网关注的焦点。
IEEE802. 11工作组开始定义新的物理层标准IEEE802.11g。
该草案与以前的802.11协议标准相比有以下两个特点:其在2.4G频段使用OFDM调制技术,使数据传输速率提高到20Mbps 以上;IEEE802.11g标准能够与802.11b的WIFI系统互相连通,共存在同一AP的网络里,保障了后向兼容性。
这样原有的WLAN系统可以平滑的向高速无线局域网过渡,延长了IE EE802.11b产品的使用寿命,降低用户的投资。
1.4 IEEE802.11nIEEE已经成立802.11n工作小组,以制定一项新的高速无线局域网标准802.11n。
802. 11n工作小组是由高吞吐量研究小组发展而来的,由802.11g工作小组主席Matthew B. Shoemaker担任主席一职。
该工作小组计划在2003年9月召开首次会议。
IEEE802.11n计划将WLAN的传输速率从802.11a和802.11g的54Mbps增加至10 8Mbps以上,最高速率可达320Mbps,成为802.11b、802.11a、802.11g之后的另一场重头戏。
和以往地802.11标准不同,802.11n协议为双频工作模式(包含2.4GHz和5 GHz两个工作频段)。
这样11n保障了与以往的802.11a b, g标准兼容。
IEEE802.11n计划采用MIMO与OFDM相结合,使传输速率成倍提高。
另外,天线技术及传输技术,使得无线局域网的传输距离大大增加,可以达到几公里(并且能够保障10 0Mbps的传输速率)。
IEEE802.11n标准全面改进了802.11标准,不仅涉及物理层标准,同时也采用新的高性能无线传输技术提升MAC层的性能,优化数据帧结构,提高网络的吞吐量性能。
二、 IEEE802.11无线局域网的物理层关键技术随着无线局域网技术的应用日渐广泛,用户对数据传输速率的要求越来越高。
但是在室内,这个较为复杂的电磁环境中,多经效应、频率选择性衰落和其他干扰源的存在使的实现无线信道中的高速数据传输比有线信道中困难,WLAN需要采用合适的调制技术。
IEEE802.11无线局域网络是一种能支持较高数据传输速率(1-54Mbit/s),采用微蜂窝,微微蜂窝结构的自主管理的计算机局域网络。
其关键技术大致有三种:DSSS、CCK技术,和PBCC,和OFDM。
每种技术皆有其特点,目前,扩频调制技术正成为主流,而OF DM技术由于其优越的传输性能成为人们关注的新焦点。
2.1 DSSS调制技术基于DSSS的调制技术有三种。
最初IEEE802.11标准制定在1Mbps数据速率下采用D BPSK。
如提供2Mbps的数据速率,要采用DQPSK,这种方法每次处理两个比特码元,成为双比特。
第三种是基于CCK的QPSK,是11b标准采用的基本数据调制方式。
它采用了补码序列与直序列扩频技术,是一种单载波调制技术,通过PSK方式传输数据,传输速率分为1,2,5.5和11Mbps。
CCK通过与接收端的Rake接收机配合使用,能够在高效率的传输数据的同时有效的克服多径效应。
IEEE802.11b使用了CCK调制技术来提高数据传输速率,最高可达11Mbps。
但是传输速率超过11Mbps,CCK为了对抗多径干扰,需要更复杂的均衡及调制,实现起来非常困难。
因此,802.11工作组,为了推动无线局域网的发展,又引入新的调制技术。
2.2 PBCC调制技术PBCC调制技术是由TI公司提出的,已作为802.11g的可选项被采纳。
PBCC也是单载波调制,但它与CCK不同,它使用了更多复杂的信号星座图。
PBCC采用8PSK,而CCK 使用BPSK/QPSK;另外PBCC使用了卷积码,而CCK使用区块码。
因此,它们的解调过程是十分不同的。
PBCC可以完成更高速率的数据传输,其传输速率为11,22和33Mbps。
2.3 OFDM技术OFDM技术是一种无线环境下的高速多载波传输技术。
无线信道的频率响应曲线大多是非平坦的,而OFDM技术的主要思想:就是在频域内将给定信道分成许多正交子信道,在每个子信道上使用一个子载波进行调制,并且各子载波并行传输,从而有效的抑制无线信道的时间弥散所带来的ISI。
这样就减少了接收机内均衡的复杂度,有时甚至可以不采用均衡器,仅通过插入循环前缀的方式消除ISI的不利影响。
由于在OFDM系统中各个子信道的载波相互正交,于是它们的频谱是相互重叠的,这样不但减小了子载波间的相互干扰,同时又提高了频谱利用率。
(如图1.1所示)在各个子信道中的这种正交调制和解调可以采用IFFT和FFT方法来实现,随着大规模集成电路技术与DSP技术的发展,IFFT和FFT都是非常容易实现的。
FFT的引入,大大降低了OFDM的实现复杂性,提升了系统的性能。
(如图1.2所示OFDM发送接收机系统结构)图1.1 FDM信号与OFDM信号频谱比较无线数据业务一般都存在非对称性,即下行链路中传输的数据量要远远大于上行链路中的数据传输量。
因此无论从用户高速数据传输业务的需求,还是从无线通信自身来考虑,都希望物理层支持非对称高速数据传输,而OFDM容易通过使用不同数量的子信道来实现上行和下行链路中不同的传输速率。
由于无线信道存在频率选择性,所有的子信道不会同时处于比较深的衰落情况中,因此可以通过动态比特分配以及动态子信道分配的方法,充分利用信噪比高的子信道,从而提升系统性能。
由于窄带干扰只能影响一小部分子载波,因此OFDM系统在某种程度上抵抗这种干扰。
图1.2 OFDM系统结构框图另外,同单载波系统相比,OFDM还存在一些缺点,易受频率偏差的影响,存在较高的PAR。
OFDM技术有非常广阔的发展前景,已成为第4带移动通信的核心技术。
IEEE802.11ag 标准为了支持高速数据传输都采用了OFDM调制技术。
目前,OFDM结合时空编码、分集、干扰(包括符号间干扰ISI和邻道干扰ICI)抑制以及智能天线技术,最大程度的提高物理层的可靠性。
如再结合自适应调制、自适应编码以及动态子载波分配、动态比特分配算法等技术,可以使其性能进一步优化。
2.4 MIMO OFDM技术MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。
它可以定义为发送端和接收端之间存在多个独立信道,也就是说天线单元之间存在充分的间隔,因此消除了天线间信号的相关性,提高信号的链路性能增加了数据吞吐量。
图1.3 MIMO系统原理框图现代信息论表明:对于发射天线数为N,接收天线数为M的多入多出(MIMO)系统,假定信道为独立的瑞利衰落信道,并设N、M很大,则信道容量C近似为公式(2.1)(其中B为信号带宽,ρ为接收端平均信噪比,min(M,N)为M,N的较小者)。
上式表明,MIMO技术能在不增加带宽的情况下成倍地提高通信系统的容量和频谱利用率。
研究表明,在瑞利衰落信道环境下,OFDM系统非常适合使用MIMO技术来提高容量。
采用多输入多输出(MIMO)系统是提高频谱效率的有效方法。
我们知道,多径衰落是影响通信质量的主要因素,但MIMO系统却能有效地利用多径的影响来提高系统容量。
系统容量是干扰受限的,不能通过增加发射功率来提高系统容量。
而采用MIMO结构不需要增加发射功率就能获得很高的系统容量。
因此将MIMO技术与OFDM技术相结合是下一代无线局域网发展的趋势。
在OFDM系统中采用多发射天线实际上就是根据需要在各个子信道上应用多发射天线技术。
每个子信道都对应一个多天线子系统。
一个多发射天线的OFDM系统。
目前正在开发的设备由2组IEEE802.11a收发器、发送天线和接收天线各2个(2×2)和负责运算处理过程的MIMO系统组成,能够实现最大108Mbit/秒的传输速度。
支持AP和客户端之间的传输速度为108Mbit/秒,客户端不支持该技术时(IEEE802.11a客户端的情况),通信速度为54Mbit/秒。
三、IEEE802.11无线局域网的网络构成WLAN网络产品的多种使用方法可以组合出适合各种情况的无线联网设计,可以方便地解决许多以线缆方式难以联网的用户需求。
例如,数十公里远的两个局域网相联:其间或有河流、湖泊相隔,拉线困难且线缆安全难保障,或在城市中敷设专线要涉及审批复杂,周期很长的市政施工问题,WLAN能以比线缆低几倍的费用在几天内实现,WLAN也可方便地实现不经过大的施工改建而使旧式建筑具有智能大厦的功能。