第四章化学反应速率和化学平衡

合集下载

化学反应速率和化学平衡

化学反应速率和化学平衡

化学反应速率和化学平衡化学反应速率是指化学反应在单位时间内发生的变化量。

它是反应过程中物质转化的快慢程度的量化描述。

化学平衡是指当化学反应达到稳定状态时,反应物和生成物浓度之间的比例关系保持不变的状态。

反应速率和化学平衡是化学反应中两个重要的概念,它们对于我们理解和控制化学反应过程具有重要的意义。

一、化学反应速率化学反应速率的定义是单位时间内反应物消耗量或产物生成量与时间的比值。

它可以用下面的公式来表示:速率= ΔC/Δt其中,ΔC表示反应物浓度或产物浓度的变化量,Δt表示变化所用的时间。

化学反应速率受到多种因素的影响,其中最主要的有反应物浓度、温度、催化剂和反应物粒子间的碰撞频率等。

当反应物浓度增加时,反应发生的可能性就会增加,因此反应速率也会增大。

温度对于反应速率的影响很大,一般来说,温度升高时,反应速率会迅速增加。

这是因为温度升高会增加反应物的动能,提高粒子的碰撞频率,从而促进反应的进行。

催化剂是一种物质,它可以降低反应的活化能,使反应发生更容易。

催化剂通过提供一个新的反应路径,使反应能够以更低的能量发生。

因此,加入适量的催化剂可以大大加快反应速率。

此外,反应物粒子间的碰撞频率也会影响反应速率。

当反应物的浓度较低时,粒子之间的碰撞次数较少,因此反应速率较低。

二、化学平衡当一个化学反应达到平衡时,反应物和生成物的浓度之间的比例关系将保持不变。

在平衡状态下,反应物的转化速率等于生成物的转化速率。

化学平衡可以用下面的反应判断式来表示:aA + bB ⇌ cC + dD其中,A和B是反应物,C和D是生成物,a、b、c、d分别表示各物质的系数。

化学平衡是一个动态平衡,即反应物和生成物之间的转化一直在进行,但是总的浓度不再改变。

平衡常数K用来描述平衡系统中各组分浓度之间的关系。

当反应达到平衡时,平衡常数K的值将保持不变。

化学平衡可以通过改变反应条件来调节。

通过改变温度、压力或改变反应物浓度可以使平衡位置发生移动,从而改变反应的结果。

化学反应速率与化学平衡

化学反应速率与化学平衡

化学反应速率与化学平衡化学反应速率与化学平衡是化学领域中两个重要的概念。

本文将着重探讨这两个概念的联系以及它们在化学反应中的应用。

一、化学反应速率化学反应速率是指单位时间内反应物浓度变化的数量。

它可以用下列公式表示:速率= (Δ浓度/Δ时间)化学反应速率受多种因素的影响,包括反应物浓度、温度、催化剂等。

当反应物浓度增加时,反应速率也会增加,因为反应物之间的碰撞频率增加。

同样地,当温度升高时,反应速率也会增加,因为温度的升高使分子的平均动能增大,碰撞的能量也增加。

催化剂可以降低反应物之间的活化能,从而加快反应速率。

另外,化学反应速率还受到反应机理、反应物的物理状态和表面积等因素的影响。

反应机理是指描述反应过程的细节步骤,每个步骤都有一个反应速率,最慢的步骤决定了整个反应的速率。

反应物的物理状态和表面积影响着反应物质的接触程度,进而影响反应速率。

二、化学平衡化学平衡是指在封闭体系中,反应物与生成物之间的浓度保持不变的状态。

它可以通过下列公式表示:反应物A + 反应物B ↔ 生成物C + 生成物D在化学反应达到平衡后,反应物与生成物的浓度之比可以用一个常数K表示。

这个常数称为平衡常数,它与反应物的浓度有关,但与反应速率无关。

化学平衡的条件是当正向反应速率等于反向反应速率时,系统处于动态平衡。

此时,反应物与生成物之间仍然发生着反应,但是整个体系的浓度不再改变。

三、化学反应速率与化学平衡的关系化学反应速率和化学平衡是两个不同的概念,但它们之间有着密切的关系。

首先,当一个反应达到平衡时,正向反应和反向反应的速率相等。

这意味着在平衡状态下,虽然反应仍然进行,但是整体上没有净产物产生。

其次,化学平衡可以通过改变化学反应速率达到。

通过改变温度、压力等条件,可以改变反应速率,进而改变平衡位置。

例如,Le Chatelier的原理指出,当系统处于平衡时若受到扰动,它会倾向于抵消这种扰动。

如果增加某种物质浓度,系统会偏向消耗这种物质以重新达到平衡。

化学反应速率与化学平衡知识点归纳完整版

化学反应速率与化学平衡知识点归纳完整版

化学反应速率与化学平衡知识点归纳集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]化学反应速率与化学平衡考点归纳一、化学反应速率⑴. 化学反应速率的概念及表示方法:通过计算式: 来理解其概念: ①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的.但这些数值所表示的都是同一个反应速率.因此,表示反应速率时,必须说明用哪种物质作为标准.用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比.如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m ∶n ∶p ∶q③一般来说,化学反应速率随反应进行而逐渐减慢.因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率.⑵. 影响化学反应速率的因素:【注意】①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性.②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD tc v ∆∆=qD v p C v n B v m A v )()()()(=== 有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q或: ③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞.[活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子.说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越大,活化分子数越多,有效碰撞次数越多.[影响化学反应速率的因素]I. 决定因素(内因):反应物本身的性质Ⅱ. 条件因素(外因)压强对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小.若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变.因为浓度不变,单位体积内活化分子数就不变.但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加.温度只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因).当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)催化剂使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之.浓度当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 .其他因素增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响.图表如下:二、化学平衡状态⑴前提——密闭容器中的可逆反应⑵条件——一定条件的T、P、c ——影响化学平衡的因素⑶本质——V(正)=V(逆)≠0⑷特征表现——各组分的质量分数不变化学平衡可以用五个字归纳:逆:研究对象是可逆反应动:动态平衡.平衡时v正=v逆≠0等:v(正)=v(逆)定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡.【说明】a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看O.实际上是朝着同方向进行的,例如NaOH + HCl = NaCl + H2b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.1.化学平衡状态①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.2.化学平衡的标志:(处于化学平衡时)①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化.【例1】在一定温度下,反应A2(g) + B2(g) 2AB(g)达到平衡的标志是( C )A. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B23.化学平衡状态的判断举例反应:mA(g)+nB(g)pC(g)+qD(g)混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定(其他条件一定)平衡②m+n=p+q时,总压力一定(其他条件一定)不一定平衡混合气体的平均分子量一定,①当m+n≠p+q时,平衡②当m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡判断可逆反应达到平衡状态的方法和依据图表4.化学平衡移动⑴勒夏特列原理:如果改变影响平衡的一个条件(如浓度、压强和温度等),平衡就向着能够减弱这种改变的方向移动.其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度),当多项条件同时发生变化时,情况比较复杂; ③平衡移动的结果:只能减弱(不可能抵消)外界条件的变化.⑵平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程.一定条件下的平衡体系,条件改变后,可能发生平衡移动.即总结如下: ⑶影响化学平衡移动的条件①浓度、温度的改变,都能引起化学平衡移动.而改变压强则不一定能引起化学平衡移动.强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动.催化剂不影响化学平衡.②速率与平衡移动的关系: I . v 正=v 逆,平衡不移动;II. v 正>v 逆,平衡向正反应方向移动;正<v 逆,平衡向逆反应方向移动.强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动.③平衡移动原理:(勒夏特列原理)⑷转化率变化的一般规律(用等效平衡原理来分析)①当温度、压强(造成浓度变化的压强变化)造成平衡正向移动时,反应物转化率一定增大②若反应物只有一种:aA(g)=bB(g)+cC(g),在恒温恒压状态下,若n(C):n(B)=c:b,充入A,转化率不变;在恒温恒容状态下,在不改变其他条件时,增加A的量,A的转化率与气体物质的计量数有关:①若a = b + c : A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c : A的转化率减小.③若反应物不只一种:aA(g)+bB(g)=cC(g)+dD(g)α在不改变其他条件时,只增加A的量,A的转化率减小,而B的转化率增大.β将C、D全部转化成A、B得到一个A、B的物质的量之比,按照这个比例加入A、B,恒温恒压时,转化率不变;恒温恒容时,反应物的转化率与气体物质的计量数有关:若a+b=c+d,A、B的转化率都不变;若a+b>c+d,A、B的转化率都增大;若a+b<c+d,A、B的转化率都减小.γ若n(A):n(B)=a:b,恒温恒压时,只要加入C、D的量之比符合C、D的化学计量数之比,转化率不变;恒温恒容时,若a+b=c+d,A、B的转化率都不变,若a+b>c+d,A、B的转化率都增大,若a+b<c+d,A、B的转化率都减小④同一个化学反应,等量加入反应物时,在恒压容器中的转化率总是大于等于在恒容容器中的转化率,当且仅当反应的Δn=0时转化率相等(此时就等效于恒压).对以上3种情况可分别举例,可加深对概念的理解:例1:某恒温恒容的容器中,建立如下平衡:2NO 2(g ) N 2O 4(g ),在相同条件下, 若分别向容器中通入一定量的NO 2气体或N 2O 4气体,重新达到平衡后,容器内N 2O 4的体积分数比原平衡时 ( ) A .都增大 B .都减小 C .前者增大后者减小 D .前者减小后者增大 解析:2NO 2(g )N 2O 4(g )是气体体积减小的可逆反应.反应达到平衡后,无论向密闭容器中加入N O 2还是N 2O 4气体,可视为加压,平衡都向右移动,达到新平衡时NO 2的转化率都增大.答案选A例2:一定温度下,将a mol PCl 5通入一个容积不变的反应器中,达到如下平衡:PCl 5(g )PCl 3(g )+Cl 2(g ),测得平衡混合气体压强为p 1,此时再向反应器中通入a mol PCl 5,在温度不变的条件下再度达到平衡,测得压强为p 2,下列判断正确的是( ) A. 2p 1>p 2 B. PCl 5的转化率增大 C. 2p 1<p 2 D. PCl 3%(体积含量)减少 解析:PCl 5(g )PCl 3(g )+Cl 2(g )是气体体积增大的可逆反应.如反应达到平衡后,再向密闭容器中加入PCl 5, PCl 3的物质的量会有增加,此时可视为加压,平衡向左移动,反应达到新的平衡时PCl 5在平衡混合物中的百分含量也较原平衡时有所增加,但PCl 5的转化率降低.答案选A 例3: 2HI (g )H 2(g )+I 2(g )是气体体积不变的可逆反应,反应达到平衡后,再向固定密闭容器中加入HI ,使c (HI )的浓度增大,HI 平衡转化率不变.对于气体体积不变的可逆反应,反应达到平衡后增加反应物,达到新的化学平衡时反应物的转化率不变.应注意的是,实际应用时,题目所给的条件并不向上面总结的那么理想化,因此应该利用等效平衡知识具体问题具体分析. ⑸压强变化对于转化率的影响对于可逆反应aA(g)+bB(g)cC(g)+dD(g),(a+b≠c+d)在压强变化导致平衡移动时,充入“惰性气体”化学平衡朝哪个方向移动转化率如何变化可归纳为以下两方面:1. 恒温恒容条件下充入“惰性气体”,化学平衡不移动.因平衡体系的各组分浓度均未发生变化,故各反应物转化率不变.2. 恒温恒压条件下充入“惰性气体”,化学平衡向气体体积增大的方向移动.因为此时容器容积必然增大,相当于对反应体系减压,继而可判断指定物质的转化率变化.变式训练:1、在一容积可变的密闭容器中,通入1molX和3molY,在一定条件下发生如下反应:X(g)+3Y(g) 2Z(g),到达平衡后,Y的转化率为a%,然后再向容器中通入2molZ,保持在恒温恒压下反应,当达到新的平衡时,Y的转化率为b%.则a与b的关系是()A.a=b B.a>b C.a<b D.不能确定2、两个体积相同的密闭容器A、B,在A中充入S O2和O2各1mol,在B中充入SO2和O2各2 mol,加热到相同温度,有如下反应2SO2(g)+ O2(g) 2SO3(g),对此反应,下述不正确的是()A.反应速率B>A B.SO2的转化率B>AC.平衡时各组分含量B = A D.平衡时容器的压强B>A3、一定量混合气体在密闭容器中发生如下反应:xA(气)+yB(气) nC(气),达到平衡后,测得A气体的浓度为L.保持温度不变将容器的容积扩大1倍,再达平衡时,测得A气体的浓度为L,则下列叙述中正确的是()A、x+y<nB、该化学平衡向右移动C、B的转化率增大D、C的体积分数减小4、一定温度下,在一个体积可变的密闭容器中加入2 molH2和2 molN2,建立如下平衡: N2(g)+3H2(g) 2NH3(g)相同条件下,若向容器中再通入1 mol H2和,1molN2又达到平衡.则下列说法正确的是()A.NH3的百分含量不变B.N2的体积分数增大C.N2的转化率增大 D.NH3的百分含量增大5、某温度下的密闭容器中发生如下反应:2M(g)+N(g) 2E(g),若开始时只充入2 mol E(g),达平衡时,混合气体的压强比起始时增大了20%;若开始时只充入2 mol M和1 mol N的混合气体,则达平衡时M的转化率为()A.20%% %% 参考答案: 1、 A 2、C 3、D 4、A 5、C总之,判断转化率的变化关键是正确判断平衡移动的方向,当增大物质的浓度难以判断平衡移动的方向时,可转化为压强问题进行讨论;当增大压强难以判断平衡移动的方向时,可转化为浓度问题进行讨论.5、等效平衡问题的解题思路⑴概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡.⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡.②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡.③等温且Δn=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡.【归纳】等效平衡规律对于可逆反应mA(g)+nB(g)pC(g)+qD(g),在两种不同起始状态下反应,达平衡后互为等效平衡的条件是:6、速率和平衡图像分析⑴分析反应速度图像①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点.②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应.升高温度时,△V 吸热>△V放热.③看终点:分清消耗浓度和增生浓度.反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比.④对于时间——速度图像,看清曲线是连续的,还是跳跃的.分清“渐变”和“突变”、“大变”和“小变”.增大反应物浓度V正突变,V逆渐变.升高温度,V 吸热大增,V放热小增.⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向.②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点.③先拐先平:对于可逆反应mA(g) + nB(g) pC(g) + qD(g) ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡.它所代表的温度高、压强大.这时如果转化率也较高,则反应中m+n>p+q.若转化率降低,则表示m+n<p+q.④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系. 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示.解化学平衡图像题的技巧1、弄清横坐标和纵坐标的意义.2、弄清图像上点的意义,特别是一些特殊点(如与坐标轴的交点、转折点、几条曲线的交叉点)的意义.3、弄清图像所示的增、减性.4、弄清图像斜率的大小.5、看是否需要辅助线.6、看清曲线的起点位置及曲线的变化趋势7、先出现拐点的曲线先平衡,所处的温度较高或压强较大;还可能是使用正催化剂8、定压看温度变化;定温看压强变化.7、化学平衡常数在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K表示.(1)平衡常数K的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g)当在一定温度下达到化学平衡时,该反应的平衡常数为:【注意】:a.在平衡常数表达式中,反应物A、B 和生成物C、D的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b.当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数1,不必写入平衡常数的表达式中.例如,反应在高温下 Fe3O4(s) + 4H23Fe(s) + 4H2O(g)的平衡常数表达式为:又如,在密闭容器中进行的可逆反应CaCO3(s) CaO(s) + CO2↑的平衡常数表达式为:K=c(CO2)c.平衡常数K的表达式与化学方程式的书写方式有关.例如:N2 + 3H22NH3)()()()(n BcAcDcCcKmqp⋅⋅=)()(2424HcOHcK=)()()(232321HcNcNHcK⋅=2NH 3N 2 + 3H 2 N 2 + H 2NH 3 显然,K 1、K 2、K 3具有如下关系: 2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g)pC(g) +qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q C 表示.即:当Q C =K 时,体系达平衡状态;当Q C <K ,为使Q C 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q C >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态.②表示可逆反应进行的程度.)()()(22/322/133H c N c NH c K ⋅=)()()(322322NH c H c N c K ⋅=)()()()(n B c A c D c C c Q m qp c ⋅⋅=K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.一般来说,当K>105时,反应可以认为进行完全.化学平衡计算题求解技巧1、化学平衡常数(1)化学平衡常数的数学表达式 (2)化学平衡常数表示的意义平衡常数数值的大小可以反映可逆反应进行的程度大小,K 值越大,反应进行越完全,反应物转化率越高,反之则越低. 2、有关化学平衡的基本计算 (1)物质浓度的变化关系反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比.(2)反应的转化率(α): ×100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到理想气体方程式: pV=nRT根据这个方程式可以定性甚至定量地比较气体的性质、参数 (4)计算模式(“三段式”) 浓度(或物质的量等) aA(g)+bB(g)cC(g)+dD(g)(或质量、浓度)反应物起始的物质的量(或质量、浓度)反应物转化的物质的量=α起始 m n 0 0 转化 ax bx cx dx 平衡 m-ax n-bx cx dx根据“三段式”可以求出关于这个可逆反应的某种物质的反应速率、转化率、质量(或体积等)分数以及反应的平衡常数等 技巧一:三步法三步是化学平衡计算的一般格式,根据题意和恰当的假设列出起始量、转化量、平衡量.但要注意计算的单位必须保持统一,可用mol 、mol/L ,也可用L.例1 X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X + 2Y2Z ,达到平衡时,若它们的物质的量满足:n (X )+ n (Y )= n (Z ),则Y 的转化率为( )A 、B 、C 、D 、 解析:设Y 的转化率为αX + 2Y2Z起始(mol ) a b 0转化(mol ) αb αb平衡(mol )-a -b αb αb依题意有:-a + -b αb = αb , 解得:α= .故应选 B. 技巧二:差量法差量法用于化学平衡计算时,可以是体积差量、压强差量、物质的量差量等等.%1005⨯+b a %1005)(2⨯+b b a %1005)(2⨯+b a %1005)(2⨯+a b a αb 21αb 21αb 21%1005)(2⨯+b b a例2 某体积可变的密闭容器,盛有适量的A 和B 的混合气体,在一定条件下发生反应: A + 3B2C ,若维持温度和压强不变,当达到平衡时,容器的体积为VL ,其中C 气体的体积占10%,下列推断正确的是( ) ①原混合气体的体积为 L ②原混合气体的体积为 L ③反应达平衡时,气体A 消耗掉 L ④反应达平衡时,气体B 消耗掉 L A 、②③ B 、②④ C 、①③ D 、①④ 解析: A + 3B2C ΔV起始(L ) 1 3 2 2 平衡(L )所以原混合气体的体积为V L + L = L ,由此可得:气体A 消耗掉 L ,气体B 消耗掉 L.故本题选A.变式 某温度下,在密闭容器中发生如下反应,2A(g)2B(g)+C(g),若开始时只充入2 mol A 气体,达平衡时,混合气体的压强比起始时增大了20%,则平衡时A 的体积分数为 .解析:等温度、等体积时,压强增大了20%,也就是气体的物质的量增多了2 mol ×20%= mol ,即平衡时气体的物质的量变为 mol. 2A(g)2B(g) + C(g) Δn2 2 1 1 变化(mol )平衡时,n(A)=2 mol - mol = mol ,n(总)= mol ,故A 的体积分数为: ×100%=50%. 技巧三:守恒法2.4mol1.2mol1、质量守恒 例3、a mol N 2与b mol H 2混合,要一定条件下反应达到平衡,生成了c mol NH 3,则NH 3在平衡体系中质量分数为( ) A 、 B 、 C 、 D 、解析:由质量守恒定律可知:在平衡体系中的混合气体总质量应等于反应前N 2和H 2混合气的总质量.即NH 3在平衡体系中的质量分数为 .故本题应选B.2、原子个数守恒例4 加热时,N 2O 5可按下列分解:N 2O 5 N 2O 3 + O 2、N 2O 3又可按下列分解:N 2O 3N 2O + O 2.今将 4 molN 2O 5充入一升密闭容器中,加热至 t ℃时反应达到了平衡状态.平衡时,c (O 2)= mol/L, c (N 2O 3)= mol/L,c (N 2O )= _______ mol/L ,此时N 2O 5的分解率为 ________.解析:N 2O 5的起始浓度为c (N 2O 5)=4mol/L ,平衡时的气体成份及浓度为: 达平衡时的气体成份:N 2O 5 N 2O 3 N 2O O 2 平衡浓度(mol/L ) x y 由N 原子守恒:422262.12⨯=+⨯+y x 由O 原子守恒:4525.4362.15⨯=⨯++⨯+y x解得:x = mol/L ,y = mol/L ,所以,c (N 2O )= mol/L ,N 2O 5的分解率为: .变式 一定温度下,反应2SO 2(g)+O 2(g)2SO 3(g)达到平衡时,%1001722817⨯-+cb a c%100⨯++cb ac %10022817⨯+ba c%10022834⨯+ba c%5.76%100/4/94.0/4=⨯-Lmol Lmol L mol %10022817⨯+ba c。

化学反应速率与化学平衡知识点归纳

化学反应速率与化学平衡知识点归纳

1. 化学反应速率:⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间Δt和反应物浓度的变化Δc有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的;但这些数值所表示的都是同一个反应速率;因此,表示反应速率时,必须说明用哪种物质作为标准;用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比;如:化学反应mAg + nBg pCg + qDg 的:vA∶vB∶vC∶vD = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢;因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率;⑵. 影响化学反应速率的因素:I. 决定因素内因:反应物本身的性质;Ⅱ.条件因素外因也是我们研究的对象:①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率;值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快;值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率;③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率;④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率;⑤. 其他因素;如固体反应物的表面积颗粒大小、光、不同溶剂、超声波等;2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应;⑵. 化学平衡的概念略;⑶. 化学平衡的特征:动:动态平衡;平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定不是相等;变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡;⑷. 化学平衡的标志:处于化学平衡时:①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化;例1在一定温度下,反应A2g + B2g 2ABg达到平衡的标志是 CA. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸. 化学平衡状态的判断:举例反应 mAg + nBg pCg + qDg混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定其他条件一定平衡②m+n=p+q时,总压力一定其他条件一定不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴勒沙持列原理:如果改变影响平衡的一个条件如浓度、压强和温度等,平衡就向着能够减弱这种改变的方向移动;其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况即温度或压强或一种物质的浓度,当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱不可能抵消外界条件的变化;⑵、平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程;一定条件下的平衡体系,条件改变后,可能发生平衡移动;即总结如下:⑶、平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来;⑷、影响化学平衡移动的条件:化学平衡移动:强调一个“变”字①浓度、温度的改变,都能引起化学平衡移动;而改变压强则不一定能引起化学平衡移动;强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动;催化剂不影响化学平衡;②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动;③平衡移动原理:勒沙特列原理:④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动;⑸、反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aAg=bBg + cCg,在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:可用等效平衡的方法分析;①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小;Ⅱ、若反应物不只一种:aAg + bBg=cCg + dDg,①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大;②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小;4、等效平衡问题的解题思路:⑴、概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡;⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡;②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡;③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡;5、速率和平衡图像分析:⑴分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点;②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应;升高温度时,△V 吸热>△V放热;③看终点:分清消耗浓度和增生浓度;反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比;④对于时间——速度图像,看清曲线是连续的,还是跳跃的;分清“渐变”和“突变”、“大变”和“小变”;增大反应物浓度V正突变,V逆渐变;升高温度,V吸热大增,V放热小增;⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向;②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点;③先拐先平:对于可逆反应mAg + nBg pCg + qDg ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡;它所代表的温度高、压强大;这时如果转化率也较高,则反应中m+n>p+q;若转化率降低,则表示m+n<p+q;④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系; 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示;通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示;表达式:△vA=△cA/△t单位:mol/L·s或mol/L·min影响化学反应速率的因素:温度,浓度,压强,催化剂;另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:例对于下列反应:mA+nB=pC+qD有vA:vB:vC:vD=m:n:p:q对于没有达到化学平衡状态的可逆反应:v正≠v逆影响化学反应速率的因素:压强:对于有气体参与的化学反应,其他条件不变时除体积,增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小;若体积不变,加压加入不参加此化学反应的气体反应速率就不变;因为浓度不变,单位体积内活化分子数就不变;但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加;温度:只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大主要原因;当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快次要原因催化剂:使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之;浓度:当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 ;其他因素:增大一定量固体的表面积如粉碎,可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响;溶剂对反应速度的影响在均相反应中,溶液的反应远比气相反应多得多有人粗略估计有90%以上均相反应是在溶液中进行的;但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难;最简单的情况是溶剂仅引起介质作用的情况;在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开;扩散——就是对周围溶剂分子的反复挤撞,从微观角度,可以把周围溶剂分子看成是形成了一个笼,而反应分子则处于笼中;分子在笼中持续时间比气体分子互相碰撞的持续时间大10-100倍,这相当于它在笼中可以经历反复的多次碰撞;笼效应——就是指反应分子在溶剂分子形成的笼中进行多次的碰撞或振动;这种连续反复碰撞则称为一次偶遇,所以溶剂分子的存在虽然限制了反应分子作远距离的移动,减少了与远距离分子的碰撞机会,但却增加了近距离分子的重复碰撞;总的碰撞频率并未减低;据粗略估计,在水溶液中,对于一对无相互作用的分子,在依次偶遇中它们在笼中的时间约为10-12-10-11s,在这段时间内大约要进行100-1000次的碰撞;然后偶尔有机会跃出这个笼子,扩散到别处,又进入另一个笼中;可见溶液中分子的碰撞与气体中分子的碰撞不同,后者的碰撞是连续进行的,而前者则是分批进行的,一次偶遇相当于一批碰撞,它包含着多次的碰撞;而就单位时间内的总碰撞次数而论,大致相同,不会有商量级上的变化;所以溶剂的存在不会使活化分子减少;A和B发生反应必须通过扩散进入同一笼中,反应物分子通过溶剂分子所构成的笼所需要的活化能一般不会超过20kJ·mol-1,而分子碰撞进行反应的活化能一般子40 -400kJ·mol-1之间;由于扩散作用的活化能小得多,所以扩散作用一般不会影响反应的速率;但也有不少反应它的活化能很小,例如自由基的复合反应,水溶液中的离子反应等;则反应速率取决于分子的扩散速度,即与它在笼中时间成正比;从以上的讨论可以看出,如果溶剂分子与反应分子没有显着的作用,则一般说来碰撞理论对溶液中的反应也是适用的,并且对于同一反应无论在气相中或在溶液中进行,其概率因素P和活化能都大体具有同样的数量级,因而反应速率也大体相同;但是也有一些反应,溶剂对反应有显着的影响;例如某些平行反应,常可借助溶剂的选择使得其中一种反应的速率变得较快,使某种产品的数量增多;溶剂对反应速率的影响是一个极其复杂的问题,一般说来:1溶剂的介电常数对于有离子参加的反应有影响;因为溶剂的介电常数越大,离子间的引力越弱,所以介电常数比较大的溶剂常不利与离子间的化合反应;2溶剂的极性对反应速率的影响;如果生成物的极性比反应物大,则在极性溶剂中反应速率比较大;反之,如反应物的极性比生成物大,则在极性溶剂中的反应速率必变小;3溶剂化的影响,一般说来;作用物与生成物在溶液中都能或多或少的形成溶剂化物;这些溶剂化物若与任一种反应分子生成不稳定的中间化合物而使活化能降低,则可以使反应速率加快;如果溶剂分子与作用物生成比较稳定的化合物,则一般常能使活化能增高,而减慢反应速率;如果活化络合物溶剂化后的能量降低,因而降低了活化能,就会使反应速率加快;4离子强度的影响也称为原盐效应;在稀溶液中如果作用物都是电介质,则反应的速率与溶液的离子强度有关;也就是说第三种电解质的存在对于反应速率有影响.。

化学平衡与化学反应速率

化学平衡与化学反应速率

化学平衡与化学反应速率化学平衡和化学反应速率是化学动力学中两个重要的概念。

化学平衡指的是当化学反应的前进速率和逆反应的速率相等时,反应体系达到了平衡状态。

化学反应速率则是衡量反应速度的指标,表示单位时间内化学物质的消失或生成量。

一、化学平衡1.定义化学平衡是指在封闭系统中,反应物转变为生成物的速率与生成物转变为反应物的速率相等,系统各个组分的摩尔浓度保持不变的状态。

2.影响平衡的因素(1)浓度:当反应物浓度发生改变时,平衡位置会发生移动,达到新的平衡状态。

(2)温度:改变温度会影响反应速率,从而改变平衡位置。

(3)压力:对于气相反应,改变压力会对平衡位置产生影响,根据Le Chatelier原理,增加压力会使平衡移向生成物较少的一侧。

(4)催化剂:催化剂能够提高反应速率,但不会改变平衡位置。

3.平衡常数平衡常数K是表示反应在平衡时各组分浓度之比的倍数。

对于一般的平衡反应aA + bB ↔ cC + dD,平衡常数的表达式为:K = [C]^c[D]^d / [A]^a[B]^b其中[A]、[B]、[C]、[D]表示反应物或生成物的摩尔浓度。

二、化学反应速率1.定义化学反应速率是指单位时间内反应物消失量或生成物产生量的变化率。

2.影响反应速率的因素(1)浓度:反应物浓度越高,反应速率越快。

这是因为高浓度下,分子之间的碰撞频率增加,有效碰撞的概率增大。

(2)温度:升高温度会增加反应物的平均动能,提高反应物的反应活性,从而加快反应速率。

(3)催化剂:催化剂能够降低反应的活化能,提高反应速率,但不参与反应本身。

(4)表面积:反应物的表面积越大,反应速率越快。

这是因为增大了反应物之间的接触面积,有利于反应发生。

3.速率方程速率方程描述了反应速率与反应物浓度的关系。

对于一般的反应aA + bB → cC + dD,速率方程的表达式为:v = k[A]^m[B]^n其中k是速率常数,m和n分别是与反应物浓度的关系指数。

化学化学反应速率和化学平衡

化学化学反应速率和化学平衡

化学化学反应速率和化学平衡化学反应速率和化学平衡化学反应速率是指化学反应中反应物消失和生成物出现的速率。

在化学反应中,反应速率与反应物浓度、温度、物质表面积和催化剂等因素密切相关。

化学平衡是指在封闭系统中,反应物转化为生成物的速率和生成物转化为反应物的速率相等的状态。

在化学平衡条件下,反应物和生成物的浓度保持不变。

一、化学反应速率化学反应速率描述了反应物消失和生成物出现的快慢程度,并可以通过实验观察和计算得到。

反应速率与反应物浓度的变化率有关,通常可以使用以下公式表示:速率= ΔC / Δt其中,ΔC表示反应物浓度的变化量,Δt表示时间的变化量。

1. 温度的影响温度是影响化学反应速率最常见和最重要的因素之一。

温度升高会增加反应分子的平均动能,使分子之间的碰撞频率和能量增加,从而促进反应速率的增加。

2. 反应物浓度的影响反应物浓度的增加会增加反应物分子碰撞的频率,从而增加反应速率。

根据速率与浓度的关系可以推导出速率定律方程:速率 = k[A]^m[B]^n其中,k为速率常数,m和n分别为反应物A和B的反应级数,[A]和[B]表示反应物A和B的浓度。

3. 物质表面积的影响对于固体和液体反应物,物质表面积的增加可以提高反应速率。

因为表面积的增加会增大反应物与其他反应物的接触面积,从而增加反应发生的可能性。

4. 催化剂的作用催化剂可以降低化学反应的活化能,从而加速反应速率,但自身在反应过程中不发生永久改变。

催化剂通过提供新的反应路径,降低了原始反应路径中的反应物粒子的能量要求,使反应速率得到增加。

二、化学平衡化学平衡是一种动态平衡状态,即反应物转化为生成物的速率和生成物转化为反应物的速率相等。

在化学平衡条件下,反应物和生成物的浓度保持不变,但反应仍然在进行。

1. 平衡常数对于一个化学反应,可以定义平衡常数K,它的值等于在平衡条件下各物质浓度的乘积积累除以反应物浓度的乘积积累。

平衡常数表征了在平衡状态下反应物和生成物的浓度关系。

化学反应速率与化学平衡

化学反应速率与化学平衡化学反应速率和化学平衡是化学中两个重要的概念。

化学反应速率指的是反应物转化为产物的速度,而化学平衡则是指在一个封闭系统中,反应的前进和逆反应达到相互抵消的状态。

本文将探讨化学反应速率和化学平衡之间的关系以及相关的影响因素。

一、化学反应速率化学反应速率是指在单位时间内,反应物的消耗量或产物的生成量。

通常表示为物质浓度的变化速率,具体公式为:反应速率= ΔC/Δt其中,ΔC表示反应物浓度或产物浓度的变化量,Δt表示时间的变化量。

化学反应速率受多种因素的影响,包括温度、浓度、催化剂和表面积等。

其中,温度是最主要的影响因素之一。

根据反应速率理论,温度升高10摄氏度,反应速率大约增加两倍。

这是因为温度的升高会增加反应物的动能,提高分子碰撞的频率和能量,从而加快反应速率。

浓度也会影响反应速率。

一般来说,反应物浓度越高,分子碰撞的概率越大,反应速率也越快。

当浓度较低时,分子碰撞的频率较低,反应速率会减慢。

催化剂是能够提高反应速率的物质,但不参与反应本身。

催化剂能够通过降低反应物分子之间的活化能,加速反应速率。

催化剂在反应结束后可以循环使用,因此只需少量添加即可。

表面积也是一个影响因素。

反应物粒子的表面积越大,与其他反应物相互作用的机会越多,反应速率也会增加。

这是因为粒子表面上的分子碰撞更频繁,反应更容易发生。

二、化学平衡化学平衡是指在封闭系统中,正反应和逆反应达到相互抵消的状态。

在达到化学平衡时,反应物和产物的浓度保持不变,但反应仍在进行。

化学平衡可以用化学方程式表示,通常使用双箭头(↔)表示正反应和逆反应。

化学平衡受到温度、压力和浓度的影响。

温度的变化可以改变反应平衡。

根据勒夏特列原理(Le Chatelier's principle),温度升高会使平衡向反应物生成的方向移动,而温度降低则使平衡向产物生成的方向移动。

这是因为平衡位置会随着反应热力学性质的变化而改变。

压力的变化对涉及气体的反应有影响。

化学反应速率和化学平衡


起始浓度 实验 (103mol/dm3) 编号 (H2) (I2) (HI) 1 10.677 11.695 0 2 11.354 9.044 0 3 11.357 7.510 0 4 0 0 4.489 5 0 0 10.692
注:( )中的为起始浓度;[ ]中的为平衡浓度。
在一定温度下,Kc 为常数 测定平衡时各组分的浓度(或分压),通过平衡常 数表达式,可求出K.

以上两式相除得:β =2
该反应的速率方程为:
v k cA c
2 B
速率系数为:
1.2 10 mol L s k 2 cA cB 1.0 mol L1 (1.0 mol L1 )2
=1.2×10-2 L2· mol-2 · s -1

2
1
1

2 1 1 1 1
以上两式相除得:
α=1
将实验 1 和实验 4 的数据代入速率方程得:
1.2 102 mol L1 s 1 =k (1.0mol L1 ) (1.0mol L1 ) 4.8 102 mol L1 s 1 =k (1.0mol L1 ) (2.0mol L1 )
2s末浓度/mo1·L-1
为:
1.8
2.4
0.4
该反应平均速率若根据不同物质的浓度变化可分别表示
速率之比(1:3:2),等于相应物质分子 式前的系数比。
3、
6
7
对于一般的化学反应 aA + bB = gG + hH

产物前面的负号是为了使反应速率保持正值
9
二、影响反应速率的因素

浓度(质量作用定律)
转化率:反应达到平衡时,反应物转化为生成物的百分率

化学反应速率与化学平衡_知识点总结

化学反应速率与化学平衡知识点梳理:一、化学反应速率1、定义: 化学反应速率是用来衡量化学反应进行的快慢程度的物理量。

用单位时间内反应物浓度的减少量或生成物浓度的增加量来表示。

2、计算公式:3、单位:例1、在2SO 2+O 2 2SO 3 反应中:如果2s 内SO 2的浓度由6 mol/L 下降为2 mol/L ,那么,用SO 2浓度变化来表示的化学反应速率为 ,★★注意:同一反应可以选用不同的物质来表示速率,其数值可能不同,但意义相同。

且用不同物质表示的速率之比等于方程式中计量数之比:aA +bB =cC +dD ,速率关系式: v(A)∶v(B)∶v(C)∶v(D) = 。

比较反应速率快慢的方法:根据速率关系式,转化成同一种物质的速率,再比较大小 例2、 在四个不同的容器中,在不同的条件下进行合成氨反应:N2+3H2=2NH3,根据在相同时间内测定的结果判断,生成氨气的速率最大的是( )A 、v (H2)=0.3mol*(L*min )^-1B 、v (N2)=0.2mol*(L*min )^-1C 、v (NH3)=0.25mol*(L*min )^-1D 、v (H2)=0.4mol*(L*min )^-1二、影响化学反应速率的因素1、内因(决定性因素):反应物本身的结构和性质。

2、外因(外界条件):(1)催化剂:在其他条件相同时,使用(正)催化剂,通常可以 化学反应速率,不同的催化剂对同一反应的催化效果 。

(2)温度:在其他条件相同时,温度越高,化学反应速率 。

例3、已知反应的温度每升高10℃,反应速率增大为原来的2倍,若反应的温度由20℃升高到90℃,则反应速率变为原来的_________倍。

(3)反应物的浓度:在其他条件相同时,反应物浓度越大,化学反应速率 。

★★注意:改变固体的量不影响化学反应的速率(4)压强:在其它条件不变时,增大气体反应体系压强,化学反应速率 ;反之 。

注意:改变压强,对化学反应速率产生影响的根本原因是引起 改变。

化学平衡与化学反应速率

化学平衡与化学反应速率化学平衡和化学反应速率是化学反应中两个重要的概念。

化学平衡是指在封闭系统中,当正反应和逆反应的速率相等时,化学反应达到平衡的状态。

化学反应速率则是指单位时间内反应物消耗的量或产物生成的量。

一、化学平衡化学平衡是当一个化学反应达到稳定状态时的描述。

在平衡态下,正反应和逆反应同时进行,且速率相等。

当平衡态被打破后,反应物会重新组合并继续反应,直到再次达到平衡。

平衡常数(K)是表示平衡位置的定量指标。

对于一般反应的方程aA + bB ⇌ cC + dD,平衡常数K的表达式为K=[C]^c[D]^d/[A]^a[B]^b,其中方括号表示浓度。

在平衡状态下,化学反应的浓度和速率不会发生变化。

化学平衡的条件包括浓度、压力、温度和物质的状态。

当这些条件改变时,平衡位置也会发生变化。

利用Le Chatelier原理可以预测平衡位置的变化方向。

当应力加在平衡体系上时,体系会相应地作出反应以减小这种应力,使平衡得以保持。

二、化学反应速率化学反应速率是指在单位时间内反应物消耗的量或产物生成的量。

反应速率随着反应物浓度的变化而变化,一般遵循速率-浓度关系。

速率常数k是表示速率的定量指标,与反应物浓度的幂函数相关。

对于一般反应的方程aA + bB → cC + dD,速率表达式可以写为v=k[A]^a[B]^b,其中v表示反应速率。

在确定反应速率时,可以通过实验方法,改变反应物浓度、温度、压力等条件,观察反应的进展情况,然后确定反应速率的数值。

反应速率受到温度的影响最为显著,高温能够加快反应速率,而低温则会减慢反应速率。

这是因为温度的升高可以提高反应物分子的平均动能,使分子之间碰撞的能量超过活化能,从而促进反应的进行。

化学反应速率也可通过速率方程的指数来确定反应级数。

如果一个反应的速率与某个反应物的浓度的一次幂成正比,那么这个反应是一级反应。

如果速率与某个反应物的浓度的二次幂成正比,那么这个反应是二级反应。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解析: 该题主要考查浓度对化学反应速率的影响。铁 跟盐酸反应的实质是铁与盐酸中的H+反应:Fe+2H+== Fe2++H2,显然,要减缓反应速率,又不影响生成H2的 总量,就必满足:“既减小H+浓度,又不影响H+的物 质的量”的这一要求。
4.2 化学平衡
一、可逆反应
1、不可逆反应:只向一个方向进行的反应。 HCl + NaOH == NaCl + H2O 生成物 生成物
放热方向
N2 + 3H2 2NH3 吸热方向 向逆方向 移动 向正方向移动 左 右
△H = -92.4 kJ/mol
T↑,化学平衡 T↓,反应平衡
催化剂对化学平衡无影响;
但可缩短达到平衡的时间
化学平衡移动原理(勒夏特列原理): 当可逆反应达到平衡后,如果改变影响平衡的条 件之一,如温度、浓度或压力,平衡就向能减弱 这种改变的方向移动。
我们说此时建立溶解平衡 结论:溶解平衡是一种动态平衡
v V溶解
·
v’溶解= v’结晶
·
·
V结晶 t1 t
蔗糖与可逆反应对比: 蔗糖溶解 溶解 可逆反应 正反应 猜测: 起初 蔗糖溶解 V溶解 >V结晶 可逆反应 V正>V逆
结晶 逆反应
平衡
V溶解=V结晶
V正=V逆
一、化学平衡的建立过程
在反应CO+H2O CO2+H2中,将0.01 mol CO 和0.01 mol H2O (g)通入1L密闭容器中,反应一段 时间后,各物质浓度不变。 1、反应刚开始时:
反应物浓度————,正反应速率最大 ,生成物浓 ———— 0 0 度为————,逆反应速率为——。
逐渐减小 2、反应过程中:反应物浓度———————,正反应 逐渐减小 逐渐增大 速率——————— ,生成物浓度——————,逆反应 逐渐增大 速率————
最大
3、一定时间后,必然出现
V正反应速率=V逆反应速率
2、压强对化学平衡的影响 (1)气体总体积发生变化的反应 增大压强 减小压强 气体体积缩小
气体体积增大
N2 + 3H2 p↑,化学平衡
2NH3 向正方向 移动 右 左
p↓,反应平衡 向逆方向 移动
(2)气体总体积不发生变化的反应
增大压强 平衡不移动
减小压强 CO + H2O(g) CO2 + H2 不 不 移动 移动
N2 +
3H2
2NH3
反 应 速 率
v正 v逆
ν正=ν逆
反应时间
1、化学平衡的性质: ⑴反应条件: ——条件不变(一定条件下)
温度、压强、浓度等不变
⑵研究对象: ——可逆反应
可逆反应,不可逆反应一般不会出现平衡状态
⑶本质: ——速率相等
v正= v逆 即同一物质消耗速率与生成速率相等
⑷现象: ——浓度不变
减小反应物的浓度,反应速率减慢
2、压强的影响:有气体参加的化学反应 增大压强,反应速率加快; 减小压强,反应速率减小 N2 + 3H2 = 2NH3
3、温度的影响:
温度升高,化学反应速率加快;
4、催化剂的影响: 催化剂能极大地改变化学反应速率 催化剂:能够显著改变化学反应速率而本身在反应 前后其组成、质量和化学性质都保持不变的物质 正催化剂: 反应速率↑ 催化剂 负催化剂: 反应速率↓ (抑制剂) 注意:催化剂只改变反应速率,不改变反 应的方向或程度
c t
单位:
mol/(L· min)或mol/(L· s)
N2 +
起始浓度(mol/L) 1
3H2 =
3
2NH3
0
3min后浓度(mol/L) 0.7
变化的浓度(mol/L) 0.3 νN =
2
2.1
0.9
0.6
0.6
0.3 3 0.9 3 0.6 3
= 0.1 mol/(L· min)
3、写出化学方程式
5A + 4B
4C
例、对10mL 1mol/L盐酸与一小块大理石的化学反应 CaCO3 + 2HCl= CaCl2 + CO2 ↑+ H2O,下列措施能使化学反 应速率提高的是
B
A、加入一定量的CaCl2 C、加入15mL 0.5mol/L盐酸
B、加入5mL 1.5mol/L盐酸 D、加入5mL H2O
3X2 + Y2 3X2 + Y2 === 2Z === 2X3Y
习题、把0.6molX气体和0.4molY气体混合于2L容器中, 发生反应:3X(g) + Y(g) = n Z ( g) + 2W(g) .5min末已 生成0.2molW,若测知以Z浓度的变化来表示平均速率 为0.01mol/(L· min),则 (1) 上述反应Z气体的计量系数n的值是______
第4章 化学反应速率与化学平衡
化学反应速率
化学反应进行的快慢 解决问题: 反应进行的方向和程度
化学平衡
4.1 化学反应速率
一、化学反应速率的概念和表示方法
1、化学反应速率ν 是衡量化学反应进行快慢程度的物理量。 2、化学反应速率的表示方法 单位时间内反应物浓度的减少或生成物浓度的增加 数学表达式为:
正反应: 反应物
反应方向 逆反应: 反应物 反应方向
2、可逆反应:在同一反应条件下,既可以向正反 应方向进行,同时又可以向逆反应方向进行的反应。 用 Cl2 + H2O N2 + 3H2 表示 HCl + HClO 2NH3
可逆反应的特点: ①正反应和逆反应发生的条件相同; ②反应物、生成物共同存在;
③可逆反应有一定的限度。
溶解和沉淀过程
如右图,蔗糖在溶解时, 一方面,蔗糖分子不断 离开蔗糖表面扩散到水中, 另一方面,溶液中的蔗糖分子又不断 在未溶解的蔗糖表面聚集成为晶体。

过程分析:
0 最大 ①开始时,v溶解 —————,v结晶=—— V溶解 >V结晶 逐渐增大 逐渐减小 ②然后, v溶解 —————,v结晶 —————— ③最后, v溶解 —— v结晶(不等于0) =
从t1~t2虽然浓度是逐渐降低的, 但由于反应放热,温度升高起 主要作用,所以速率由慢到快, t2~t3 由于c (HCl)下降成为主 要因素,速率减小
例、一定量的盐酸跟过量的铁粉反应时,为了 减缓反应速率,且不影响生成氢气的总量,可 向盐酸中加入适量的( ) BD A.NaOH(固) B.H2O C.NH4Cl(固) D.CH3COONa(固)
C、v (H2O)=0.003 mol/(L· D、 v (NH3)=0.002 mol/(L· ) s) s v (NO)=0.3/(5×30)=0.002 mol/(L· s) C 、D
2、比较反应速率的大小 例、反应A + 3B == 2C + 2D在四种不同情况下的反应速率 分别为①VA = 0.15mol· -1·-1 ②VB = 0.6mol· -1·-1 L s L s ③Vc = 0.4mol· -1·-1 L s ④VD = 0.45mol· -1·-1 L s ④﹥ ②= ③﹥ ①
则该反应在不同条件下速率快慢顺序是
结论3
在同一反应中,反应速率的大小不能单纯地看数值大小, 所以反应速率的大小不能单纯地看数值大小
3、根据各物质的反应速率之比写出化学方程式。
例、某温度下,浓度都是1mol/L的两种气体X2和Y2,在 密闭容器中反应生成气体Z,经过t min后,测得物质的量 浓度分别 为:c(X2)=0.4mol/L,c(Y2)=0.8mol/L ,c(Z)=0.4mol/L,则该反 应的反应方程式可表示为:
p↑,化学平衡 p↓,化学平衡
(3)没有气体参加的反应
改变压力,化学平衡不发生移动
3、温度对化学平衡的影响
升高温度 降低温度 吸热方向 放热方向
反应热△H :化学反应中吸收或放出的热量 放热反应:△H < 0 , “-” 吸热反应:△H > 0, “+” △H < 0 A + B △H > 0 C + D
析:CaCl2是生成物,其浓度的增大不能增大反应速率。 影响反应速率的是浓度,与总量没有必然的联系。
例、把除去氧化膜的镁条投入到放有稀盐酸的试管中,发现 H2 发生的速率变化情况如图,其中 t1~t2速率变化的主要原因是 温度升高 t ~t 速率变化的主要原因是 盐酸浓度下降
2 3
本题中影响其反应速率的 主要因素是①浓度 ②温度。
2、已建立化学平衡的某可逆反应,当改变条件使化 学平衡向正反应方向移动时,下列有关叙述正确的是 ① 生成物的百分含量一定增加② 生成物的产量一定 增加③ 反应物的转化率一定增大④ 反应物浓度一定 降低⑤ 正反应速率一定大于逆反应速率⑥ 使用了合 适的催化剂 A① ② (B) ② ⑤ (C) ③ ⑤ (D) ④ ⑥ √
学平衡被转变到新的化学平衡的过程
• • • •
影响化学平衡的因素 浓度 压力 温度
1、浓度对化学平衡的影响 增大反应物浓度 减小生成物浓度 减小反应物浓度 正反应方向 向右移动
逆反应方向
向左移动 B C + D
增大生成物浓度
A +
cA↑,化学平衡 向正方向 移动 右
cA↓,反应平衡 向逆方向 移动 左
C
C、 0.1mol/(L· min)
D、 0.3mol/(L· min)
习题:已知反应N2 +3H2
2NH3 ,根据下图判断
H2 1、A是______物质的量浓度 变化情况
NH3 2、C是______物质的量浓度 变化情况
3、2分钟内N2的平均速率是多 少? 0.5mol/(L· min )
相关文档
最新文档