2019年度初中数学中考模拟试卷08762
2019年数学中考模拟试卷(附答案)

2019年数学中考模拟试卷(附答案)一、选择题1.-2的相反数是( ) A .2B .12C .-12D .不存在2.如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧),则下列三个结论:①sin ∠C >sin ∠D ;②cos ∠C >cos ∠D ;③tan ∠C >tan ∠D 中,正确的结论为( )A .①②B .②③C .①②③D .①③3.如图,在Rt △ABC 中,∠ACB =90°,CD ⊥AB ,垂足为D .若AC =5,BC =2,则sin ∠ACD 的值为( )A .5B .25C .5 D .234.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论: ①ΔADB ΔADC S S =; ②当0<x <3时,12y y <; ③如图,当x=3时,EF=83;④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小. 其中正确结论的个数是( )A .1B .2C .3D .45.若关于x 的方程333x m mx x++--=3的解为正数,则m 的取值范围是( ) A .m <92 B .m <92且m≠32C .m >﹣94D .m >﹣94且m≠﹣346.如图是二次函数y=ax 2+bx+c (a ,b ,c 是常数,a ≠0)图象的一部分,与x 轴的交点A 在点(2,0)和(3,0)之间,对称轴是x=1.对于下列说法:①ab <0;②2a+b=0;③3a+c >0;④a+b≥m (am+b )(m 为实数);⑤当﹣1<x <3时,y >0,其中正确的是( )A .①②④B .①②⑤C .②③④D .③④⑤7.现定义一种变换:对于一个由有限个数组成的序列S 0,将其中的每个数换成该数在S 0中出现的次数,可得到一个新序列S 1,例如序列S 0:(4,2,3,4,2),通过变换可生成新序列S 1:(2,2,1,2,2),若S 0可以为任意序列,则下面的序列可作为S 1的是( )A .(1,2,1,2,2)B .(2,2,2,3,3)C .(1,1,2,2,3)D .(1,2,1,1,2)8.如图,已知////AB CD EF ,那么下列结论正确的是( )A .AD BCDF CE= B .BC DFCE AD= C .CD BCEF BE= D .CD ADEF AF= 9.如图,P 为平行四边形ABCD 的边AD 上的一点,E ,F 分别为PB ,PC 的中点,△PEF ,△PDC ,△PAB 的面积分别为S ,1S ,2S .若S=3,则12S S +的值为( )A .24B .12C .6D .310.二次函数2y ax bx c =++的图象如图所示,则一次函数24y bx b ac =+-与反比例函数a b cy x++=在同一坐标系内的图象大致为( )A .B .C .D .11.下列分解因式正确的是( ) A .24(4)x x x x -+=-+ B .2()x xy x x x y ++=+ C .2()()()x x y y y x x y -+-=-D .244(2)(2)x x x x -+=+-12.已知实数a ,b ,若a >b ,则下列结论错误的是 A .a-7>b-7B .6+a >b+6C .55a b >D .-3a >-3b二、填空题13.一列数123,,,a a a ……n a ,其中1231211111,,,,111n n a a a a a a a -=-===---L L ,则1232014a a a a ++++=L L __________.14.在一个不透明的袋子中有若千个小球,这些球除颜色外无其他差别,从袋中随机摸出一球,记下其颜色,这称为一次摸球试验,然后把它重新放回袋中并摇匀,不断重复上述过程.以下是利用计算机模拟的摸球试验统计表: 摸球实验次数 100 1000 5000 10000 50000 100000 “摸出黑球”的次数 36387201940091997040008“摸出黑球”的频率 (结果保留小数点后三位)0.3600.3870.4040.4010.3990.400根据试验所得数据,估计“摸出黑球”的概率是_______(结果保留小数点后一位). 15.当直线()223y k x k =-+-经过第二、三、四象限时,则k 的取值范围是_____. 16.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n 个图形中有______个三角形(用含n 的式子表示)17.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是 .18.在Rt△ABC 中,∠C=90°,AC=6,BC=8,点E 是BC 边上的动点,连接AE ,过点E 作AE 的垂线交AB 边于点F ,则AF 的最小值为_______19.对于有理数a 、b ,定义一种新运算,规定a ☆b =a 2﹣|b|,则2☆(﹣3)=_____. 20.在一个不透明的口袋中,装有A ,B ,C ,D4个完全相同的小球,随机摸取一个小球然后放回,再随机摸取一个小球,两次摸到同一个小球的概率是___.三、解答题21.两个全等的直角三角形 ABC 和 DEF 重叠在一起,其中∠A=60°,AC=1.固定△ABC 不动,将△DEF 进行如下操作:(1)如图,△DEF 沿线段 AB 向右平移(即 D 点在线段 AB 内移动),连接 DC 、CF 、FB ,四边形 CDBF 的形状在不断的变化,但它的面积不变化,请求出其面积.(2)如图,当 D 点移到 AB 的中点时,请你猜想四边形CDBF 的形状,并说明理由.(3)如图,△DEF 的 D 点固定在 AB 的中点,然后绕 D 点按顺时针方向旋转△DEF,使 DF 落在 AB 边上,此时 F 点恰好与 B 点重合,连接 AE ,请你求出 sinα的值.22.某小区响应济南市提出的“建绿透绿”号召,购买了银杏树和玉兰树共150棵用来美化小区环境,购买银杏树用了12000元,购买玉兰树用了9000元.已知玉兰树的单价是银杏树单价的1.5倍,那么银杏树和玉兰树的单价各是多少?23.如图,AB是半圆O的直径,AD为弦,∠DBC=∠A.(1)求证:BC是半圆O的切线;(2)若OC∥AD,OC交BD于E,BD=6,CE=4,求AD的长.24.材料:解形如(x+a)4+(x+b)4=c的一元四次方程时,可以先求常数a和b的均值,然后设y=x+.再把原方程换元求解,用种方法可以成功地消去含未知数的奇次项,使方程转化成易于求解的双二次方程,这种方法叫做“均值换元法.例:解方程:(x﹣2)4+(x﹣3)4=1解:因为﹣2和﹣3的均值为,所以,设y=x﹣,原方程可化为(y+)4+(y﹣)4=1,去括号,得:(y2+y+)2+(y2﹣y+)2=1y4+y2++2y3+y2+y+y4+y2+﹣2y3+y2﹣y=1整理,得:2y4+3y2﹣=0(成功地消去了未知数的奇次项)解得:y2=或y2=(舍去)所以y=±,即x﹣=±.所以x=3或x=2.(1)用阅读材料中这种方法解关于x的方程(x+3)4+(x+5)4=1130时,先求两个常数的均值为______.设y=x+____.原方程转化为:(y﹣_____)4+(y+_____)4=1130.(2)用这种方法解方程(x+1)4+(x+3)4=70625.已知:如图,△ABC为等腰直角三角形∠ACB=90°,过点C作直线CM,D为直线CM上一点,如果CE=CD且EC⊥CD.(1)求证:△ADC≌△BEC;(2)如果EC⊥BE,证明:AD∥EC.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【解析】试题分析:根据只有符号不同的两数互为相反数,可知-2的相反数为2.故选:A.点睛:此题考查了相反数的意义,解题关键是明确相反数的概念,只有符号不同的两数互为相反数,可直接求解.2.D解析:D【解析】如图,连接BE,根据圆周角定理,可得∠C=∠AEB,∵∠AEB=∠D+∠DBE,∴∠AEB>∠D,∴∠C>∠D,根据锐角三角形函数的增减性,可得,sin∠C>sin∠D,故①正确;cos∠C<cos∠D,故②错误;tan∠C>tan∠D,故③正确;故选D.3.A解析:A 【解析】 【分析】在直角△ABC 中,根据勾股定理即可求得AB ,而∠B =∠ACD ,即可把求sin ∠ACD 转化为求sin B . 【详解】在直角△ABC 中,根据勾股定理可得:AB ===3.∵∠B +∠BCD =90°,∠ACD +∠BCD =90°,∴∠B =∠ACD ,∴sin ∠ACD =sin ∠B AC AB ==. 故选A . 【点睛】本题考查了解直角三角形中三角函数的应用,要熟练掌握好边角之间的关系,难度适中.4.C解析:C 【解析】试题分析:对于直线122y x =-,令x=0,得到y=2;令y=0,得到x=1,∴A (1,0),B (0,﹣2),即OA=1,OB=2,在△OBA 和△CDA 中,∵∠AOB=∠ADC=90°,∠OAB=∠DAC ,OA=AD ,∴△OBA ≌△CDA (AAS ),∴CD=OB=2,OA=AD=1,∴ΔADB ΔADC S S =(同底等高三角形面积相等),选项①正确;∴C (2,2),把C 坐标代入反比例解析式得:k=4,即24y x=,由函数图象得:当0<x <2时,12y y <,选项②错误; 当x=3时,14y =,243y =,即EF=443-=83,选项③正确; 当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小,选项④正确,故选C . 考点:反比例函数与一次函数的交点问题.5.B解析:B 【解析】 【分析】 【详解】解:去分母得:x+m ﹣3m=3x ﹣9, 整理得:2x=﹣2m+9,解得:x=292m -+,已知关于x 的方程333x m mx x++--=3的解为正数, 所以﹣2m+9>0,解得m <92, 当x=3时,x=292m -+=3,解得:m=32, 所以m 的取值范围是:m <92且m≠32.故答案选B .6.A解析:A 【解析】 【分析】由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,然后根据对称轴判定b 与0的关系以及2a+b=0;当x=﹣1时,y=a ﹣b+c ;然后由图象确定当x 取何值时,y >0. 【详解】①∵对称轴在y 轴右侧, ∴a 、b 异号, ∴ab <0,故正确; ②∵对称轴1,2bx a=-= ∴2a+b=0;故正确; ③∵2a+b=0, ∴b=﹣2a ,∵当x=﹣1时,y=a ﹣b+c <0, ∴a ﹣(﹣2a )+c=3a+c <0,故错误; ④根据图示知,当m=1时,有最大值; 当m≠1时,有am 2+bm+c≤a+b+c , 所以a+b≥m (am+b )(m 为实数). 故正确.⑤如图,当﹣1<x <3时,y 不只是大于0. 故错误. 故选A . 【点睛】本题主要考查了二次函数图象与系数的关系,关键是熟练掌握①二次项系数a 决定 抛物线的开口方向,当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;②一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y轴左;当a与b异号时(即ab<0),对称轴在y轴右.(简称:左同右异)③常数项c决定抛物线与y轴交点,抛物线与y轴交于(0,c).7.D解析:D【解析】【分析】根据已知中有限个数组成的序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,可得S1中2的个数应为偶数个,由此可排除A,B答案,而3的个数应为3个,由此可排除C,进而得到答案.【详解】解:由已知中序列S0,将其中的每个数换成该数在S0中出现的次数,可得到一个新序列S1,A、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故A不满足条件;B、2有三个,即序列S0:该位置的三个数相等,按照变换规则,应为三个3,故B不满足条件;C、3有一个,即序列S0:该位置的数出现了三次,按照变换规则,应为三个3,故C不满足条件;D、2有两个,即序列S0:该位置的两个数相等,1有三个,即这三个位置的数互不相等,满足条件,故选D.【点睛】本题考查规律型:数字的变化类.8.A解析:A【解析】【分析】已知AB∥CD∥EF,根据平行线分线段成比例定理,对各项进行分析即可.【详解】∵AB∥CD∥EF,∴AD BC DF CE.故选A.【点睛】本题考查平行线分线段成比例定理,找准对应关系,避免错选其他答案.9.B解析:B【解析】 【分析】 【详解】过P 作PQ ∥DC 交BC 于点Q ,由DC ∥AB ,得到PQ ∥AB , ∴四边形PQCD 与四边形APQB 都为平行四边形, ∴△PDC ≌△CQP ,△ABP ≌△QPB , ∴S △PDC =S △CQP ,S △ABP =S △QPB , ∵EF 为△PCB 的中位线, ∴EF ∥BC ,EF=12BC , ∴△PEF ∽△PBC ,且相似比为1:2, ∴S △PEF :S △PBC =1:4,S △PEF =3,∴S △PBC =S △CQP +S △QPB =S △PDC +S △ABP =12S S +=12. 故选B .10.D解析:D 【解析】 【分析】根据二次函数图象开口向上得到a>0,再根据对称轴确定出b ,根据二次函数图形与x 轴的交点个数,判断24b ac -的符号,根据图象发现当x=1时y=a+b+c<0,然后确定出一次函数图象与反比例函数图象的情况,即可得解. 【详解】∵二次函数图象开口方向向上, ∴a >0,∵对称轴为直线02bx a=->, ∴b <0,二次函数图形与x 轴有两个交点,则24b ac ->0, ∵当x =1时y =a +b +c <0,∴24y bx b ac =+-的图象经过第二四象限,且与y 轴的正半轴相交,反比例函数a b cy x++=图象在第二、四象限, 只有D 选项图象符合.故选:D.【点睛】考查反比例函数的图象,一次函数的图象,二次函数的图象,掌握函数图象与系数的关系是解题的关键.11.C解析:C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误; C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底. 12.D解析:D【解析】A.∵a >b ,∴a-7>b-7,∴选项A 正确;B.∵a >b ,∴6+a >b+6,∴选项B 正确;C.∵a >b ,∴55a b >,∴选项C 正确;D.∵a >b ,∴-3a <-3b ,∴选项D 错误.故选D. 二、填空题13.【解析】【分析】分别求得a1a2a3…找出数字循环的规律进一步利用规律解决问题【详解】解:…由此可以看出三个数字一循环2014÷3=671…1则a1+a2+a 3+…+a2014=671×(-1++2 解析:20112【解析】【分析】分别求得a 1、a 2、a 3、…,找出数字循环的规律,进一步利用规律解决问题.【详解】解:123412311111,,2,1,1211a a a a a a a =-======----… 由此可以看出三个数字一循环,2014÷3=671…1,则a 1+a 2+a 3+…+a 2014=671×(-1+12+2)+(-1)=20112. 故答案为20112. 考点:规律性:数字的变化类.14.4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率据此求解【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在04附近故摸到白球的频率估计值为04;故答案为:04【点睛】本题考查了利用频率解析:4【解析】【分析】大量重复试验下摸球的频率可以估计摸球的概率,据此求解.【详解】观察表格发现随着摸球次数的增多频率逐渐稳定在0.4附近,故摸到白球的频率估计值为0.4;故答案为:0.4.【点睛】本题考查了利用频率估计概率的知识,解题的关键是了解大量重复试验中某个事件发生的频率能估计概率.15.【解析】【分析】根据一次函数时图象经过第二三四象限可得即可求解;【详解】经过第二三四象限∴∴∴故答案为:【点睛】本题考查一次函数图象与系数的关系;掌握一次函数与对函数图象的影响是解题的关键解析:13k <<.【解析】【分析】根据一次函数y kx b =+,k 0<,0b <时图象经过第二、三、四象限,可得220k -<,30k -<,即可求解;【详解】()223y k x k =-+-经过第二、三、四象限,∴220k -<,30k -<,∴1k >,3k <,∴13k <<,故答案为:13k <<.【点睛】本题考查一次函数图象与系数的关系;掌握一次函数y kx b =+,k 与b 对函数图象的影响是解题的关键.16.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.17.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.18.【解析】试题分析:如图设AF 的中点为D 那么DA=DE=DF 所以AF 的最小值取决于DE 的最小值如图当DE ⊥BC 时DE 最小设DA=DE=m 此时DB=m 由AB=DA+DB 得m+m=10解得m=此时AF=2 解析:152【解析】试题分析:如图,设AF 的中点为D ,那么DA=DE=DF.所以AF 的最小值取决于DE 的最小值.如图,当DE⊥BC时,DE最小,设DA=DE=m,此时DB=53m,由AB=DA+DB,得m+53m=10,解得m=154,此时AF=2m=152.故答案为15 2.19.1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1故答案为1点睛:此题考查有理数的混合运算掌握规定的运算方法是解决问题的关键解析:1【解析】解:2☆(﹣3)=22﹣|﹣3|=4﹣3=1.故答案为1.点睛:此题考查有理数的混合运算,掌握规定的运算方法是解决问题的关键.20.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)==故答案为考点:列表法与树状图法;概率公式解析:14.【解析】【分析】【详解】试题分析:画树状图如下:∴P(两次摸到同一个小球)=416=14.故答案为14.考点:列表法与树状图法;概率公式.三、解答题21.(1)过点C作CG⊥AB于G在Rt△ACG中∵∠A=60°∴sin60°=∴……………1分在Rt△ABC中∠ACB=90°∠ABC=30°∴AB=2 …………………………………………2分∴………3分(2)菱形………………………………………4分∵D是AB的中点∴AD=DB=CF=1在Rt△ABC中,CD是斜边中线∴CD=1……5分同理 BF=1 ∴CD=DB=BF=CF∴四边形CDBF是菱形…………………………6分(3)在Rt△ABE中∴……………………………7分过点D作DH⊥AE 垂足为H则△ADH∽△AEB ∴即∴ DH=……8分在Rt△DHE中sinα==…=…………………9分【解析】(1)根据平移的性质得到AD=BE,再结合两条平行线间的距离相等,则三角形ACD的面积等于三角形BEF的面积,所以要求的梯形的面积等于三角形ABC的面积.根据60度的直角三角形ABC中AC=1,即可求得BC的长,从而求得其面积;(2)根据直角三角形斜边上的中线等于斜边的一半和平移的性质,即可得到该四边形的四条边都相等,则它是一个菱形;(3)过D点作DH⊥AE于H,可以把要求的角构造到直角三角形中,根据三角形ADE的面积的不同计算方法,可以求得DH的长,进而求解.22.银杏树的单价为120元,则玉兰树的单价为180元.【解析】试题分析:根据题意可以列出相应的分式方程,从而可以解答本题.试题解析:解:设银杏树的单价为x元,则玉兰树的单价为1.5x元,根据题意得:120009000150+=1.5x x解得:x=120,经检验x=120是原分式方程的解,∴1.5x=180.答:银杏树的单价为120元,则玉兰树的单价为180元.23.(1)见解析;(2)AD=4.5.【解析】【分析】(1)若证明BC是半圆O的切线,利用切线的判定定理:即证明AB⊥BC即可;(2)因为OC∥AD,可得∠BEC=∠D=90°,再有其他条件可判定△BCE∽△BAD,利用相似三角形的性质:对应边的比值相等即可求出AD的长.【详解】(1)证明:∵AB是半圆O的直径,∴BD⊥AD,∴∠DBA+∠A=90°,∵∠DBC=∠A,∴∠DBA+∠DBC=90°即AB⊥BC,∴BC是半圆O的切线;(2)解:∵OC∥AD,∴∠BEC=∠D=90°,∵BD⊥AD,BD=6,∴BE=DE=3,∵∠DBC=∠A,∴△BCE∽△BAD,∴=CE BE BD AD ,即436=AD; ∴AD=4.5【点睛】 本题考查了切线的判定.要证某线是圆的切线,已知此线过圆上某点,连接圆心与这点(即为半径),再证垂直即可.同时考查了相似三角形的判定和性质.24.(1)4,4,1,1;(2)x =2或x =﹣6.【解析】【分析】(1)可以先求常数3和5的均值4,然后设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130;(2)可以先求常数1和3的均值2,然后设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,再整理化简求出y 的值,最后求出x 的值.【详解】(1)因为3和5的均值为4,所以,设y =x+4,原方程可化为(y ﹣1)4+(y+1)4=1130,故答案为4,4,1,1;(2)因为1和3的均值为2,所以,设y =x+2,原方程可化为(y ﹣1)4+(y+1)4=706,去括号,得:(y 2﹣2y+1)2+(y 2+2y+1)2=706,y 4+4y 2+1﹣4y 3+2y 2﹣4y+y 4+4y 2+1+4y 3+2y 2+4y =706,整理,得:2y 4+12y 2﹣704=0(成功地消去了未知数的奇次项),解得:y 2=16或y 2=﹣22(舍去)所以y =±4,即x+2=±4.所以x =2或x =﹣6. 【点睛】本题考查了解高次方程,求出均值把原方程换元求解是解题的关键.25.(1)详见解析;(2)详见解析.【解析】【分析】(1)根据两锐角互余的关系可得∠ACD =∠BCE ,利用SAS 即可证明△ADC ≌△BEC ;(2)由△ADC ≌△BEC 可得∠ADC =∠E =90°,根据平行线判定定理即可证明AD//EC.【详解】(1)∵EC ⊥DM ,∴∠ECD =90°,∴∠ACB =∠DCE=90°,∴∠ACD+∠ACE=90°,∠BCE+∠ACE=90°,∴∠ACD =∠BCE ,∵CD =CE ,CA =CB ,∴△ADC ≌△BEC (SAS ).(2)由(1)得△ADC≌△BEC,∵EC⊥BE,∴∠ADC=∠E=90°,∴AD⊥DM,∵EC⊥DM,∴AD∥EC.【点睛】本题考查全等三角形的判定和性质,等腰直角三角形的性质等知识,解题的关键是正确寻找全等三角形全等的条件,属于中考常考题型.。
2019中考数学模拟试题附答案(2021年整理)

2019中考数学模拟试题附答案(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019中考数学模拟试题附答案(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019中考数学模拟试题附答案(word版可编辑修改)的全部内容。
2016中考数学信息试卷一、选择题(每题3分,共24分)1.6-的绝对值等于( )A .6B .16C .16- D .6- 2.下列计算正确的是( )A .2x x x += B. 2x x x ⋅= C.235()x x = D 。
32x x x ÷=3. 一个几何体的主视图和左视图都是正方形,俯视图是一个圆,那么这个几何体是( )A .长方体B .正方体C .圆锥D .圆柱 4.如图,已知⊙O 是△ABC 的内切圆,且∠ABC =50°,∠ACB =80°, 则∠BOC 是( )A 。
110° B. 115° C 。
120° D. 125°第4题 第7题 第8题5.下列说法正确的是( )A .要了解人们对“低碳生活”的了解程度,宜采用普查方式B .一组数据3、4、5、5、6、7的众数和中位数都是5C .随机事件的概率为50%,必然事件的概率为100%D .若甲组数据的方差是0.168,乙组数据的方差是0.034,则甲组数据比乙组数据稳定6.圆锥的侧面积为8π ,母线长为4,则它的底面半径为( )45°CBAA .2B .1C .3D .47.如图,将宽为1cm 的纸条沿BC 折叠,使∠CAB =45°,则折叠后重叠部分的面积为( )A . 错误!cm 2B .错误!cm 2C .错误!cm 2D . 错误!cm 2 8.八个边长为1的正方形如图摆放在平面直角坐标系中,经过原点的一条直线l 将这八个正方形分成面积相等的两部分,则该直线l 的解析式为 ( )A .y=x 53 B .y=x 43 C .y=x 109D .y=x二、填空题(每题3分,共30分) 9.25的平方根是 .10.写出一个大于1且小于2的无理数 .11.太阳的半径约是6。
2019中考数学模拟试题含答案(精选5套)

2019年中考数学模拟试卷(一)姓名--------座号--------成绩-------一、选择题(本大题满分36分,每小题3分. )1. 2 sin 60°的值等于( ) A. 1B.23C. 2D. 32. 下列的几何图形中,一定是轴对称图形的有( )A. 5个B. 4个C. 3个D. 2个3. 据2017年1月24日《桂林日报》报道,临桂县2016年财政收入突破18亿元,在广西各县中排名第二. 将18亿用科学记数法表示为( )A. 1.8×10B. 1.8×108C. 1.8×109D. 1.8×10104. 估计8-1的值在( )A. 0到1之间B. 1到2之间C. 2到3之间D. 3至4之间 5. 将下列图形绕其对角线的交点顺时针旋转90°,所得图形一定与原图形重合的是( ) A. 平行四边形 B. 矩形 C. 正方形 D. 菱形 6. 如图,由5个完全相同的小正方体组合成一个立体图形,它的左视图是( )7. 为调查某校1500名学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机抽取部分学生进行调查,并结合调查数据作出如图所示的扇形统计图. 根据统计图提供的 信息,可估算出该校喜爱体育节目的学生共有( ) A. 1200名 B. 450名C. 400名D. 300名8. 用配方法解一元二次方程x 2+ 4x – 5 = 0,此方程可变形为( ) A. (x + 2)2= 9 B. (x - 2)2 = 9C. (x + 2)2 = 1D. (x - 2)2=19. 如图,在△ABC 中,AD ,BE 是两条中线,则S △EDC ∶S △ABC =( ) A. 1∶2B. 1∶4C. 1∶3D. 2∶310. 下列各因式分解正确的是( )A. x 2 + 2x-1=(x - 1)2B. - x 2+(-2)2=(x - 2)(x + 2) C. x 3- 4x = x (x + 2)(x - 2)D. (x + 1)2= x 2 + 2x + 111. 如图,AB 是⊙O 的直径,点E 为BC 的中点,AB = 4,∠BED = 120°, 则图中阴影部分的面积之和为( )A. 3B. 23C.23D. 1圆弧 角 扇形 菱形 等腰梯形A. B. C. D.(第9题图)(第7题图)12. 如图,△ABC 中,∠C = 90°,M 是AB 的中点,动点P 从点A 出发,沿AC 方向匀速运动到终点C ,动点Q 从点C 出发,沿CB 方向匀速运动到终点B. 已知P ,Q 两点同时出发,并同时到达终点,连接MP ,MQ ,PQ . 在整个运动过程中,△MPQ 的面积大小变化情况是 A. 一直增大B. 一直减小C. 先减小后增大D. 先增大后减小二、填空题(本大题满分18分,每小题3分,) 13. 计算:│-31│= . 14. 已知一次函数y = kx + 3的图象经过第一、二、四象限,则k 的取值范围是 . 15. 在10个外观相同的产品中,有2个不合格产品,现从中任意抽取1个进行检测,抽到合格产品的概率是 .16. 在临桂新区建设中,需要修一段全长2400m 的道路,为了尽量减少施工对县城交通所造成的影响,实际工作效率比原计划提高了20%,结果提前8天完成任务,求原计划每天修路的长度. 若设原计划每天修路x m ,则根据题意可得方程 .17. 在平面直角坐标系中,规定把一个三角形先沿着x 轴翻折,再向右平移2个单 位称为1次变换. 如图,已知等边三角形ABC 的顶点B ,C 的坐标分别是 (-1,-1),(-3,-1),把△ABC 经过连续9次这样的变换得到△A ′B ′C ′, 则点A 的对应点A ′ 的坐标是 .18. 如图,已知等腰Rt △ABC 的直角边长为1,以Rt △ABC 的斜边AC 为直角 边,画第二个等腰Rt △ACD ,再以Rt △ACD 的斜边AD 为直角边,画第三 个等腰Rt △ADE ……依此类推直到第五个等腰Rt △AFG ,则由这五个等 腰直角三角形所构成的图形的面积为 . 三、解答题(本大题8题,共66分,) 19. (本小题满分8分,每题4分)(1)计算:4 cos45°-8+(π-3) +(-1)3;(2)化简:(1 - n m n+)÷22n m m -.20. (本小题满分6分)3121--+x x ≤1, ……① 解不等式组:3(x - 1)<2 x + 1. ……②(第12题图)(第17题图)(第18题图)°21. (本小题满分6分)如图,在△ABC中,AB = AC,∠ABC = 72°.(1)用直尺和圆规作∠ABC的平分线BD交AC于点D(保留作图痕迹,不要求写作法);(2)在(1)中作出∠ABC的平分线BD后,求∠BDC的度数.22. (本小题满分8分)在开展“学雷锋社会实践”活动中,某校为了解全校1200名学生参加活动的情况,随机调查了50名学生每人参加活动的次数,并根据数据绘成条形统计图如下:(1)求这50个样本数据的平均数、众数和中位数;(2)根据样本数据,估算该校1200名学生共参加了多少次活动.23. (本小题满分8分)如图,山坡上有一棵树AB,树底部B点到山脚C点的距离BC为63米,山坡的坡角为30°. 小宁在山脚的平地F处测量这棵树的高,点C到测角仪EF的水平距离CF = 1米,从E 处测得树顶部A的仰角为45°,树底部B的仰角为20°,求树AB的高度.(参考数值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36)(第21题图)(第23题图)24. (本小题满分8分)如图,PA ,PB 分别与⊙O 相切于点A ,B ,点M 在PB 上,且OM ∥AP , MN ⊥AP ,垂足为N. (1)求证:OM = AN ;(2)若⊙O 的半径R = 3,PA = 9,求OM 的长.25. (本小题满分10分)某中学计划购买A 型和B 型课桌凳共200套. 经招标,购买一套A 型课桌凳比购买一套B 型课桌凳少用40元,且购买4套A 型和5套B 型课桌凳共需1820元.(1)求购买一套A 型课桌凳和一套B 型课桌凳各需多少元?(2)学校根据实际情况,要求购买这两种课桌凳总费用不能超过40880元,并且购买A 型课桌凳的数量不能超过B 型课桌凳数量的32,求该校本次购买A 型和B 型课桌凳共有几种方案?哪种方案的总费用最低?26. (本小题满分12分)在平面直角坐标系中,现将一块等腰直角三角板ABC 放在第二象限,斜靠在两坐标轴上,点C 为(-1,0). 如图所示,B 点在抛物线y =21x 2 -21x – 2图象上,过点B 作BD ⊥x 轴,垂足为D ,且B 点横坐标为-3.(1)求证:△BDC ≌ △COA ;(2)求BC 所在直线的函数关系式;(3)抛物线的对称轴上是否存在点P ,使△ACP 是以AC 为直角边的直角三角形?若存在,求出所有点P 的坐标;若不存在,请说明理由.(第24题图)(第26题图)2017年初三适应性检测参考答案与评分意见题号 1 2 3 4 5 6 7 8 9 10 11 12 答案DACBCBDABCAC说明:第12题是一道几何开放题,学生可从几个特殊的点着手,计算几个特殊三角形面积从而降低难度,得出答案. 当点P ,Q 分别位于A 、C 两点时,S △MPQ =21S △ABC ;当点P 、Q 分别运动到AC ,BC 的中点时,此时,S △MPQ =21×21AC. 21BC =41S △ABC ;当点P 、Q 继续运动到点C ,B 时,S △MPQ =21S △ABC ,故在整个运动变化中,△MPQ 的面积是先减小后增大,应选C. 二、填空题 13.31; 14. k <0; 15. 54(若为108扣1分); 16. x 2400-x %)201(2400+ = 8;17. (16,1+3); 18. 15.5(或231). 三、解答题19. (1)解:原式 = 4×22-22+1-1……2分(每错1个扣1分,错2个以上不给分) = 0 …………………………………4分(2)解:原式 =(n m nm ++-nm n +)·m n m 22- …………2分= nm m +·m n m n m ))((-+ …………3分= m – n …………4分 20. 解:由①得3(1 + x )- 2(x -1)≤6, …………1分 化简得x ≤1. …………3分 由②得3x – 3 < 2x + 1, …………4分 化简得x <4. …………5分 ∴原不等式组的解是x ≤1. …………6分21. 解(1)如图所示(作图正确得3分)(2)∵BD 平分∠ABC ,∠ABC = 72°, ∴∠ABD =21∠ABC = 36°, …………4分∵AB = AC ,∴∠C =∠ABC = 72°, …………5分 ∴∠A= 36°,∴∠BDC =∠A+∠ABD = 36° + 36° = 72°. …………6分 22. 解:(1)观察条形统计图,可知这组样本数据的平均数是 _x =50551841737231⨯+⨯+⨯+⨯+⨯ =3.3, …………1分∴这组样本数据的平均数是3.3. …………2分∵在这组样本数据中,4出现了18次,出现的次数最多, ∴这组数据的众数是4. …………4分∵将这组样本数据按从小到大的顺序排列,其中处在中间的两个数都是3,有233+ = 3. ∴这组数据的中位数是3. ………………6分(2)∵这组数据的平均数是3.3,∴估计全校1200人参加活动次数的总体平均数是3.3,有3.3×1200 = 3900. ∴该校学生共参加活动约3960次. ………………8分 23. 解:在Rt △BDC 中,∠BDC = 90°,BC = 63米,∠BCD = 30°, ∴DC = BC ·cos30° ……………………1分 = 63×23= 9, ……………………2分 ∴DF = DC + CF = 9 + 1 = 10,…………………3分 ∴GE = DF = 10. …………………4分 在Rt △BGE 中,∠BEG = 20°, ∴BG = CG ·tan20° …………………5分 =10×0.36=3.6, …………………6分 在Rt △AGE 中,∠AEG = 45°,∴AG = GE = 10, ……………………7分 ∴AB = AG – BG = 10 - 3.6 = 6.4.答:树AB 的高度约为6.4米. ……………8分24. 解(1)如图,连接OA ,则OA ⊥AP. ………………1分∵MN ⊥AP ,∴MN ∥OA. ………………2分 ∵OM ∥AP ,∴四边形ANMO 是矩形.∴OM = AN. ………………3分(2)连接OB ,则OB ⊥AP ,∵OA = MN ,OA = OB ,OM ∥BP , ∴OB = MN ,∠OMB =∠NPM.∴Rt △OBM ≌Rt △MNP. ………………5分 ∴OM = MP.设OM = x ,则NP = 9- x . ………………6分在Rt △MNP 中,有x 2 = 32+(9- x )2.∴x = 5. 即OM = 5 …………… 8分25. 解:(1)设A 型每套x 元,则B 型每套(x + 40)元. …………… 1分 ∴4x + 5(x + 40)=1820. ……………………………………… 2分∴x = 180,x + 40 = 220.即购买一套A 型课桌凳和一套B 型课桌凳各需180元、220元. ……………3分(2)设购买A 型课桌凳a 套,则购买B 型课桌凳(200 - a )套.a ≤32(200 - a ), ∴ …………… 4分 180 a + 220(200- a )≤40880.解得78≤a ≤80. …………… 5分∵a 为整数,∴a = 78,79,80∴共有3种方案. ………………6分 设购买课桌凳总费用为y 元,则y = 180a + 220(200 - a )=-40a + 44000. …………… 7分 ∵-40<0,y 随a 的增大而减小,∴当a = 80时,总费用最低,此时200- a =120. …………9分 即总费用最低的方案是:购买A 型80套,购买B 型120套. ………………10分2017年中考数学模拟试题(二)姓名---------座号---------成绩-----------一、选择题1、数2-中最大的数是( ) A 、1- BC 、0D 、2 2、9的立方根是( )A 、3±B 、3 C、 D3、已知一元二次方程2430x x -+=的两根1x 、2x ,则12x x +=(A 、4B 、3C 、-4D 、-3 4、如图是某几何题的三视图,下列判断正确的是( ) A 、几何体是圆柱体,高为2 B 、几何体是圆锥体,高为2 C 、几何体是圆柱体,半径为2 D 、几何体是圆柱体,半径为2 5、若a b >,则下列式子一定成立的是( )A 、0a b +>B 、0a b ->C 、0ab >D 、0a b> 6、如图AB ∥DE ,∠ABC=20°,∠BCD=80°,则∠CDE=( ) A 、20° B 、80° C 、60° D 、100°7、已知AB 、CD 是⊙O 的直径,则四边形ACBD 是( ) A 、正方形 B 、矩形 C 、菱形 D 、等腰梯形 8、不等式组302x x +>⎧⎨-≥-⎩的整数解有( )A 、0个B 、5个C 、6个D 、无数个 9、已知点1122(,),(,)A x y B x y 是反比例函数2y x=图像上的点,若120x x >>, 则一定成立的是( )A 、120y y >>B 、120y y >>C 、120y y >>D 、210y y >>10、如图,⊙O 和⊙O ′相交于A 、B 两点,且OO ’=5,OA=3, O ’B =4,则AB=( ) A 、5 B 、2.4 C 、2.5 D 、4.8 二、填空题11、正五边形的外角和为 12、计算:3m m -÷=13、分解因式:2233x y -=14、如图,某飞机于空中A 处探测到目标C ,此时飞行高度AC=1200米,从飞机上看地面控制点B 的俯角20α=︒,则飞机A 到控制点B 的距离约为 。
2019中考模拟卷数学(含答案)

2019年中考模拟试题一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.(3分)下列各数是正数的是()A.0B.5C.﹣D.﹣2.(3分)如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.3.(3分)下列计算正确的是()A.x7÷x=x7B.(﹣3x2)2=﹣9x4C.x3•x3=2x6D.(x3)2=x64.(3分)在平面直角坐标系中,将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为()A.(3,﹣1)B.(3,3)C.(1,1)D.(5,1)5.(3分)2019年6月8日,全国铁路发送旅客约9560000次,将数据9560000科学记数法表示为()A.9.56×106B.95.6×105C.0.956×107D.956×1046.(3分)下列所述图形中,既是轴对称图形又是中心对称图形的是()A.等腰三角形B.等边三角形C.菱形D.平行四边形7.(3分)如图所示,该几何体的左视图是()A.B.C.D.8.(3分)不透明袋子中装有红、绿小球各一个,除颜色外无其他差别,随机摸出一个小球后,放回并摇匀,再随机摸出一个,两次都摸到红球的概率为()A.B.C.D.9.(3分)为推进垃圾分类,推动绿色发展.某化工厂要购进甲、乙两种型号机器人用来进行垃圾分类.用360万元购买甲型机器人和用480万元购买乙型机器人的台数相同,两种型号机器人的单价和为140万元.若设甲型机器人每台x万元,根据题意,所列方程正确的是()A.=B.=C.+=140D.﹣140=10.(3分)如图,抛物线y=﹣x2+x+2与x轴相交于A、B两点,与y轴相交于点C,点D在抛物线上,且CD∥AB.AD与y轴相交于点E,过点E的直线PQ平行于x轴,与拋物线相交于P,Q两点,则线段PQ的长为.A、5B、2C、D、二、填空题(本题共6小题,每小題3分,共18分)11.(3分)若在实数范围内有意义,则x的取值范围为.12.(3分)某男子足球队队员的年龄分布如图所示,这些队员年齡的众数是.13.(3分)在平面直角坐标系中,点A,B的坐标分别是A(4,2),B(5,0),以点O为位似中心,相们比为,把△ABO缩小,得到△A1B1O,则点A的对应点A1的坐标为.14.(3分)我国古代数学著作《九章算术》中记载:“今有大器五小器一容三斛,大器一小器五容二斛.问大小器各容几何.”其大意为:有大小两种盛酒的桶,已知5个大桶加上1个小桶可以盛酒3斛(斛,音hu,是古代的一种容量单位).1个大桶加上5个小桶可以盛酒2斛,问1个大桶、一个小桶分别可以盛酒多少斛?若设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意,可列方程组为.15.(3分)如图,BD是矩形ABCD的对角线,在BA和BD上分别截取BE,BF,使BE=BF;分别以E,F为圆心,以大于EF的长为半径作弧,两弧在∠ABD内交于点G,作射线BG交AD于点P,若AP=3,则点P到BD的距离为.16.(3分)如图,点B1在直线l:y=x上,点B1的横坐标为2,过B1作B1A1⊥1,交x轴于点A1,以A1B1为边,向右作正方形A1B1B2C1,延长B2C1交x轴于点A2;以A2B2为边,向右作正方形A2B2B3C2,延长B3C2交x轴于点A3;以A3B3为边,向右作正方形A3B3B4C3延长B4C3交x轴于点A4;…;按照这个规律进行下去,点∁n 的横坐标为(结果用含正整数n的代数式表示)三、解答题(第17题6分,第18、19题各5分,第20、21题各6分,第22、23题各10分,第24、25题各12分,共,72分)17.计算:(1)(﹣2)2++6(2)÷+18.某中学为了提高学生的综合素质,成立了以下社团:A.机器人,B.围棋,C.羽毛球,D.电影配音.每人只能加入一个社团.为了解学生参加社团的情况,从参加社团的学生中随机抽取了部分学生进行调查,并将调查结果绘制成如下两幅不完整的统计图,其中图(1)中A所占扇形的圆心角为36°.根据以上信息,解答下列问题:(1)这次被调查的学生共有人;(2)请你将条形统计图补充完整;(3)若该校共有1000学生加入了社团,请你估计这1000名学生中有多少人参加了羽毛球社团;(4)在机器人社团活动中,由于甲、乙、丙、丁四人平时的表现优秀,现决定从这四人中任选两名参加机器人大赛.用树状图或列表法求恰好选中甲、乙两位同学的概率.19.某村2016年的人均收入为20000元,2018年的人均收入为24200元(1)求2016年到2018年该村人均收入的年平均增长率;(2)假设2019年该村人均收入的增长率与前两年的年平均增长率相同,请你预测2019年村该村的人均收入是多少元?20.如图,在四边形ABCD中,AB∥CD,AD⊥CD,∠B=45°,延长CD到点E,使DE=DA,连接AE.(1)求证:AE=BC;(2)若AB=3,CD=1,求四边形ABCE的面积.21.如图,▱ABCD中,顶点A的坐标是(0,2),AD∥x轴,BC交y轴于点E,顶点C的纵坐标是﹣4,▱ABCD的面积是24.反比例函数y=的图象经过点B和D,求:(1)反比例函数的表达式;(2)AB所在直线的函数表达式.22.如图1,四边形ABCD内接于⊙O,AC是⊙O的直径,过点A的切线与CD的延长线相交于点P.且∠APC=∠BCP(1)求证:∠BAC=2∠ACD;(2)过图1中的点D作DE⊥AC,垂足为E(如图2),当BC=6,AE=2时,求⊙O的半径.23.某工厂生产一种火爆的网红电子产品,每件产品成本16元、工厂将该产品进行网络批发,批发单价y(元)与一次性批发量x(件)(x为正整数)之间满足如图所示的函数关系.(1)直接写出y与x之间所满足的函数关系式,并写出自变量x的取值范围;(2)若一次性批发量不超过60件,当批发量为多少件时,工厂获利最大?最大利润是多少?24.如图,在平面直角坐标系xOy中,直线y=﹣x+3与x轴,y轴分别相交于点A,B,点C在射线BO上,点D在射线BA上,且BD=OC,以CO,CD为邻边作▱COED.设点C的坐标为(0,m),▱COED在x轴下方部分的面积为S.求:(1)线段AB的长;(2)S关于m的函数解析式,并直接写出自变量m的取值范围.24.阅读下面材料,完成(1)﹣(3)题数学课上,老师出示了这样一道题:如图1,△ABC中,∠BAC=90°,点D、E在BC上,AD=AB,AB=kBD(其中<k<1)∠ABC=∠ACB+∠BAE,∠EAC的平分线与BC相交于点F,BG⊥AF,垂足为G,探究线段BG与AC的数量关系,并证明.同学们经过思考后,交流了自已的想法:小明:“通过观察和度量,发现∠BAE与∠DAC相等.”小伟:“通过构造全等三角形,经过进一步推理,可以得到线段BG与AC的数量关系.”……老师:“保留原题条件,延长图1中的BG,与AC相交于点H(如图2),可以求出的值.”(1)求证:∠BAE=∠DAC;(2)探究线段BG与AC的数量关系(用含k的代数式表示),并证明;(3)直接写出的值(用含k的代数式表示).25.抛物线y=﹣x2+bx+c与x轴交于A(﹣1,0),B(5,0)两点,顶点为C,对称轴交x轴于点D,点P为抛物线对称轴CD上的一动点(点P不与C,D重合).过点C作直线PB的垂线交PB于点E,交x轴于点F.(1)求抛物线的解析式;(2)当△PCF的面积为5时,求点P的坐标;(3)当△PCF为等腰三角形时,请直接写出点P的坐标.2019年中考模拟试题参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.【解答】解:0既不是正数,也不是负数;5是正数;和都是负数.故选:B.2.【解答】解:左视图有3列,每列小正方形数目分别为2,1,1.故选:B.3.【解答】解:A、x7÷x=x6,故此选项错误;B、(﹣3x2)2=9x4,故此选项错误;C、x3•x3=x6,故此选项错误;D、(x3)2=x6,故此选项正确;故选:D.4.【解答】解:将点P(3,1)向下平移2个单位长度,得到的点P′的坐标为(3,1﹣2),即(3,﹣1),故选:A.5.【解答】解:将数据9560000科学记数法表示为9.56×106.故选:A.6.【解答】解:A、等腰三角形是轴对称图形,不是中心对称图形,故本选项错误;B、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;C、菱形既是轴对称图形,又是中心对称图形,故本选项正确;D、平行四边形不是轴对称图形,是中心对称图形,故本选项错误.故选:C.7.【解答】解:从左边看是一个矩形,中间有两条水平的虚线,故选:B.8.【解答】解:两次摸球的所有的可能性树状图如下:∴P两次都是红球=.故选:D.9.【解答】解:设甲型机器人每台x万元,根据题意,可得:,故选:A.10.【解答】解:当y=0时,﹣x2+x+2=0,解得:x1=﹣2,x2=4,∴点A的坐标为(﹣2,0);当x=0时,y=﹣x2+x+2=2,∴点C的坐标为(0,2);当y=2时,﹣x2+x+2=2,解得:x1=0,x2=2,∴点D的坐标为(2,2).设直线AD的解析式为y=kx+b(k≠0),将A(﹣2,0),D(2,2)代入y=kx+b,得:,解得:,∴直线AD的解析式为y=x+1.当x=0时,y=x+1=1,∴点E的坐标为(0,1).当y=1时,﹣x2+x+2=1,解得:x1=1﹣,x2=1+,∴点P的坐标为(1﹣,1),点Q的坐标为(1+,1),∴PQ=1+﹣(1﹣)=2.故答案为:2.11.【解答】解:由题意得:x﹣2≥0,解得:x≥2,故答案为:x≥2.12.【解答】解:观察条形统计图知:为25岁的最多,有8人,故众数为25岁,故答案为:25.13.【解答】解:以点O为位似中心,相们比为,把△ABO缩小,点A的坐标是A (4,2),则点A的对应点A1的坐标为(4×,2×)或(﹣4×,﹣2×),即(2,1)或(﹣2,﹣1),故答案为:(2,1)或(﹣2,﹣1).14.【解答】解:设1个大桶可以盛酒x斛,1个小桶可以盛酒y斛,根据题意得:,故答案为.15.【解答】解:结合作图的过程知:BP平分∠ABD,∵∠A=90°,AP=3,∴点P到BD的距离等于AP的长,为3,故答案为:3.16.【解答】解:过点B1、C1、C2、C3、C4分别作B1D⊥x轴,C1D1⊥x轴,C2D2⊥x 轴,C3D3⊥x轴,C4D4⊥x轴,……垂足分别为D、D1、D2、D3、D4……∵点B1在直线l:y=x上,点B1的横坐标为2,∴点B1的纵坐标为1,即:OD=2,B1D=1,图中所有的直角三角形都相似,两条直角边的比都是1:2,∴点C1的横坐标为:2++()0,点C2的横坐标为:2++()0+()0×+()1=+()0×+()1点C3的横坐标为:2++()0+()0×+()1+()1×+()2=+()0×+()1×++()2点C4的横坐标为:=+()0×+()1×+()2×+()3……点∁n的横坐标为:=+()0×+()1×+()2×+()3×+()4×……+()n﹣1=+[()0+()1×+()2+()3+()4……]+()n﹣1=故答案为:17.【解答】(1)解:原式=3+4﹣4+2+6×=3+4﹣4+2+2=7.(2)解:原式=×﹣=﹣=.18.【解答】解:(1)∵A类有20人,所占扇形的圆心角为36°,∴这次被调查的学生共有:20÷=200(人);故答案为:200;(2)C项目对应人数为:200﹣20﹣80﹣40=60(人);补充如图.(3)1000×=300(人)答:这1000名学生中有300人参加了羽毛球社团;(4)画树状图得:∵共有12种等可能的情况,恰好选中甲、乙两位同学的有2种,∴P(选中甲、乙)==.19.【解答】解:(1)设2016年到2018年该村人均收入的年平均增长率为x,根据题意得:20000(1+x)2=24200,解得:x1=0.1=10%,x2=1.1(不合题意,舍去).答:2016年到2018年该村人均收入的年平均增长率为10%.(2)24200×(1+10%)=26620(元).答:预测2019年村该村的人均收入是26620元.20.【解答】证明:(1)∵AB∥CD,∠B=45°∴∠C+∠B=180°∴∠C=135°∵DE=DA,AD⊥CD∴∠E=45°∵∠E+∠C=180°∴AE∥BC,且AB∥CD∴四边形ABCE是平行四边形∴AE=BC(2)∵四边形ABCE是平行四边形∴AB=CE=3∴AD=DE=AB﹣CD=2∴四边形ABCE的面积=3×2=621、【解答】解:(1)∵顶点A的坐标是(0,2),顶点C的纵坐标是﹣4,∴AE=6,又▱ABCD的面积是24,∴AD=BC=4,则D(4,2)∴k=4×2=8,∴反比例函数解析式为y=;(2)由题意知B的纵坐标为﹣4,∴其横坐标为﹣2,则B(﹣2,﹣4),设AB所在直线解析式为y=kx+b,将A(0,2)、B(﹣2,﹣4)代入,得:,解得:,所以AB所在直线解析式为y=3x+2.22.【解答】(1)证明:作DF⊥BC于F,连接DB,∵AP是⊙O的切线,∴∠PAC=90°,即∠P+∠ACP=90°,∵AC是⊙O的直径,∴∠ADC=90°,即∠PCA+∠DAC=90°,∴∠P=∠DAC=∠DBC,∵∠APC=∠BCP,∴∠DBC=∠DCB,∴DB=DC,∵DF⊥BC,∴DF是BC的垂直平分线,∴DF经过点O,∵OD=OC,∴∠ODC=∠OCD,∵∠BDC=2∠ODC,∴∠BAC=∠BDC=2∠ODC=2∠OCD;(2)解:∵DF经过点O,DF⊥BC,∴FC=BC=3,在△DEC和△CFD中,,∴△DEC≌△CFD(AAS)∴DE=FC=3,∵∠ADC=90°,DE⊥AC,∴DE2=AE•EC,则EC==,∴AC=2+=,∴⊙O的半径为.23.【解答】解:(1)当0<x≤20且x为整数时,y=40;当20<x≤60且x为整数时,y=﹣x+50;当x>60且x为整数时,y=20;(2)设所获利润w(元),当0<x≤20且x为整数时,y=40,∴w=(40﹣16)×20=480元,当0<x≤20且x为整数时,y=40,∴当20<x≤60且x为整数时,y=﹣x+50,∴w=(y﹣16)x=(﹣x+50﹣16)x,∴w=﹣x2+34x,∴w=﹣(x﹣34)2+578,∵﹣<0,∴当x=34时,w最大,最大值为578元.答:一次批发34件时所获利润最大,最大利润是578元.24.【解答】证明:(1)∵AB=AD∴∠ABD=∠ADB∵∠ADB=∠ACB+∠DAC,∠ABD=∠ABC=∠ACB+∠BAE∴∠BAE=∠DAC(2)设∠DAC=α=∠BAE,∠C=β∴∠ABC=∠ADB=α+β∵∠ABC+∠C=α+β+β=α+2β=90°,∠BAE+∠EAC=90°=α+∠EAC ∴∠EAC=2β∵AF平分∠EAC∴∠FAC=∠EAF=β∴∠FAC=∠C,∠ABE=∠BAF=α+β∴AF=FC,AF=BF∴AF=BC=BF∵∠ABE=∠BAF,∠BGA=∠BAC=90°∴△ABG∽△BCA∴∵∠ABE=∠BAF,∠ABE=∠AFB∴△ABF∽△BAD∴,且AB=kBD,AF=BC=BF ∴k=,即∴(3)∵∠ABE=∠BAF,∠BAC=∠AGB=90°∴∠ABH=∠C,且∠BAC=∠BAC∴△ABH∽△ACB∴∴AB2=AC×AH设BD=m,AB=km,∵∴BC=2k2m∴AC==km∴AB2=AC×AH(km)2=km×AH∴AH=∴HC=AC﹣AH=km﹣=∴25.【解答】解:(1)函数的表达式为:y=(x+1)(x﹣5)=﹣x2+x+;(2)抛物线的对称轴为x=1,则点C(2,2),设点P(2,m),将点P、B的坐标代入一次函数表达式:y=sx+t并解得:函数PB的表达式为:y=﹣mx+…①,∵CE⊥PE,故直线CE表达式中的k值为,将点C的坐标代入一次函数表达式,同理可得直线CE的表达式为:y=…②,联立①②并解得:x=2﹣,故点F(2﹣,0),S△PCF=×PC×DF=(2﹣m)(2﹣﹣2)=5,解得:m=5或﹣3(舍去5),故点P(2,﹣3);(3)由(2)确定的点F的坐标得:CP2=(2﹣m)2,CF2=()2+4,PF2=()2+m2,①当CP=CF时,即:(2﹣m)=()2+4,解得:m=0或(均舍去),②当CP=PF时,(2﹣m)2=()2+m2,解得:m=或3(舍去3),③当CF=PF时,同理可得:m=±2(舍去2),故点P(2,)或(2,﹣2).。
2019年中考模拟测试卷数学试题卷及答案

2019年初中学业考试模拟测试卷数学试题卷一.选择题:(本题有10小题,每小题3分,共30分) 1.16的算术平方根是(▲). A . 4B .4± C .2D .2±2.下列计算正确的是(▲).A .1243a a a =∙ B .a a a =-34C .()1243a a = D .428a a a =÷3.如图,直线a//b ,直线c 与直线a ,b 分别交于A,B 两点,射线AC ⊥直线c ,则图中与∠1互余的角有(▲). A .4个B . 3个C . 2个D .1个4.使代数式42-+x x 有意义的x 的取值范围是(▲).A .x >-2B .x ≥-2C .x ≥4D .x ≥-2且x ≠45.下列图形中,既是轴对称图形又是中心对称图形的是(▲).6.从-2、-1、0、1、2这5个数中任取一个数,作为关于x 的一元二次方程kx 2-x +1=0 的k 值,则所得的方程中有两个不相等的实数根的概率是(▲). A .51 B .52 C . 53 D . 547.如图,在平面直角坐标系中,四边形OABC 是菱形,点C 的坐标为(4,0),∠AOC =60°,垂直于x 轴的直线l 从y 轴出发,沿x 轴正方向以每秒1个单位长度的速度向右平移,设直线l 与菱形OABC 的两边分别交于点M ,N (点M 在点N 的上方),若△OMN 的面积为S ,直线l 的运动时间为t 秒(0≤t ≤4),则能大致反映S 与t 的函数关系的图象是(▲).8.请运用所学知识判断sin 44.9°与cos 44.9°的大小(▲).A . sin 44.9°> cos 44.9°B .sin 44.9°< cos 44.9°C .sin 44.9°= cos 44.9°D .无法判断 9.如图,△ABC 和△CDE 均为等腰直角三角形,点B 、C 、D 在一条直线上,点M是AE 的中点,下列结论:①tan ∠AEC =BCCD;②S △ABC +S △CDE ≥S △ACE ;③BM ⊥DM ;④BM =DM .正确结论的个(▲).A . 1个B . 2个C . 3个D . 4个10.如图,P 为正方形ABCD 对角线BD 上一动点,若AB=2,则AP+BP+CP 的最小值为(▲).A .26+B . 23C . 2210+D .无法确定二、填空题:(本题有6小题,每小题4分,共24分)11.分解因式:2am 2﹣8a = ▲ .12.如图,在△ABC 中,∠CAB =65°.在同一平面内,将△ABC 绕点A 旋转到△AB ′C ′的位置,使得CC ′∥AB ,则∠BAB ′= ▲ .13.若一组数据 2、2、3、3、4、4、x 的平均数是3,则这组数据的众数是 ▲ . 14.对于实数a ,b 定义一种新运算“@”为a @b=ba -21,这里等式右边是实数运算。
2019年中考数学模拟试卷含答案解析

故选答案 D.
10. 连 AC、DC、 OD,过 C作 CE⊥ AB于 E,过 O作 OF⊥ CE于 F,∵ ?BC 沿 BC折叠,∴∠ CDB=
∠H,∵∠ H+∠A=180°,∴∠ CDA+∠ CDB=180°,∴∠ A=∠ CDA,∴CA=CD,∵ CE⊥ AD,∴ AE=ED=1,
∵ OA 5 ,AD=2,∴ OD=1,∵ OD⊥ AB,∴ OFED为正方形,∴ OF=1, OC 5 ,∴ CF=2,
2019 年初中毕业生数学考试模拟试卷及答案解析
一、选择题(共 10 小题,每小题 3 分,共 30 分)
1.温度由- 4℃上升 7℃是(
)
A. 3℃
B.- 3℃
2.若分式 1 在实数范围内有意义,则实数 x2
A. x>- 2
B. x<- 2
2
2
3.计算 3x -x 的结果是(
)
A. 2
B. 2x2
第 16 题 延长 BC 至点 F,使 CF=AC,∵ DE 平分△ ABC的周长, AD=BC,∴ AC+CE=B,E ∴
BE=CF+CE=E,F ∴ DE∥ AF,DE=1 AF,又∵∠ ACF=120°, AC=CF,∴ AF 2
3AC
3 ,∴
3
DE
.
2
F
C E
C E F
G
A
D
B
A
D
B
第 16 题法一答图
8 上且 m<0,过点 A 作 x 轴的垂线,垂足
x
为B
(1) 如图 1,当 a=- 2 时, P(t ,0) 是 x 轴上的动点,将点 B 绕点 P 顺时针旋转 90°至点 C
(完整版)2019年数学中考模拟试卷
2019年数学中考模拟试卷一、选择题:本大题共10小题,每小题4分,共40分。
在每小题给出的四个选项中,只有一项符合题目要求。
1、下列二次根式中,是最简二次根式的是( )A 、a 16B 、b 3C 、abD 、45 2. 若x=﹣2,则代数式x 2﹣2x ﹣1的值是( ) A .9 B .7 C .﹣1 D .﹣93.某村准备在坡角为α的山坡上栽树,要求相邻两树之间的水平距离为5米,那么这两树在坡面上的距离为………………………………………………………… ( ) (A )αcos 5 (B )αcos 5 (C) αsin 5 (D) αsin 54. 已知⊙O 是以坐标原点O 为圆心,5为半径的圆,点M 的坐标为(3,4)-,则点M 与⊙O 的位置关系为( )A. M 在⊙O 上;B. M 在⊙O 内; C 。
M 在⊙O 外; D 。
M 在⊙O 右上方;5。
关于x 的一元二次方程x 2+(m —2)x+m+1=0有两个相等的实数根,则m 的值是( ) A 。
0 B 。
8 C 。
4±2D 。
0或86.已知二次函数)2(2-++=m m x mx y 的图象经过原点,则m 的值为 ( )A . 0或2B . 0C . 2D .无法确定7。
已知M=a—1,N=a2—a(a为任意实数),则M,N的大小关系为()A。
M<N B.M=N C。
M>N D.不能确定8.如图,∠1=∠2,AE⊥OB于E,BD⊥OA于D,AE与BD的交点为C,则图中全等三角形共有( )A.2对B.3对C.4对D.5对9.(3分)不等式组的解集为x<2,则k的取值范围为( )A.k>1 B.k<1 C.k≥1 D.k≤1.10、如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是( )A. B. C.D.第8题图第10题图二、填空题(每小题5分,共20分)11、如图,菱形ABCD的边长为2cm,∠A=60°,弧BD是以点A为圆心、AB长为半径的弧,弧DC 是以点B为圆心、BC长为半径的弧,则阴影部分的面积为__________cm2。
2019年九年级数学中考模拟试卷(K12教育文档)
2019年九年级数学中考模拟试卷(word版可编辑修改) 2019年九年级数学中考模拟试卷(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(2019年九年级数学中考模拟试卷(word版可编辑修改))的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为2019年九年级数学中考模拟试卷(word版可编辑修改)的全部内容。
122019年九年级数学模拟试卷一、选择题(本大题10个小题,每小题3分,共30分) 1.与21互为倒数的是( )A.-2 B .-21 C .21D .22.下列各式中,计算错误的是( )A .235a a a += B.231x x -=- C 。
2(2)2x x x x --=-D .326()x x -=3。
为调查某大型企业员工对企业的满意程度,以下样本最具代表性的是( )A.企业男员工B 。
企业年满50岁及以上的员工C.用企业人员名册,随机抽取三分之一的员工D.企业新进员工 4. 如图,立体图形的左视图是( )DCBA正面5。
计算+++++……+的值为( )A .B .C .D .6.用科学记数法表示数5。
8×10-5,它应该等于 ( ) A 。
0.005 8 B .0。
000 58 C 。
0.000 058D .0。
O00 005 87.A 车站到B 车站之间还有3个车站,那么从A 车站到B 车站方向发出的车辆,一共有多少种不同的车票( )A .8B .9C .10D .11 8.某机械制造厂制造某种产品,原来每件产品的成本是100元,由于提高生产技术,所以连续两次降低成本,两次降低后的成本是81元。
中考模拟考试数学试题.doc
2019年初中学业水平模拟考试数学试题(考试时间:120分钟;满分:120分)真情提示:亲爱的同学,欢迎你参加本次考试,祝你答题成功!本试题分第Ⅰ卷和第Ⅰ卷两部分,共有24道题.第Ⅰ卷1—8题为选择题,共24分;第Ⅰ卷9—14题为填空题,15题为作图题,16—24题为解答题,共96分.要求所有题目均在答题卡上作答,在本卷上作答无效.第Ⅰ 卷一.选择题(本题满分24分,共有8道小题,每小题3分)下列每小题都给出标号为A,B,C,D的四个结论,其中只有一个是正确的.每小题选对得分;不选、选错或选出的标号超过一个的不得分.1.15-的绝对值是().A.15-B.5-C.15D.5 2.下列图案中是中心对称图形的有().A.1个B.2个C.3个D.4个3.下列图形是某几何体的三视图,则这个几何体是().A.圆柱B.圆锥C.三棱柱D.三棱锥4.计算()32280x x x x⋅-÷(0x≠)的结果是().A.0 B.1 C.x-D.78x x-主视图左视图俯视图(第3题)5列说法正确的是().A.甲、乙的众数相同B.甲、乙的中位数相同C.甲的平均数小于乙的平均数D.甲的方差小于乙的方差6.如图,AB是ⅠO的直径,BC与ⅠO相切于点B,点D是ⅠO上一点,连接AD交BC于点C,连接OD.若ⅠC=50°,则ⅠBOD等于().A.40°B.50° C.60° D.80°7.如图,直线y1=x k-+与抛物线y2=2ax(a≠0)交于点A(-2,4)和点B.若y1<y2,则x的取值范围是().A.2x<-B.21x-<<C.2x<-或1x>D.2x<-或32x>8.如图,在RtⅠABC中,ⅠACB=90°,AC=3,BC=4,AD平分ⅠCAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为().A.152B.203C.3 D.125第Ⅱ卷二、填空题(本题满分18分,共有6道小题,每小题3分)9.+=.10.2018年5月13日,中国首艘国产航空母舰首次执行海上试航任务,其排水量超过6万吨,将数60000用科学记数法可表示为.11.关于x的一元二次方程230x x m-++=有两个相等的实数根,则m的值为.BOAD(第6题)CAC BEFD(第8题)(第7题)12.如图,从一块直径为2 m 的圆形铁皮上剪出一个圆心角为90°的扇形(阴影部分),则此扇形的面积为 m 2.13.矩形纸片ABCD 中,已知AD =8,AB =6,E 是边BC 上的点,以AE 为折痕折叠纸片,使点B 落在点F 处,连接FC ,当△EFC 为直角三角形时,BE14.如图,已知等边三角形OA 1B 1,顶点A 1在双曲线y =(x >0)上,点B 1的坐标为(4,0).过B 1作B 1A 2ⅠOA 1交双曲线于点A 2,过A 2作A 2B 2ⅠA 1B 1交x 轴于点B 2,得到第二个等边ⅠB 1A 2B 2;过B 2作B 2A 3ⅠB 1A 2交双曲线于点A 3,过A 3作A 3B 3ⅠA 2B 2交x 轴于点B 3,得到第三个等边ⅠB 2A 3B 3;以此类推,…,则点B 5的坐标为 .三.作图题(本题满分4分)用圆规、直尺作图,不写作法,但要保留作图痕迹. 15.已知:如图,点C 是ⅠAOB 的边OB 上的一点.求作:ⅠP ,使它经过O ,C 两点,且圆心在ⅠAOB 的平分线上.四、解答题(本题满分74分,共有9道小题) 16.(本小题满分8分,每题4分)(1)解不等式组:25031x x ->⎧⎨-<-⎩ (2)化简:2224144a a a a ⎛⎫+⋅- ⎪-⎝⎭(第15题)CO (第12题)(第14题)17.(本小题满分6分)某校团委决定从4名学生会干部(小明、小华、小丽和小颖)中抽签确定2名同学去进行宣传活动,抽签规则:将4名同学姓名分别写在4张完全相同的卡片正面,把四张卡片背面朝上,洗匀后放在桌面上,先从中随机抽取一张卡片,记下姓名,再从剩余的3张卡片中随机抽取第二张,记下姓名.试用画树状图或列表的方法表示这次抽签所有可能的结果,并求出小明被抽中的概率.18.(本小题满分6分)每到春夏交替时节,杨树的杨絮漫天飞舞,易引发皮肤病、呼吸道疾病等,给人们生活造成困扰,为了解市民对治理杨絮方法的赞同情况,某课题小组随机调查了部分市民(调查问卷如下),并根据调查结果绘制了如下尚不完整的统计图:根据以上信息,解答下列问题:(1)在扇形统计图中,求扇形E 的圆心角度数; (2)补全条形统计图;调查结果扇形统计图(第18题)(3)若该市约有90万人,请估计赞同“选育无絮杨品种,并推广种植”的人数.19.(本小题满分6分)为了测量竖直旗杆AB 的高度,某综合实践小组在地面D 处竖直放置标杆CD ,并在地面上水平放置一个平面镜E ,使得B ,E ,D 在同一水平线上(如图所示).该小组在标杆的F 处通过平面镜E 恰好观测到旗杆顶A (此时ⅠAEB =ⅠFED ),在F 处测得旗杆顶A 的仰角为45°,平面镜E 的俯角为67°,测得FD =2.4米.求旗杆AB 的高度约为多少米?20.(本小题满分8分)某幼儿园购买了A ,B 两种型号的玩具,A 型玩具的单价比B 型玩具的单价少9元,已知该幼儿园用3120元购买A 型玩具的件数与用4200元购买B 型玩具的件数相等.(1)求该幼儿园购买的A ,B 型玩具的单价各是多少元?(2)若A ,B 两种型号的玩具共购买200件,且A 型玩具数量不多于B 型玩具数量的3倍,则购买这些玩具的总费用最少需要多少元? 21.(本小题满分8分)已知:如图,在ⅠABC 中,AB =AC , AD 是BC 边上的中线,点E 是AD 上一点,过点B 作BF ∥EC ,交AD 的延长线于点F ,连接(1)求证:ⅠBDF ⅠⅠCDE ;B C(第19题)(2)当ED与BC满足什么数量关系时,四边形BECF是正方形?请说明理由.【问题】用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(2×n矩形表示矩形的邻边是2和n)【探究】不妨假设有a n种不同的镶嵌方案.为探究a n的变化规律,我们采取一般问题特殊化的策略,先从最简单情形入手,再逐次递进,最后猜想得出结论.探究一:用1个2×1矩形,镶嵌一个2×1矩形,有多少种不同的镶嵌方案?如图(1),显然只有1种镶嵌方案.所以,a1=1.图(1)图(2)图(3)探究二:用2个2×1矩形,镶嵌一个2×2矩形,有多少种不同的镶嵌方案?如图(2),显然只有2种镶嵌方案.所以,a2=2.探究三:用3个2×1矩形,镶嵌一个2×3矩形,有多少种不同的镶嵌方案?一类:在探究一每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有1种镶嵌方案;二类:在探究二每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有2种镶嵌方案;如图(3).所以,a3=1+2=3.探究四:用4个2×1矩形,镶嵌一个2×4矩形,有多少种不同的镶嵌方案?一类:在探究二每个镶嵌图的右侧再横着镶嵌2个2×1矩形,有___种镶嵌方案;二类:在探究三每个镶嵌图的右侧再竖着镶嵌1个2×1矩形,有___种镶嵌方案;所以,a4=_____.探究五:用5个2×1矩形,镶嵌一个2×5矩形,有多少种不同的镶嵌方案?(仿照上述方法,写出探究过程,不用画图)……【结论】用n个2×1矩形,镶嵌一个2×n矩形,有多少种不同的镶嵌方案?(直接写出a n与a n-1,a n-2的关系式,不写解答过程).【应用】用10个2×1矩形,镶嵌一个2×10矩形,有种不同的镶嵌方案.24.(本小题满分12分)如图,在四边形ABCD中,AD∥BC,CD⊥BC,BC=12cm,CD=8cm,AD=6 cm.点P从点A出发,沿DA方向匀速运动,速度为3cm/s;同时,点Q从点C出发,沿CD方向匀速运动,速度为4cm/s.过点Q作QE∥AB交BC于点E,连接PE,交AB于点F.设运动时间为t(s)(0<t<2).解答下列问题:(1)当t为何值时,BE=2EC?(2)设五边形AFEQD的面积为y(cm2),求y与t的函数关系式;(3)连接DE.是否存在某一时刻t,使点F在DE的垂直平分线上,若存在,求出t的值;若不存在,说明理由.(第24题)。
2019届中考数学模拟试卷(解析版)新人教版(II)
2019 届中考数学模拟试卷(分析版)新人教版(II)一、选择题:本大题共12 个小题. 每题 4 分;共48 分 .1.( 4 分)(2008?德阳)﹣的绝对值是()A.﹣ 2B.﹣C. 2D.考点:绝对值.专题:计算题.剖析:由﹣小于 0,依据绝对值的代数意义:负数的绝对值等于它的相反数即可获取结果.解答:解:∵﹣< 0,∴| ﹣|= ﹣(﹣)=.应选 D评论:本题考察了绝对值的代数意义:正数的绝对值等于它自己;负数的绝对值等于它的相反数; 0 的绝对值仍是 0,掌握绝对值的代数意义是解本题的重点.2.( 4 分)(2006?北京)如图, AD∥BC,点 E 在 BD的延伸线上,若∠ ADE=155°,则∠ DBC的度数为()A. 155°B.50°C. 45°D. 25°考点:平行线的性质;对顶角、邻补角.专题:计算题.剖析:第一依据平角的定义,能够求出∠ADB,再依据平行线的性质能够求出∠DBC.解答:解:依题意得∠ ADB=180°﹣∠ ADE=180°﹣ 155°=25°,∵AD∥BC,∴∠ DBC=∠ADB=25°.应选 D.评论:本题比较简单,主要考察了两条直线平行的性质,利用内错角相等解题.3.( 4 分)(2006?韶关)点P(5,﹣ 3)对于原点对称的点的坐标是()A.(﹣ 5, 3)B.(﹣ 5,﹣ 3)C.( 3,﹣ 5)D.(﹣ 3,﹣ 5)考点:对于原点对称的点的坐标.专题:计算题.剖析:平面直角坐标系中随意一点P( x, y),对于原点的对称点是(﹣x,﹣ y),记忆方法是联合平面直角坐标系的图形记忆.解答:解:点 P( 5,﹣ 3)对于原点对称的点的坐标是(﹣5, 3),应选 A.评论:对于原点对称的点坐标的关系,是需要识记的基本问题.4.( 4 分)同时投掷两枚均匀的硬币,则两枚硬币正面都向上的概率是()A.B.C.D. 1考点:列表法与树状图法.剖析:利用列举法即可表示出全部可能的状况,利用公式法即可求解.解答:解:利用列举法能够获取共有 4 种不一样的等可能的结果,两枚正面向上的状况有 1 种,故两枚硬币正面都向上的概率是.应选 A.评论:本题考察概率的求法:假如一个事件有n 种可能,并且这些事件的可能性同样,此中事件 A 出现 m 种结果,那么事件 A 的概率 P( A) = .5.( 4 分)(2006?湛江)不等式组:的解集用数轴表示为()A.B.C.D.考点:解一元一次不等式组;在数轴上表示不等式的解集.专题:图表型.剖析:本题应当先对不等式组进行化简,而后在数轴上分别表示出 x 的取值范围,它们订交的地方就是不等式组的解集.解答:解:不等式组可化为:,在数轴上可表示为:应选 A.评论:本题考察不等式组解集的表示方法.把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分红若干段,假如数轴的某一段上边表示解集的线的条数与不等式的个数同样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.6.( 4 分)(2006?菏泽)若分式的值为0,则x的值为()A. 0B.2C.﹣ 2D. 0 或 2考点:分式的值为零的条件.剖析:分式的值为0 的条件是:( 1)分子 =0;(2)分母≠ 0.两个条件需同时具备,缺一不行.据此能够解答本题.解答:解:由题意可得2﹣x≠0且 3x 2﹣ 6x=0,解得 x=0.应选 A.评论:本题考察的是对分式的值为0 的条件的理解,该种类的题易忽视分母不为0 这个条件.7.( 4 分)(2007?宁波)与以下图的三视图对应的几何体是()A.B.C.D.考点:由三视图判断几何体.专题:压轴题.剖析:主视图、左视图、俯视图是分别从物体正面、左面和上边看,所获取的图形.解答:解:从正视图能够清除C,从左视图能够清除 A 和 D,切合条件的只有B.应选 B.评论:本题考察由三视图确立几何体的形状,主要考察学生空间想象能力及对峙体图形的认知能力,可经过清除法进行解答.8.(4 分)如图, DE与△ ABC的边 AB,AC分别订交于D,E 两点,且DE∥BC.若DE=2cm,BC=3cm,EC= cm,则 AC等于()A. 1B.C.D. 2考点:相像三角形的判断与性质.专题:计算题.剖析:由 DE∥BC 可知,△ADE∽△ ABC,依据相像三角形的性质,列出比率式,又知 DE=2cm,BC=3cm,EC= cm,可求出 AE的长,从而求出AC的长.解答:解:∵ DE∥BC,∴△ ADE∽△ ABC,∴,即,又∵ DE=2cm, BC=3cm, EC= cm,∴,∴A E= ,∴A C= + =2.应选 D.评论:本题考察了相像三角形的判断与性质,要找到相像三角形的对应边,并求出对应边的比.9.( 4 分)如图,矩形OABC的边 OA在 x 轴上, O与原点重合,OA=1, OC=2,点 D的坐标为( 2,0),则直线 BD的函数表达式为()A. y=﹣ x+2B.y=﹣ 2x+4C. y=﹣ x+3D. y=2x+4考点:待定系数法求一次函数分析式.剖析:依据条件易得BC, AB的长,就能够求出 B 点的坐标,依据待定系数法就能够求出直线BD的函数的分析式.解答:解:因为OA=1, OC=2,因此 BC=1, AB=2,因此点 B 的坐标是( 1,2),又∵点 D 的坐标是( 2,0),设直线 CBD的关系式为y=kx+b ,把 B, D的坐标代入关系式,有,解得.∴直线 CD的函数关系式是y=﹣ 2x+4.应选 B.评论:本题主要考察了待定系数法求函数分析式,注意数与形的联合是解决本题的重点.10.( 4 分)如图,已知AD是△ ABC的外接圆的直径,AD=13cm, cosB=,则AC的长等于()A. 5 cm B.6 cm C. 10 cm D. 12 cm考点:圆周角定理;勾股定理;锐角三角函数的定义.专题:计算题.剖析:先依据圆周角定理得出∠B=∠ADC,∠ ACD=90°,再依据锐角三角函数的定义解答即可.解答:解:∵∠B 与∠ ADC是同弧所对的圆周角,∴∠ B=∠ADC,∴c osB=cos∠ADC= ,∵AD是△ ABC的外接圆的直径,∴∠ ACD=90°,∵在 Rt△ACD中, AD=13cm,∴cos∠ADC= = =,∴C D=5,∴AC===12cm.应选 D.评论:本题考察的是圆周角定理及锐角三角函数的定义,熟知在“同圆或等圆中同弧或等弧所对的圆周角相等”是解答本题的重点.11.( 4 分)(2012?天桥区三模)在以下图的是格点三角形(即极点恰巧是正方形的极点)()5×5方格中,每个小方格都是边长为 1 的正方形,△ ABC ,则与△ ABC有一条公共边且全等的全部格点三角形的个数是A. 1B.2C. 3D. 4考点:全等三角形的判断.专题:网格型.剖析:依据全等三角形的判断分别求出以BC为公共边的三角形,以AB为公共边的三角形,以AC为公共边的三角形的个数,相加即可.解答:解:以 BC为公共边的三角形有 3 个,以AB为公共边的三角形有0 个,以AC为公共边的三角形有1个,共 3+0+1=4 个,应选 D.评论:本题考察了全等三角形的判断的应用,找出切合条件的全部三角形是解本题的重点.12.( 4 分)(2013?大港区一模)已知二次函数y=ax 2+bx+c(a≠0)的图象以下图,有以下 5 个结论:①a bc> 0;② b< a+c;③ 4a+2b+c> 0;④ 2c< 3b;⑤ a+b> m( am+b)(m≠1的实数).此中正确的结论有()A. 2 个B.3 个C. 4 个D. 5 个考点:二次函数图象与系数的关系.专题:压轴题;数形联合.剖析:察看图象:张口向下获取a< 0;对称轴在 y 轴的右边获取 a、b 异号,则 b>0;抛物线与 y 轴的交点在 x 轴的上方获取 c>0,因此 abc< 0;当 x= ﹣ 1 时图象在 x 轴下方获取 y=a﹣ b+c< 0,即 a+c<b;对称轴为直线 x=1,可得 x=2 时图象在 x 轴上方,则 y=4a+2b+c> 0;利用对称轴 x=﹣=1 获取 a=﹣ b,而 a﹣ b+c< 0,则﹣b﹣ b+c< 0,因此 2c< 3b;张口向下,当x=1,y 有最大值a+b+c,获取a+b+c> am2+bm+c,即 a+b> m( am+b)(m≠1).解答:解:张口向下, a<0;对称轴在 y 轴的右边, a、b 异号,则 b> 0;抛物线与 y 轴的交点在 x 轴的上方, c > 0,则 abc< 0,因此①不正确;当x=﹣ 1 时图象在 x 轴下方,则 y=a﹣ b+c< 0,即 a+c< b,因此②不正确;对称轴为直线 x=1,则 x=2 时图象在 x 轴上方,则 y=4a+2b+c> 0,因此③正确;x= ﹣ =1,则 a=﹣ b,而 a﹣ b+c< 0,则﹣b﹣ b+c< 0, 2c< 3b,因此④正确;22张口向下,当x=1,y 有最大值a+b+c;当 x=m(m≠1)时, y=am+bm+c,则 a+b+c> am+bm+c,即 a+b>m(am+b)(m≠1),因此⑤正确.应选 B.评论:本题考察了二次函数图象与系数的关系:对于二次函数y=ax2+bx+c (a≠0)的图象,当 a>0,张口向上,函数有最小值, a< 0,张口向下,函数有最大值;对称轴为直线x=﹣,a 与 b 同号,对称轴在 y 轴的左边, a 与 b 异号,对称轴在 y 轴的右边;当 c> 0,抛物线与 y 轴的交点在 x 轴的上方;当△ =b 2﹣ 4ac >0,抛物线与 x 轴有两个交点.二、填空题:本大题共 5 个小题 . 每题 3 分;共 15 分 .13.( 3分)(2013?昭通)因式分解: 2x2﹣ 18= 2( x+3)(x﹣ 3).考点:提公因式法与公式法的综合运用.剖析:提公因式 2,再运用平方差公式因式分解.解答:解: 2x2﹣ 18=2( x2﹣ 9) =2( x+3)(x﹣ 3),故答案为: 2(x+3)( x﹣3).评论:本题考察了用提公因式法和公式法进行因式分解,一个多项式有公因式第一提取公因式,而后再用其余方法进行因式分解,同时因式分解要完全,直到不可以分解为止.14.( 3 分)(2013?和静县一模)已知反比率函数y=的图象在第二、四象限,则m的取值范围是m < 5.考点:反比率函数的性质.剖析:依据反比率函数的性质列式计算即可得解.解答:解:∵反比率函数y=的图象在第二、四象限,∴m﹣ 5< 0,解得 m< 5.故答案为: m<5.评论:本题考察了反比率函数的性质,对于反比率函数(k≠0),( 1)k> 0,反比率函数图象在一、三象限;( 2) k<0,反比率函数图象在第二、四象限内.15.( 3 分)(2013?景德镇二模)用扇形统计图反应地球上陆地与大海所占的比率时,“陆地”部分对应的圆心角是 108°.宇宙中一块陨石落在地球上,落在陆地的概率是0.3 .考点:几何概率;扇形统计图.专题:计算题.剖析:依据扇形统计图能够得出“陆地”部分占地球总面积的比率,依据这个比率即可求出落在陆地的概率.解答:解:∵“陆地”部分对应的圆心角是108°,∴“陆地”部分占地球总面积的比率为=,∴宇宙中一块陨石落在地球上,落在陆地的概率是=0.3 .故答案为0.3 .评论:本题将概率的求解设置于实质生活中,考察学生对简单几何概型的掌握状况,既防止了纯真依赖公式机械计算的做法,又表现了数学知识在现实生活、甚至娱乐中的运用,表现了数学学科的基础性.用到的知识点为:概率=相应的面积与总面积之比.同时考察了扇形统计图的相关知识.16.( 3 分)若 m<﹣ 1,则以下函数① y=(x>0);② y=﹣mx+1;③ y=mx;④ y=(m+1)x中,随x的增大而增大的是①②(填写编号).考点:反比率函数的性质;一次函数的性质.剖析:本题考察反比率函数、一次函数的图象和性质.解答:解:∵ m<﹣ 1,∴① y=(x>0),当m<0,y随x的增大而增大,应选项正确;②y=﹣ mx+1中,﹣ m> 0, y 的值随 x 的值增大而增大,应选项正确;③y=mx 中, m<﹣ 1, y 的值随 x 的值增大而减小,应选项错误;④y=( m+1) x 中, m+1<0, y 的值随 x 的值增大而减小,应选项错误.故随 x 的增大而增大的是①②.评论:反比率函数性质:①当 k> 0 时,图象分别位于第一、三象限;当k<0 时,图象分别位于第二、四象限.②当 k> 0 时,在同一个象限内,y 随 x 的增大而减小;当k<0 时,在同一个象限,y 随 x 的增大而增大.k> 0 时,函数在x< 0 上为减函数、在x> 0 上同为减函数;k< 0 时,函数在x< 0 上为增函数、在x> 0 上同为增函数.一次函数性质:在直线y=kx+b中,当k>0 时, y 随x 的增大而增大;当k< 0 时, y随x 的增大而减小.17.( 3 分)(2007?南昌)如图,已知∠度的直尺在图中画出∠ AOB 的均分线.AOB,OA=OB,点 E在 OB边上,四边形(请保存绘图印迹).AEBF是矩形.请你只用无刻考点:矩形的性质;角均分线的性质;等腰三角形的性质.专题:作图题;压轴题.剖析:由条件 OA=OB可联想到连结 AB,获取等腰三角形 OAB.依据等腰三角形的“三线合一”性质,要画出∠AOB的均分线,只需作底边 AB上的中线,考虑到 AB 是矩形 AEBF的对角线,依据矩形的性质,要作出 AB 的中点,只需连结 EF,那么 AB与 EF 的交点 C 就是 AB 的中点,从而过点 C 作射线 OC便可获取∠ AOB 的均分线.解答:解:作图以下:(1)连结 AB,EF,交点设为 P,( 2)如图,连结 OP,∵OA=OB,因此△ OAB为等腰三角形,依据矩形中对角线相互均分,知P 点为 AB中点,故依据等腰三角形的“三线合一”性质,OP即为∠ AOB的均分线.评论:本题考察的是运用等腰三角形“三线合一”性质巧作角均分线.命题立意:命题者把等腰三角形“三线合一”性质的基本图形与矩形的基本图形进行了有机的组合.本题有两个奇妙之处,一是矩形对角线的交点恰巧就是等腰三角形底边的中点,二是等腰三角形底边上的中线恰巧就是顶角的均分线,正是这两个“奇妙”,为我们作角的均分线供给了一种新方法.三、解答题:7 个小题, 57 分 .18.( 7 分)( 1)化简( 2)解方程:.考点:解分式方程;单项式乘多项式;整式的混淆运算;分式的乘除法;分式的混淆运算.专题:计算题.剖析:( 1)依据多项式乘单项式法例睁开得出×﹣×,求出 3( a+1)﹣( a﹣ 1),再去括号归并同类项即可;( 2)方程两边都乘以 x( x﹣ 1)得出 x2﹣2( x﹣ 1)=x ( x﹣ 1),求出整式方程的解,再代入 x( x ﹣1)进行查验即可.解答:( 1)解:原式 =×﹣×,=3(a+1)﹣( a﹣ 1),=3a+3﹣ a+1,=2a+4.( 2)解:方程两边都乘以x( x﹣ 1)得: x2﹣2( x﹣ 1) =x( x﹣1),去括号得: x2﹣2x+2=x 2﹣ x.移项归并同类项得:﹣ x=﹣ 2.系数化为 1 得: x=2.经查验 x=2 是原方程的根,∴原方程的根为x=2.评论:本题考察认识分式方程、解整式方程、分式的乘法、整式的运算等知识点的运用,经过做本题培育了学生的计算能力,注意:解分式方程必定要查验.19.( 7 分)( 1)如图顶 A 落在离树根 C 的1,在一次龙卷风中,一棵大树在离地面若干米处折断倒下,12 米处,测得∠ BAC=30°,求BC的长.(结果保存根号)B 为折断处最高点,树( 2)如图 2,等腰梯形ABCD中, AD∥BC,点E是 AD延伸线上一点,DE=BC.判断△ ACE 的形状并证明.考点:勾股定理的应用;等腰梯形的性质.专题:应用题.剖析:( 1)在三角形 ABC中,依据 tan∠BAC=,再由∠ BAC=30°,代入即可得出答案.( 2)先判断四边形BCED是平行四边形,再依据等腰梯形的性质可得出AC=BD, AC=EC,既而证出结论.解答:解:(1)∵ BC⊥AC,∴∠ BCA=90°在直角△ ABC 中,∵tan,∴BC=ACtan∠BAC=12×tan30 °=12×=4.(2)△ ACE是等腰三角形证明:∵ AD∥BC,∴ DE∥BC.∵DE=BC,∴四边形 BCED是平行四边形,∴BD=EC又∵梯形ABCD是等腰梯形,∴AC=BD,∴AC=EC,∴△ ACE是等腰三角形.评论:本题考察了勾股定理的证明及等腰梯形的性质,解答本题的重点是掌握直角三角形中斜边的平方等于两直角边的平方和,及等腰梯形的两腰相等,难度一般.20.( 8 分)( 1)解方程组:( 2)二次函数图象过 A、C、B 三点,点 A 的坐标为(﹣ 1, 0),点 B 的坐标为( 4,0),点 C 在 y 轴正半轴上,且 AB=OC.①求 C 的坐标;②求二次函数的分析式,并求出函数最大值.考点:抛物线与x 轴的交点;解二元一次方程组;二次函数的最值.剖析:( 1)利用加减消元法解二元一次方程组即可;(2)①因为 AB=OC,AB=5,即可求出 C 的坐标;②设二次函数的分析式为 y=ax2+bx+5,利用已知条件求出 a 和 b 的值,即可求出抛物线的分析式,再利用公式法即可求出二次函数的最大值.解答:解:(1),①×3得: 18x﹣ 9y=﹣ 9,③﹣②得: 13x=26,x=2,把x=2 代入①得: 12﹣ 3y=﹣ 3y=5,∴原方程组的解为:;( 2)①∵点A 的坐标为(﹣ 1, 0),点 B 的坐标为( 4, 0),∴A B=5,∵AB=OC,∴ OC=5,∴C( 0, 5);②设二次函数的分析式为y=ax 2+bx+5,则,解得,因此二次函数的分析式为.y 最大 ==.评论:( 1)本题考察了用加减消元法解二元一次方程组,加减法解二元一次方程组的一般步骤:①方程组的两个方程中,假如同一个未知数的系数既不相等又不互为相反数,就用适合的数去乘方程的两边,使某一个未知数的系数相等或互为相反数.②把两个方程的两边分别相减或相加,消去一个未知数,获取一个一元一次方程.③解这个一元一次方程,求得未知数的值.④将求出的未知数的值代入原方程组的随意一个方程中,求出另一个未知数的值.⑤把所求得的两个未知数的值写在一同,就得到原方程组的解,用的形式表示;( 2)本题考察了用待定系数法求出二次函数的分析式和用公式法求二次函数的最值.21.( 8 分)某社区从不一样住所楼中随机选用了200 名居民,检查社区居民双休日的学习状况,并将获取的数据制成扇形统计图(如图①)和频数散布直方图(如图②).( 1)在这个检查中,200 名居民双休日在家学习的有120人;( 2)在这个检查中,在图书室等场所学习的居民学习时间的均匀数和众数分别是多少?( 3)预计该社区 2 000 名居民双休日学习时间许多于 4 小时的人数.考点:扇形统计图;用样本预计整体;条形统计图;加权均匀数;众数.剖析:( 1)从扇形统计图中能够看出,双休日在家学习的人占60%,即可得出答案;(2)依据在图书室学习的人数占 30%,得出在图书室学习的人数为: 200×30%=60 人,从而求出在图书室学习 4 小时的有 60﹣ 14﹣16﹣ 6=24 人,即可得出均匀数与众数.( 3)第一从图 2 上当算出双休日学习时间许多于 4 小时的居民占整体的百分比,而后就能够经过样本预计整体,算出该社区 2 000 名居民双休日学习时间许多于 4 小时的人数.解答:解:(1)在家学习的所占的比率是60%,因此在家学习的人数是:200×60%=120(人);故答案为: 120;( 2)依据在图书室学习的人数占30%,∴在图书室学习的人数为:200×30%=60人,∴在图书室学习 4 小时的有 60﹣14﹣ 16﹣6=24 人,∴在图书室等场所学习的居民学习时间的均匀数为:(14×2+16×6+24×4+6×8)÷ 60=4.5 ,∴均匀数为 4.5 小时,众数为 4 小时.( 3)在家学习时间许多于 4 小时的频次是:=0.71 ,该社区 2 000 名居民双休日学习时间许多于 4 小时的人数是: 2000×0.71=1420(人),预计该社区 2000 名居民双休日学习时间许多于 4 小时的人数为 1420 人.评论:本题主要考察了扇形统计图与条形图的综合应用,利用扇形图与条形图得出正确信息是解题重点.22.( 9分)(2008?南充)某乒乓球训练馆准备购置n 副某种品牌的乒乓球拍,每副球拍配k(k≥3)个乒乓球.已知 A、 B 两家商场都有这个品牌的乒乓球拍和乒乓球销售,且每副球拍的标价都为20 元,每个乒乓球的标价都为 1 元.现两家商场正在促销, A 商场全部商品均打九折(按原价的90%付费)销售,而 B商场买 1 副乒乓球拍送 3 个乒乓球.若仅考虑购置球拍和乒乓球的花费,请解答以下问题:( 1)假如只在某一家商场购置所需球拍和乒乓球,那么去 A 商场仍是 B 商场买更合算?( 2)当 k=12 时,请设计最省钱的购置方案.考点:一元一次不等式的应用.专题:应用题;压轴题;方案型.剖析:( 1)本题可依据去商场花的总花费=购置球拍的花费 +购置乒乓球的花费,列出去A, B 商场所需的总花费,而后比较这两个总花费,分别得出不一样的自变量的取值范围中哪个商场最合算.(2)可分别计算出只在 A 商场购置,只在 B 商场购置和在 A,B 商场同时购置的三种不一样状况下,所需的花费,而后比较出最省钱的方案.解答:解:( 1)由题意,去 A 商场购置n 副球拍和 kn 个乒乓球的花费为0.9 ( 20n+kn)元,去 B 商场购置n 副球拍和k 个乒乓球的花费为[20n+n ( k﹣ 3) ] 元,由0.9 ( 20n+kn)< 20n+n( k﹣ 3),解得 k> 10;由0.9 ( 20n+kn) =20n+n( k﹣ 3),解得 k=10;由0.9 ( 20n+kn)> 20n+n( k﹣ 3),解得 k< 10.∴当 k> 10 时,去 A 商场购置更合算;当k=10 时,去 A、 B 两家商场购置都同样;当3≤k< 10 时,去 B 商场购置更合算.( 2)当 k=12 时,购置 n 副球拍应配 12n 个乒乓球.若只在 A 商场购置,则花费为 0.9 ( 20n+12n) =28.8n (元);若只在 B 商场购置,则花费为 20n+( 12n﹣3n) =29n(元);若在 B 商场购置 n 副球拍,而后再在 A 商场购置不足的乒乓球,则花费为×( 12﹣ 3) n=28.1n (元)明显 28.1n < 28.8n < 29n∴最省钱的购置方案为:在 B 商场购置n 副球拍同时获取送的3n 个乒乓球,而后在 A 商场按九折购买 9n 个乒乓球.评论:解决问题的重点是读懂题意,找到重点描绘语,从而找到所求的量的等量关系.本题要注意依据A,B 商场所需的总花费,分状况议论分别得出合理的选择.23.( 9 分)将两块形状大小完整同样的直角三角板按如图 1 所示的方式拼在一同.它们中较小直角边的长为 6cm,较小锐角的度数为30°.(1)将△ ECD沿直线 AC翻折到如图 2 的地点,连结 CF,图中除了△ ABC≌△ ECD≌△ ECD′外,还有没有全等的三角形?如有,请指出一对并给出证明.( 2)以点 C 为坐标原点成立如图 3 所示的直角坐标系,将△ECD 沿 x 轴向左平移,使 E 点落在 AB上,请求出点 E′的坐标.考点:几何变换综合题.剖析:( 1)利用全等三角形的性质能够证明∠ A=∠D′, AC=D′C, BC=EC,从而证得 AE=D′B,利用 AAS 证明△ AEF≌△ D′BF;(2)在 Rt△B′BC′中,利用三角函数即可求得 BC′的长,则 CC′的长度能够求得, C′的坐标即可获取.解答:解:(1)△ AEF≌△ D′BF,(△ ACF与△ D′CF,△ ECF 与△ BCF.)证明:∵△ ABC≌△ D′EC,∴∠ A=∠D′, AC=D′C, BC=EC,∴A E=D′B在∴△ AEF 和△ D′BF 中,∴△ AEF≌△ D′BF( 2)在 Rt△B′BC′中, BC′=2 ,因此 CC′=6﹣ 2 ,因此 E′( 2 ﹣ 6, 6).评论:本题考察了全等三角形的判断与性质,求点的坐标的问题一般的思路就是转变为求线段的长度的问题.24.( 9 分)(2010?呼和浩特)如图,在直角坐标平面内,函数(x>0,m是常数)的图象经过A( 1,4), B( a,b),此中 a> 1.过点 A 作 x 轴垂线,垂足为 C,过点 B 作 y 轴垂线,垂足为 D,连结 AD, DC,CB.( 1)若△ ABD 的面积为4,求点 B 的坐标;( 2)求证: DC∥AB;( 3)当 AD=BC时,求直线AB的函数分析式.考点:反比率函数综合题;待定系数法求一次函数分析式.专题:压轴题.剖析:( 1)由函数( x> 0, m是常数)的图象经过A( 1, 4),可求 m=4,由已知条件可得 B 点的坐标为( a,),又由△ ABD的面积为4,即a( 4﹣)=4,得a=3,因此点 B 的坐标为( 3,);( 2)依题意可证,=a﹣ 1,=a﹣1,,因此DC∥AB;(3)因为 DC∥AB,当 AD=BC时,有两种状况:①当 AD∥BC 时,四边形 ADCB是平行四边形,由( 2)得,点 B 的坐标是( 2,2),设直线 AB 的函数分析式为y=kx+b ,用待定系数法能够求出分析式(把点A, B 的坐标代入),是 y=﹣ 2x+6.②当 AD与 BC所在直线不平行时,四边形ADCB是等腰梯形,则BD=AC,可求点B 的坐标是( 4, 1),设直线 AB 的函数分析式y=kx+b ,用待定系数法能够求出分析式(把点A, B 的坐标代入),是y=﹣ x+5.解答:( 1)解:∵函数y=(x>0,m是常数)图象经过A( 1, 4),∴m=4.∴y= ,设 BD,AC交于点 E,据题意,可得 B 点的坐标为( a,),D点的坐标为(0,),E点的坐标为(1,),∵a> 1,∴D B=a, AE=4﹣.由△ ABD的面积为4,即a(4﹣)=4,得a=3,∴点 B 的坐标为( 3,);(2)证明:据题意,点C的坐标为( 1, 0), DE=1,∵a> 1,易得 EC= , BE=a﹣1,∴=a﹣ 1,=a﹣ 1.∴且∠ AEB=∠CED,∴△ AEB∽△ CED,∴∠ ABE=∠CDE,∴DC∥AB;( 3)解:∵ DC∥AB,∴当 AD=BC时,有两种状况:①当 AD∥BC 时,四边形ADCB是平行四边形,由(2)得,,∴a﹣ 1=1,得 a=2.∴点 B 的坐标是( 2, 2).设直线 AB 的函数分析式为y=kx+b ,把点 A, B 的坐标代入,得,解得.故直线 AB 的函数分析式是 y=﹣ 2x+6.②当BD=AC,AD与 BC所在直线不平行时,四边形ADCB是等腰梯形,则∴a=4,∴点 B 的坐标是( 4, 1).设直线 AB 的函数分析式为y=kx+b ,把点A, B 的坐标代入,得,解得,故直线 AB 的函数分析式是y=﹣ x+5.综上所述,所求直线AB的函数分析式是y=﹣ 2x+6 或y=﹣ x+5.评论:本题要注意利用一次函数和反比率函数的特色,列出方程,求出未知数的值,用待定系数法从而求得其分析式.主假如注意分类议论和待定系数法的运用,需学生娴熟掌握.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2019年度初中数学中考模拟试卷
数学科目模拟测试
学校:__________ 姓名:__________ 班级:__________ 考号:__________注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
一、选择题
1.0x ≤)的结果是( )
A .
B .-
C .()x x y +
D .()x x y -+
2.若a<b ,有下列不等式:①a m b m +<+;②a m b m -<-;③ma mb >;④
a b m m >(0m <).
其中恒成立的不等式的个数为( )
A .1
B .2
C .3
D . 4
3.如图,一块三边形绿化园地,三角都做有半径为R 的圆形喷水池,则这三个喷水池占去的绿化园地(阴影部分)的面积为( )
A .212R π
B .2R π
C .22R π
D .不能确定
二、填空题
4.如图是两棵小树在同一时刻的影子,请问它们的影子是在 灯光 光线下形成的.(填“太阳”或“灯光”)
5.在等腰△ABC 中,BC=8,AB 、AC 的长度是关于x 的方程x 2-10x+m=0的两个根,则m 的值是 .
6.如图所示,一道斜坡的坡比为 1:8,已知 AC= 16,则斜坡 AB 的长为 .
7. 根据“x 的相反数的13
不大于x 的 2 倍与 10 的和”,列出不等式: . 8.如图,已知方格纸中是4个相同的正方形,则∠1+∠2+∠3= .。