程稼夫力学篇习题精选集

合集下载

力学第三版习题答案

力学第三版习题答案

力学第三版习题答案第一章:力学的基本概念- 习题1:解释质量、重量、惯性的区别和联系。

答案:质量是物体的固有属性,与物体所含物质的多少有关。

重量是地球对物体的引力作用,与物体的质量和地球的引力加速度有关。

惯性是物体保持其运动状态不变的能力,与物体的质量成正比。

- 习题2:一个物体的质量为2kg,求其在地球表面受到的重力。

答案:重力G = mg,其中m是质量,g是地球的引力加速度(约为9.8m/s²)。

因此,G = 2kg * 9.8m/s² = 19.6N。

第二章:牛顿运动定律- 习题3:一个物体在水平面上受到一个恒定的力F=10N,求其加速度。

答案:根据牛顿第二定律F=ma,其中F是作用力,m是物体的质量,a是加速度。

如果物体的质量为m,则a = F/m = 10N/m。

第三章:功和能量- 习题4:一个物体从静止开始,经过一段距离后,速度达到v,求外力所做的功。

答案:功W = ΔK,其中ΔK是动能的变化。

动能K = 1/2mv²,因此W = 1/2mv² - 0 = 1/2mv²。

第四章:动量和动量守恒- 习题5:一个质量为m的物体以速度v1撞击一个静止的质量为2m的物体,求碰撞后两物体的速度。

答案:在没有外力作用的情况下,系统动量守恒。

设碰撞后两物体的速度分别为v2和v3,则mv1 = mv2 + 2mv3。

解得v2 = (3/3)v1,v3 = (-1/3)v1。

第五章:圆周运动- 习题6:一个物体在水平面上做匀速圆周运动,其速度为v,求其向心加速度。

答案:向心加速度a_c = v²/r,其中r是圆周运动的半径。

第六章:刚体的转动- 习题7:一个均匀的圆盘,其质量为M,半径为R,关于通过其中心的轴转动。

求其转动惯量。

答案:对于均匀圆盘,其转动惯量I = 1/2MR²。

第七章:流体力学- 习题8:解释伯努利定律,并给出其数学表达式。

[压缩版]程稼夫 力学篇 第三章 详解

[压缩版]程稼夫 力学篇 第三章 详解

上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻
上海中学 蔡丞韻

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学第二版第一章习题解析

程稼夫电磁学篇第一章《静电场》课后习题1-1设两个小球所带净电荷为q,距离为l,由库仑定律:由题目,设小球质量m,铜的摩尔质量M,则有:算得1-2 取一小段电荷,其对应的圆心角为dθ:这一小段电荷受力平衡,列竖直方向平衡方程,设张力增量为T:解得1-3(1)设地月距离R,电场力和万有引力抵消:解得:(2)地球分到,月球分到,电场力和万有引力抵消:解得:1-4设向上位移为x,则有:结合牛顿第二定律以及略去高次项有:1-5由于电荷受二力而平衡,故三个电荷共线且q3在q1和q2之间:先由库仑定律写出静电力标量式:有几何关系:联立解得由库仑定律矢量式得:解得1-6(1)对一个正电荷,受力平衡:解得,显然不可能同时满足负电荷的平衡(2)对一个负电荷,合外力提供向心力:解得1-7(1)设P限制在沿X轴夹角为θ的,过原点的直线上运动(θ∈[0,π)),沿着光滑直线位移x,势能:对势能求导得到受力:小量近似,略去高阶量:当q>0时,;当q<0时,(2)由上知1-8设q位移x,势能:对势能求导得到受力:小量展开有:,知1-9(1)对q受力平衡,设其横坐标的值为l0:,解得设它在平衡位置移动一个小位移x,有:小量展开化简有:受力指向平衡位置,微小谐振周期(2)1-101-11先证明,如图所示,带相同线电荷密度λ的圆弧2和直线1在OO处产生的电场强度相等.取和θ.有:显然两个电场强度相等,由于每一对微元都相等,所以总体产生的电场相等.利用这一引理,可知题文中三角形在内心处产生的电场等价于三角形内切圆环在内心处产生的电场.由对称性,这一电场强度大小为0.1-12(1)如图,取θ和,设线电荷密度λ,有:积分得(2)(3)用圆心在场点处,半径,电荷线密度与直线段相等的,张角为θ0 ()的一段圆弧替代直线段,计算这段带电圆弧产生的场强大小,可以用其所张角对应的弦长与圆弧上单位长度所产生的电场强度大小的积求得:1-13我们先分析一个电荷密度为ρ,厚度为x的无穷大带电面(图中只画出有限大),取如图所示高斯面,其中高斯面的两个相对面平行于电荷平面,面积为S,由高斯定理:算得,发现这个无穷大平面在外部产生的电场是匀强电场,且左右两边电场强度相同,大小相反.回到原题,由叠加原理以及,算得在不存在电荷的区域电场强度为0(正负电荷层相互抵消.)在存在电荷的区域,若在p区,此时x处的电场由三个电荷层叠加而成,分别是左边的n区,0到x范围内的p区,以及右边的p区,有:,算得同理算出n区时场强,综上可得1-14(1)取半径为r的球形高斯面,有:,解得(2)设球心为O1,空腔中心为O2,空腔中充斥着电荷密度为−ρ的电荷,在空腔中任意一点A处产生的电场为:(借助第一问结论)同时在A处还有一个电荷密度为+ρ则有:1-15取金属球上一面元d S,此面元在金属球内侧产生指向内的电场强度,由于导体内部电场处处为0,所以金属球上除该面元外的其他电荷在该面元处产生的电场强度为所以该面元受到其他电荷施加的静电力:球面上单位面积受力大小:半球面受到的静电力可用与其电荷面密度相等的,该半球面的截口圆面的面积乘该半球面的单位面积受力求得:1-16设轴线上一点到环心距离为x,有:令其对x导数为0:解得1-17写出初态体系总电势能:1-18系统静电势能大小为:1-19由对称性,可以认为四个面分别在中心处产生的电势,故取走后,;设BCD,ACD,ABD在P2处产生的电势为U,而ABD在P2处产生的电势为,有:;取走后:,解得1-20构造如下六个带电正方体(1到6号),它们的各面电荷分布彼此不相同,但都能通过一定的旋转从程中电荷直接相加而不重新分布).这个带电正方体各面电势完全相同,都为.容易证明,正方体内部的每一个点的电势也都为(若不然,正方体内部必存在电场线,这样的电场线必定会凭空产生,或凭空消失,或形成环状,都与静电场原理不符).故此时中心电势同样为1-21 O4处电势:O1处电势:故电势差为:1-22从对称性方面考虑,先将半球面补全为整个球面.再由电势叠加原理,即一个半球面产生的电势为它的一半,从而计算出半球面在底面上的电势分布.即1-23设上极板下版面面电荷密度为,下极板上版面面电荷密度为.取一个长方体型的高斯面,其形状是是两极板中间间隔的长方体,并且把和囊括进去.注意到金属导体内部没有电场,故这个高斯面电通量为0,其中净电荷为0,有:再注意到上下极板电势相等,其中E1方向向上,E2方向向下:再由高斯定理得出的结论:解得1-24先把半圆补成整圆,补后P、Q和O.这说明,新补上的半圆对P产生的电势为,而由于对称性,这个电势恰好也是半球面ACB对Q产生的电势.故:1-25在水平方向上,设质点质量m,电量为q:运动学:整体带入得:1-26(1)先将半球面补全为整个球面,容易计算出此时半球底面的电势.再注意到这个电势由对称的两个半球面产生的电势叠加得到,即一个半球面产生的电势为它的一半,即可求出一个半球面对底面产生的电势恒为定值,故底面为等势面,由E点缓慢移至A点外力做功为W1=0.(2)由上一问的分析知由E点缓慢移至O点外力不做功,记电势能为E,E的右下标表示所代表的点,则有:依然将半球面补为整球面,此时q在球壳内部任意一点电势能为2EO.此时对于T点,其电势能为上下两个球面叠加产生,由对称性,有:综上有W2=−W.1-27小球受电场力方程:将a与g合成为一个等效的g′:方向与竖直夹角再将加速度分解到垂直于g′和平行与g′的方向上.注意到与g′平行的分量最小为0,而垂直的分量则保持不变,故速度的最小值为垂直分量:1-28假设给外球壳带上电量q2,先考虑q2在内外表面各分布了多少.取一个以内球壳外表面和外球壳内表面为边界的高斯面,并把内球壳外表面和外球壳内表面上的电荷囊括进去,真正的高斯面边界在金属内部.由于金属内部无电场,高斯面电通量为0,高斯面内电荷总量为0,得到外球壳内表面分布了−q1电荷,外表面分布了q2+q1电荷.由电势叠加原理知球心处的电势:解得由电势叠加原理及静电屏蔽:1-29设质点初速度为v0,质量为m,加速度为a,有:,其中.设时竖直向下速度为v1,动能为Ek1,初动能为Ek0,有:解得1-30球1依次与球2、球3接触后,电量分别为.当球1、4接触时满足由于解得.注:若此处利用,略去二阶小量则可以大大简便计算,有意思的是,算出的答案与笔者考虑二阶小量繁重化简过后所得结果完全一致,这是因为在最后的表达式中没有r与a的和或差的项的缘故。

物理竞赛参考书目精选

物理竞赛参考书目精选

物理竞赛参考书目1、《中学奥林匹克竞赛物理教程(力学篇)》 35元/本《中学奥林匹克竞赛物理教程(电磁学篇)》 30元/本《中学奥林匹克竞赛物理讲座》程家夫编中科大出版社2、《更高更妙的物理冲刺全国高中物理竞赛》 35元/本沈晨编著浙江大学出版社3、《物理竞赛教程》(高一)、(高二)、(高三)(绿皮)张大同总主编华东师范大学出版社4、《物理竞赛培优教程》舒幼生编浙江大学出版社5、《奥赛经典分级精讲与测试系列》高一物理武建谋著高二物理黄洪才著湖南师范大学出版社6、《奥赛经典高中物理解题全钥匙》黄生训编7、《200道物理学难题》作者:彼特·纳德吉拉·哈涅克译者:李菘等北京理工大学出版8、《物理学难题集萃》舒幼生编高等教育出版社9、《金牌之路》张大同上海师大出版社10、《高中物理竞赛题典》舒幼生编浙江大学出版社11、《新编高中物理奥赛实用题典》范小辉编南京师范大学出版社12、《全国中学生物理竞赛实验指导书》全国中学生物理竞赛常委会编北京大学出版社1.程稼夫的2本竞赛书(力学篇,电磁学篇)简评:作为入门教材这两本书相当经典,全书结构合理,知识内容非常全面,讲解活泼,例题比较经典。

本书起点不高,但吃透后拿省一不成问题。

它的另一特色是带有一定的普物色彩,可为更深层次的学习打好基础。

2.金牌之路张大同著简评:被众多上个时代的高手强烈推荐的一本书,人气极高,本人未细读。

难度和复赛难度相当,整体编排比较经典,例题和习题直接选了很多竞赛原题。

但没有传说中的那么神,也不太适合当今竞赛的趋势。

3.物理学难题集萃舒幼生著简评:现在只有卖复印的,巨厚,舒幼生先生的不朽之作,极力推荐!本书难度并不向传说中那样高不可攀,但物理境界上与其他竞赛书明显不在一个档次。

若能认认真真做完本书,你的物理素质一定会有一个质的飞越!在做这本书之前建议先看完程稼夫2本,再学一些基本的微积分知识。

4.物理竞赛集训精编舒幼生著简评:难题集萃的缩减本,难度和经典程度都大大不如,但质量仍是不错的。

程稼夫力学篇对高考有帮助吗

程稼夫力学篇对高考有帮助吗

程稼夫力学篇对高考有帮助吗篇一:就高考谈力学复习就高考谈力学复习备课组长:陈进生撰写者:黄剑峰[本文摘要:物理学科是考查学生理解、推理、实践、创新应用、综合分析、应用数学处理物理问题、实验等方面能力的学科,在理科综合中最能体现高考的区分度。

而力学部分又是每年高考主要组成部分,有关力学或电力学结合的题目也往往是每年高考物理试题中的压卷题。

本文就最近几年来高考力学方面的特点,笔者近年来在总复习中的反思,及采取对应措施,提出了粗浅的见解,供同行参考。

本文分为三部分]第Ⅰ部分:近年来高考理综试卷中力学特点及分析特点一:近年来高考物理力学试题注重多种能力的考查,包括5个方面:理解能力、推理能力、分析综合能力、应用数学处理物理问题的能力和实验能力。

如04年理综试卷中15题考查了运用牛顿运动定律解题的推理能力,23题考查了万有引力定律应用和平抛运动相结合的分析综合能力,25题考查了牛顿运动定律和匀变速直线运动规律相结合的分析综合能力;05年理综试卷中23题既考查了人与跳蚤运动过程的分析,又考查了人与跳蚤起跳过程的联系,24题既考查了挂钩分别挂上物体C、D后各物体的运动和能量转化过程分析,又考查了前后两个过程中隐含的弹性势能及其改变量相等的内在联系,两题都突出考查了分析综合能力和运用数学处理物理问题的能力;06年理综试卷中19题以考查理解能力、推理能力、运用数学处理物体问题的能力,要求学生将题目给出的实验装置与振动图象结合起来,认识竖直弹簧振子的自由振动、受迫振动的图景,结合共振的知识,做出正确的判断。

24题既考查了煤块与传送带运动过程的分析,又考查了煤块与传送带运动过程的联系,既可用牛顿运动定律与匀变速直线运动规律解题的分析综合能力,也可用图像法来求解的应用数学处理物理问题的能力。

特点二:近年来高考理综物理试题中,力学都占了大部分,让人不得有“得力学者,得天下”的感言,力学所占比例,统计如下:表(一):2004年—2006年高考理综试卷试题力学部分一览表特点三:从试卷的力学知识比列(来自: 小龙文档网:程稼夫力学篇对高考有帮助吗)分配来看,选择题强调考查力学知识的覆盖面,大题仍然考力学的主干知识,突出了学科内的综合,符合《考试大纲》对各部分知识点要求的比重,覆盖面上突出主干知识,兼顾非主干知识。

高中物理竞赛精品讲义之—程稼夫篇

高中物理竞赛精品讲义之—程稼夫篇

电磁学静电学1、 静电场的性质静电场是一个保守场,也是一个有源场。

F dl o ⋅=⎰u r u u r Ñ 高斯定理静电力环路积分等于零 i os q E ds E ⋅=∑⎰⎰u u r u u r Ò i v q dv ρ⎛⎫→ ⎪⎝⎭∑⎰⎰⎰电场强度与电势是描述同一静电场的两种办法,两者有联系b a b aqE d r w w ⋅=-∑u r ra b E dr U U ⋅=-∑u r r①过程 E dr dU ⋅=-u r r一维情况下 x dUE dx dx=- x dUE dx=- ② 2、 几个对称性的电场(1) 球对称的电场314o Qr r R E Rπ≤()2231342o QQ R r r R E rR π-≤33342o 143o R r R E r E r πρρπ⎛⎫= ⎪⎝⎭例:一半径为1R 的球体均匀带电,体电荷密度为ρ,球内有一半径为2R 的小球形空腔,空腔中心与与球心相距为a ,如图(1) 求空腔中心处的电场E u r(2) 求空腔中心处的电势U解:(1)在空腔中任选一点p ,p E u u r可以看成两个均匀带电球体产生的电场强度之差,即 ()1212333p o o oE r r r r E E E ρρρ=-=-u u r u r u r ur u r 令12a o o =r u u u u r3p oE a E ρ=u u r r这个与p 在空腔中位置无关,所以空腔中心处23o oE a E ρ=u u u r r(2)求空腔中心处的电势 电势也满足叠加原理p U 可以看成两个均匀带电球体产生电势之差即 ()()()222222212123303666o ooo U R a R R R a E E E ρρρ⎡⎤=---=--⎣⎦假设上面球面上,有两个无限小面原i j s s V V ,计算i s V ,受到除了i s V 上电荷之处,球面上其它电荷对i s V 的静电力,这个静电力包含了j s V 上电荷对i s V 上电荷的作用力.同样j s V 受到除了i s V 上电荷以外,球面上其它电荷对j s V 上电荷的作用力,这个力同样包含了i s V 对j s V 的作用力. 如果把这里的ij s s V V 所受力相加,则,i j s s V V 之间的相互作用力相抵消。

程稼夫电磁学第二版第三章习题解析

程稼夫电磁学第二版第三章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.非习题部分:P314 积分中运用了近似,这里给出非近似解答:3-2先计算圆环上的电流3-又垂直于磁场方向粒子做圆周运动得当运动了时,电子一定会回到轴上.即若,则聚焦到了屏上.解得.3-4考虑出射角度为θ为粒子,其运动在垂直于磁场平面内的投影为一个过原点的圆.设半径为r,1)2)对应的立体角为比值为——前辈大神云:当年我没事练习积分的时候发现,找一个球面,沿垂直于一固定方向的平面切两刀,则无论如何切,两刀间的面积总是仅与两刀间的距离呈正比。

(具体证明请在X3-5(1得(2)沿TM方向不受力,速度分量恒为;垂直于磁场方向的平面上,粒子的投影是匀速圆周运动.动力学方程:解得欲经过M点,须在时,圆周运动回到了圆周运动的起点,即周运动抵达原点.由此设计,并考虑方向,可得答案:3-8当摆角为θ时,设摆的速度v,(1解得.(2)若,便不能达到,这时只需考虑最低点,因为那里最接近二次函数的极值点:解得前面的条件要求,故,解得.即时,在最低点恰好T=0,而时不会出现情况2)综上所述(2)出发后时,粒子第一次经过x轴代入解得.(3),为整数个周期,即粒子回到x轴此时即粒子回到原点.粒子运动中占据的空间为一圆柱,轴线长即x坐标最大值:半径即粒子匀速圆周运动的半径:体积为.3-10因为E垂直于平面而质子轨迹在平面内,所以质子的动能守恒.. 3-11如图,速度方向、电场方向和磁场方向两两垂直,洛伦兹力与电场力平衡得取一小段时间,这期间冲到靶上的粒子的电量为.这些粒子的质量为.由动量定理其中F是质子束受到的力.作用在靶上的力是它的反作用力.3-12(1)在垂直于磁场方向粒子做匀速圆周运动,动力学方程时,3-取,记,有可见是以为角速度的匀速圆周运动的速度.,解得,故有积分得到(3)粒子速度为零,即,由此解得,相(4x投影3-14设粒子距离磁极r,轨道半径为R,回旋角速度为ω.粒子受力如图,其中动力学方程可由力三角表示,以为直角边的三角形,斜边为解得,故有.3-15设圆运动半径为R3-16法一:建立空间直角坐标系如图.取,记,有可见是以为角速度的匀速圆周运动的速度.知圆运动这部分的半径,且与y轴相切,由几何关系临界是当..(2)根据运动的独立性,首先只考虑匀速圆周运动由速度合成可得.3-18撤去重力场,以等效的电场代之.动力学方程:取,记,有,记,有可见是以为角速度的匀速圆周运动的速度.由初始条件,知线速度速度最大时圆运动的速度与漂移速度同向,第二阶段的速度最大值为综上,整个过程最大速度.3-20方法一:记这一段导管长为l,它受到安培力为,于是两壁压差为3-由于把3-竖直方向只有重力作用,是上抛运动水平方向,得,有所以由二次函数性质,在时有最小值3-23设横向电场E2,纵向电场E1.由横向电场力与洛伦兹力平衡:于是有.3-24(1)由动力学方程:得到,又回旋加速器中粒子作圆周运动的周期即为电场的周期解得(2).3-25(2)能够射出的电子,其轨迹圆心都在S的右半边.由于电子顺时针回旋,电子总是轨迹圆与MN 从较为靠上的交点射出.对于圆心在右下时,射出点在相切时最靠下.由几何关系对于圆心在右上时,射出点与S对径时最靠上.由几何关系所以(3)轨迹圆心在S右边的电子初速度方向是向上和斜向上的所有方向.故占. 3-26数据不足无法得到答案,这里提供解法:(1)初速度设为,由,解得3-28题设A的量纲明显不对,强行忽略就好了.动力学方程取,记,有可见是以为角速度的匀速圆周运动的速度.因为z方向无外力,故粒子会留在平面内,因为,所以圆周运动那部,依分离实部虚部得:电子在z方向的运动,由一个沿z方向的匀速直线运动和另一个同样沿z方向的谐振动叠加;电子运动在平面内的投影是一条旋轮线.。

程稼夫电磁学第二版第四章习题解析

程稼夫电磁学第二版第四章习题解析

前言:特别感谢质心教育的题库与解析,以及“程稼夫力学、电磁学习题答案详解”的作者前辈和血色の寂宁前辈的资料.4-1动生电动势,电路中的电流要使功率最大,应取最小值1,即.4-2原题图片和答案结果不符,现分两种情况:(1)按答案来:整体绕过o点且于磁感应强度平行的轴转动将运动分解为绕c的平动和转动,转动对电势差无贡献4-3(1)OP电势相等时,OP速度沿磁场方向,显然当OP位于YOZ平面时,OP电势相等(2)当OP在YOZ平面右侧即X>0时,电势差(3)当OP在XOZ平面第一象限时,电势差最大4-4在任意时刻t,线圈中的电流为,则由电磁感应定律和欧姆定律得,该式也可以由能量得到4-5其中后一项式中与直杆平行,当与直杆方向垂直时,电动势绝对值最大故有.4-6对于回路有,故有力矩平衡故有.4-7(1)当转轮在磁场中旋转时,每一根轮辐上的感应电动势为四根辐条作为电源是并联的,轮子产生的感应电动势不变(2)根据戴维宁定理,将轮子作为电源,此时将外电路断路计算等效电动势. 4-8式中当转轮1和转轮2分别以ω1和ω2旋转并达到稳定时,闭合回路中感应电流为注意,因转轮1的四根轮辐并联,总电阻为;转轮2类似,其余连接导线、电刷、轮边缘的电阻均忽略不计.又,因转轮1和转轮2同方向旋转,ε1和ε2同方向,但在电路中的作用是彼此减弱的稳定转动时,转轮2所受磁力矩应与阻力矩抵消.磁力矩是四轮辐所受安培力产生的力矩,为式中是转轮2每根轮辐中的电流.阻力矩是阻力闸提供的力矩,因阻力恒为F,故有稳定将要向下滑动时安培力加滑动摩擦力等于重力分力解得可变电阻最大值匀速向上滑动时,电路中同时杆受力平衡,有联立解得.4-11注意题文描述中磁场竖直向上而所给图垂直于轨道平面,此处以文字为正.(1)下滑时,动生电动势与电源同向,故当加速下滑时,电流增大,V2读数增大,V1减小.(2)由牛顿第二定律及欧姆定律得:4-4-4-内电阻阻值负载电阻与内阻相等时,负载上功率最大.4-15平板的宽度d切割磁感线产生感应电动势,积累电荷产生电场,使自由电荷磁场力和4-16由受力平衡,;由力矩平衡,解得.4-17由于圆盘有厚度D,故当圆盘在磁场区域内竖直下落的速度为v时,在圆盘的厚度方向分离变量:两边积分:又初态,代入得:最大焦耳热:4-23(1)如图所示,当小球在管中任意位置x时,设该处的涡旋电场为E,则故式中r是小球在x位置时与O′的距离,式中的负号表示E的方向如图所示,即E与B的变化构成左手螺旋.因此,E的x分量为其中用到几何关系表示沿y轴正方向.小球所受洛仑兹力沿y方向,无x分量,为可见,即洛仑兹力沿y轴负方向小球在y方向还受管的支持力,因三力平衡,故管对小球的支持力为,于是,小球对管的作用力为.4-24法一:cd法二:记圆心为O,连接,.封闭回路中,与段无感生电动势,则.4-25由图中磁场方向及均匀减小,可知圆周上感应电动势方向为顺时针,大小为已知,联立解出故A、B两点电势差.4-26磁场变化产生感应电动势(负号代表逆时针方向)圆环电阻阻值,感应电流电功率.4-27回路以逆时针指向纸外为正,则磁通ab上解得做功.4-29K反向时,励磁电流反向,磁场反向,磁通量变化量大小为原来的两倍,方向相反.4-32根据自感定义,单匝线圈磁通为.4-36设原线圈电路电流为,副线圈电路电流为,由理想变压器性质由题整理得要求灯正常发光,所以算出额定电流,然后能得到每个回路上的电流.4-38(1)如图,由输入等效电路原理(2)原线圈上的电压;副线圈上的电压(3)变压比为.4-39(1)由题,安培力等于阻力(2)代入,(3)单位时间克服阻力做功单位时间电路中消耗代入得(2)当C2断路时,没有感应电流,C1中无互感电动势此时C2中只有互感电动势,a′、b′两端的电压为.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档