化学反应速率与化学平衡知识点归纳
人教版高中化学选修第二章《化学反应速率和化学平衡》知识点归纳

第二章化学反应速率和化学平衡一、化学反应速率1. 化学反应速率(v)⑴定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化⑵表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示⑶计算公式:v=Δc/Δt(υ:平均速率,Δc:浓度变化,Δt:时间)单位:mol/(L?s)⑷影响因素:①决定因素(内因):反应物的性质(决定因素)②条件因素(外因):反应所处的条件※注意:(1)、参加反应的物质为固体和液体,由于压强的变化对浓度几乎无影响,可以认为反应速率不变。
(2)、惰性气体对于速率的影响①恒温恒容:充入惰性气体→总压增大,但各分压不变,各物质浓度不变→反应速率不变②恒温恒体:充入惰性气体→体积增大→各反应物浓度减小→反应速率减慢二、化学平衡(一)1.定义:一定条件下,当一个可逆反应进行到正逆反应速率相等时,更组成成分浓度不再改变,达到表面上静止的一种“平衡”,这就是这个反应所能达到的限度即化学平衡状态。
2、化学平衡的特征逆(研究前提是可逆反应);等(同一物质的正逆反应速率相等);动(动态平衡)定(各物质的浓度与质量分数恒定);变(条件改变,平衡发生变化)3、判断平衡的依据判断可逆反应达到平衡状态的方法和依据②在单位时间内消耗了n m olB同时消耗了p但(二)影响化学平衡移动的因素1、浓度对化学平衡移动的影响(1)影响规律:在其他条件不变的情况下,增大反应物的浓度或减少生成物的浓度,都可以使平衡向正方向移动;增大生成物的浓度或减小反应物的浓度,都可以使平衡向逆方向移动(2)增加固体或纯液体的量,由于浓度不变,所以平衡不移动(3)在溶液中进行的反应,如果稀释溶液,反应物浓度减小,生成物浓度也减小, V正减小,V逆也减小,但是减小的程度不同,总的结果是化学平衡向反应方程式中化学计量数之和大的方向移动。
2、温度对化学平衡移动的影响影响规律:在其他条件不变的情况下,温度升高会使化学平衡向着吸热反应方向移动,温度降低会使化学平衡向着放热反应方向移动。
最新高中化学《化学反应速率与化学平衡》知识点专题汇总

最新高中化学《化学反应速率与化学平衡》知识点专题汇总第二章化学反应速率与化学平衡(知识点精讲、专题集训)一、化学反应速率1.概念及计算公式对于反应体系体积不变的化学反应,通常用单位时间内反应物浓度的减少或生成物浓度的增大来表示化学反应速率计算公式:单位:mol·L-1·s-12.应用中应注意的问题①概念中的反应速率实际上是某段时间间隔内的平均反应速率。
时间间隔越短,在这段时间发生的浓度变化越接近瞬时反应速率(指在某一瞬间的反应速率)②对某一具体化学反应来说,在用不同物质表示化学反应速率时所得数值往往不同。
用各物质表示的化学反应速率的数值之比等于化学方程式中各物质的系数之比③无论用任何物质来表示,无论浓度的变化是增加还是减少,都取正值,反应速率都为正数(没有负数)。
④在反应中对于固体或纯液体而言,其物质的量浓度无意义,所以不用它们来表示化学反应速率二,影响化学反应速率的因素㈠、内因:物质本身的结构和性质是化学反应速率大小的决定因素,反应类型不同有不同的化学反应速率,反应类型相同但反应物不同,化学反应速率也不同。
㈡、外界条件对化学反应速率的影响1、浓度对化学反应速率的影响。
结论:其他条件不变时,增大反应物的浓度,可以增大反应速率;减小反应物的浓度,可以减小化学反应的速率。
注意:a、此规律只适用于气体或溶液的反应,对于纯固体或液体的反应物,一般情况下其浓度是常数,因此改变它们的量不会改变化学反应速率。
原因:在其他条件不变时,对某一反应来说,活化分子百分数是一定的,所以当反应物的浓度增大时,单位体积内的分子数增多,活化分子数也相应的增多(活化分子百分数不变), 有效碰撞次数增多,反应速率也必然增大。
2、压强对反应速率的影响。
结论:对于有气体参加的反应,若其他条件不变,增大压强,反应速率加快;减小压强,反应速率减慢。
原因:对气体来说,若其他条件不变,增大压强,就是增加单位体积的反应物的物质的量,即增加反应物的浓度,单位体积内活化分子数增多(活化分子百分数不变),因而可以增大化学反应的速率。
高二化学《化学反应速率与化学平衡》知识点总结

1.速率——时间图像
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
2. 转化率(或含量)——间图像
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
(1)图甲表示压强对反应物转化率的影响;
(2)图乙表示温度对反应物转化率的影响;
(2)对于有固、液参加的反应,改变压强不会影响其反应速率和平衡移动。
(3)使用催化剂,反应速率增大。但催化剂的改变不影响平衡移动。
(4)充入“惰气”对反应速率和平衡的影响
①恒温恒容,充入“惰气”,不改变反应速率和平衡移动。
②恒温恒压,充入“惰气”导致体积增大(相当于压强减小,浓度减小),故v正、v逆均减小,平衡向气体分子数增多(气体化学计量数增大)的方向移动。
(3)图丙表示催化剂对反应物转化率的影响,催化剂只能改变化学反应速率,不能改变反应物的转化率。
3.恒压(温)线
反应mA(g)+nB(g) pC(g)+qD(g),m+n>p+q,且ΔH>0
分析时可沿横轴作一条平行于纵轴的虚线,即为等压线或等温线,然后分析另一条件变化对该反应的影响。
4.“五看”分析图像
2.三段式突破反应速率与平衡的有关计算
mA(g)+nB(g) pC(g)+qD(g)
起始/(mol·L-1)ab00
变化/(mol·L-1)mxnxpx qx
平衡/(mol·L-1)a-mxb-nxpxqx
(1)反应速率v(A)=
(2)转化率α(A)= ×100%
(3)平衡常数K=
①同一可逆反应中,K正·K逆=1;
②几个可逆反应方程式相加,得总方程式,则总反应的平衡常数等于分步反应平衡常数之积。
化学反应速率与化学平衡知识点归纳完整版

化学反应速率与化学平衡知识点归纳集团标准化办公室:[VV986T-J682P28-JP266L8-68PNN]化学反应速率与化学平衡考点归纳一、化学反应速率⑴. 化学反应速率的概念及表示方法:通过计算式: 来理解其概念: ①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的.但这些数值所表示的都是同一个反应速率.因此,表示反应速率时,必须说明用哪种物质作为标准.用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比.如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m ∶n ∶p ∶q③一般来说,化学反应速率随反应进行而逐渐减慢.因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率.⑵. 影响化学反应速率的因素:【注意】①化学反应速率的单位是由浓度的单位(mol ·L -1)和时间的单位(s 、min 或h)决定的,可以是mol ·L -1·s -1、mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位的一致性.②对于某一具体的化学反应,可以用每一种反应物和每一种生成物的浓度变化来表示该反应的化学反应速率,虽然得到的数值大小可能不同,但用各物质表示的化学反应速率之比等于化学方程式中相应物质的化学计量数之比.如对于下列反应: mA + nB = pC + qD tc v ∆∆=qD v p C v n B v m A v )()()()(=== 有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q或: ③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不是以同样的速率进行的,因此,化学反应速率是平均速率而不是瞬时速率.[有效碰撞] 化学反应发生的先决条件是反应物分子(或离子)之间要相互接触并发生碰撞,但并不是反应物分子(或离子)间的每一次碰撞都能发生化学反应.能够发生化学反应的一类碰撞叫做有效碰撞.[活化分子] 能量较高的、能够发生有效碰撞的分子叫做活化分子.说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适的取向才能发生有效碰撞.②活化分子在反应物分子中所占的百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数是一定的.活化分子百分数越大,活化分子数越多,有效碰撞次数越多.[影响化学反应速率的因素]I. 决定因素(内因):反应物本身的性质Ⅱ. 条件因素(外因)压强对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小.若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变.因为浓度不变,单位体积内活化分子数就不变.但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加.温度只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因).当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)催化剂使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之.浓度当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的 .其他因素增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响.图表如下:二、化学平衡状态⑴前提——密闭容器中的可逆反应⑵条件——一定条件的T、P、c ——影响化学平衡的因素⑶本质——V(正)=V(逆)≠0⑷特征表现——各组分的质量分数不变化学平衡可以用五个字归纳:逆:研究对象是可逆反应动:动态平衡.平衡时v正=v逆≠0等:v(正)=v(逆)定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡.【说明】a.绝大多数化学反应都有一定程度的可逆性,但有的逆反应倾向较小,从整体看O.实际上是朝着同方向进行的,例如NaOH + HCl = NaCl + H2b.有气体参加或生成的反应,只有在密闭容器中进行时才可能是可逆反应.如CaCO3受热分解时,若在敞口容器中进行,则反应不可逆,其反应的化学方程式应写为:CaCO3CaO + CO2↑;若在密闭容器进行时,则反应是可逆的,其反应的化学方程式应写为:CaCO3CaO + CO2可逆反应的特点:反应不能进行到底.可逆反应无论进行多长时间,反应物都不可能100%地全部转化为生成物.1.化学平衡状态①定义:一定条件(恒温、恒容或恒压)下的可逆反应里,正反应和逆反应的速率相等,反应混合物(包括反应物和生成物)中各组分的质量分数(或体积分数)保持不变的状态.②化学平衡状态的形成过程:在一定条件下的可逆反应里,若开始时只有反应物而无生成物,根据浓度对化学反应速率的影响可知,此时ν正最大而ν逆为0.随着反应的进行,反应物的浓度逐渐减小,生成物的浓度逐渐增大,则ν正越来越小而ν逆越来越大.当反应进行到某一时刻,ν正=ν逆,各物质的浓度不再发生改变,反应混合物中各组分的质量分数(或体积分数)也不再发生变化,这时就达到了化学平衡状态.2.化学平衡的标志:(处于化学平衡时)①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化.【例1】在一定温度下,反应A2(g) + B2(g) 2AB(g)达到平衡的标志是( C )A. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B23.化学平衡状态的判断举例反应:mA(g)+nB(g)pC(g)+qD(g)混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定(其他条件一定)平衡②m+n=p+q时,总压力一定(其他条件一定)不一定平衡混合气体的平均分子量一定,①当m+n≠p+q时,平衡②当m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡判断可逆反应达到平衡状态的方法和依据图表4.化学平衡移动⑴勒夏特列原理:如果改变影响平衡的一个条件(如浓度、压强和温度等),平衡就向着能够减弱这种改变的方向移动.其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度),当多项条件同时发生变化时,情况比较复杂; ③平衡移动的结果:只能减弱(不可能抵消)外界条件的变化.⑵平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程.一定条件下的平衡体系,条件改变后,可能发生平衡移动.即总结如下: ⑶影响化学平衡移动的条件①浓度、温度的改变,都能引起化学平衡移动.而改变压强则不一定能引起化学平衡移动.强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动.催化剂不影响化学平衡.②速率与平衡移动的关系: I . v 正=v 逆,平衡不移动;II. v 正>v 逆,平衡向正反应方向移动;正<v 逆,平衡向逆反应方向移动.强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动.③平衡移动原理:(勒夏特列原理)⑷转化率变化的一般规律(用等效平衡原理来分析)①当温度、压强(造成浓度变化的压强变化)造成平衡正向移动时,反应物转化率一定增大②若反应物只有一种:aA(g)=bB(g)+cC(g),在恒温恒压状态下,若n(C):n(B)=c:b,充入A,转化率不变;在恒温恒容状态下,在不改变其他条件时,增加A的量,A的转化率与气体物质的计量数有关:①若a = b + c : A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c : A的转化率减小.③若反应物不只一种:aA(g)+bB(g)=cC(g)+dD(g)α在不改变其他条件时,只增加A的量,A的转化率减小,而B的转化率增大.β将C、D全部转化成A、B得到一个A、B的物质的量之比,按照这个比例加入A、B,恒温恒压时,转化率不变;恒温恒容时,反应物的转化率与气体物质的计量数有关:若a+b=c+d,A、B的转化率都不变;若a+b>c+d,A、B的转化率都增大;若a+b<c+d,A、B的转化率都减小.γ若n(A):n(B)=a:b,恒温恒压时,只要加入C、D的量之比符合C、D的化学计量数之比,转化率不变;恒温恒容时,若a+b=c+d,A、B的转化率都不变,若a+b>c+d,A、B的转化率都增大,若a+b<c+d,A、B的转化率都减小④同一个化学反应,等量加入反应物时,在恒压容器中的转化率总是大于等于在恒容容器中的转化率,当且仅当反应的Δn=0时转化率相等(此时就等效于恒压).对以上3种情况可分别举例,可加深对概念的理解:例1:某恒温恒容的容器中,建立如下平衡:2NO 2(g ) N 2O 4(g ),在相同条件下, 若分别向容器中通入一定量的NO 2气体或N 2O 4气体,重新达到平衡后,容器内N 2O 4的体积分数比原平衡时 ( ) A .都增大 B .都减小 C .前者增大后者减小 D .前者减小后者增大 解析:2NO 2(g )N 2O 4(g )是气体体积减小的可逆反应.反应达到平衡后,无论向密闭容器中加入N O 2还是N 2O 4气体,可视为加压,平衡都向右移动,达到新平衡时NO 2的转化率都增大.答案选A例2:一定温度下,将a mol PCl 5通入一个容积不变的反应器中,达到如下平衡:PCl 5(g )PCl 3(g )+Cl 2(g ),测得平衡混合气体压强为p 1,此时再向反应器中通入a mol PCl 5,在温度不变的条件下再度达到平衡,测得压强为p 2,下列判断正确的是( ) A. 2p 1>p 2 B. PCl 5的转化率增大 C. 2p 1<p 2 D. PCl 3%(体积含量)减少 解析:PCl 5(g )PCl 3(g )+Cl 2(g )是气体体积增大的可逆反应.如反应达到平衡后,再向密闭容器中加入PCl 5, PCl 3的物质的量会有增加,此时可视为加压,平衡向左移动,反应达到新的平衡时PCl 5在平衡混合物中的百分含量也较原平衡时有所增加,但PCl 5的转化率降低.答案选A 例3: 2HI (g )H 2(g )+I 2(g )是气体体积不变的可逆反应,反应达到平衡后,再向固定密闭容器中加入HI ,使c (HI )的浓度增大,HI 平衡转化率不变.对于气体体积不变的可逆反应,反应达到平衡后增加反应物,达到新的化学平衡时反应物的转化率不变.应注意的是,实际应用时,题目所给的条件并不向上面总结的那么理想化,因此应该利用等效平衡知识具体问题具体分析. ⑸压强变化对于转化率的影响对于可逆反应aA(g)+bB(g)cC(g)+dD(g),(a+b≠c+d)在压强变化导致平衡移动时,充入“惰性气体”化学平衡朝哪个方向移动转化率如何变化可归纳为以下两方面:1. 恒温恒容条件下充入“惰性气体”,化学平衡不移动.因平衡体系的各组分浓度均未发生变化,故各反应物转化率不变.2. 恒温恒压条件下充入“惰性气体”,化学平衡向气体体积增大的方向移动.因为此时容器容积必然增大,相当于对反应体系减压,继而可判断指定物质的转化率变化.变式训练:1、在一容积可变的密闭容器中,通入1molX和3molY,在一定条件下发生如下反应:X(g)+3Y(g) 2Z(g),到达平衡后,Y的转化率为a%,然后再向容器中通入2molZ,保持在恒温恒压下反应,当达到新的平衡时,Y的转化率为b%.则a与b的关系是()A.a=b B.a>b C.a<b D.不能确定2、两个体积相同的密闭容器A、B,在A中充入S O2和O2各1mol,在B中充入SO2和O2各2 mol,加热到相同温度,有如下反应2SO2(g)+ O2(g) 2SO3(g),对此反应,下述不正确的是()A.反应速率B>A B.SO2的转化率B>AC.平衡时各组分含量B = A D.平衡时容器的压强B>A3、一定量混合气体在密闭容器中发生如下反应:xA(气)+yB(气) nC(气),达到平衡后,测得A气体的浓度为L.保持温度不变将容器的容积扩大1倍,再达平衡时,测得A气体的浓度为L,则下列叙述中正确的是()A、x+y<nB、该化学平衡向右移动C、B的转化率增大D、C的体积分数减小4、一定温度下,在一个体积可变的密闭容器中加入2 molH2和2 molN2,建立如下平衡: N2(g)+3H2(g) 2NH3(g)相同条件下,若向容器中再通入1 mol H2和,1molN2又达到平衡.则下列说法正确的是()A.NH3的百分含量不变B.N2的体积分数增大C.N2的转化率增大 D.NH3的百分含量增大5、某温度下的密闭容器中发生如下反应:2M(g)+N(g) 2E(g),若开始时只充入2 mol E(g),达平衡时,混合气体的压强比起始时增大了20%;若开始时只充入2 mol M和1 mol N的混合气体,则达平衡时M的转化率为()A.20%% %% 参考答案: 1、 A 2、C 3、D 4、A 5、C总之,判断转化率的变化关键是正确判断平衡移动的方向,当增大物质的浓度难以判断平衡移动的方向时,可转化为压强问题进行讨论;当增大压强难以判断平衡移动的方向时,可转化为浓度问题进行讨论.5、等效平衡问题的解题思路⑴概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡.⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡.②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡.③等温且Δn=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡.【归纳】等效平衡规律对于可逆反应mA(g)+nB(g)pC(g)+qD(g),在两种不同起始状态下反应,达平衡后互为等效平衡的条件是:6、速率和平衡图像分析⑴分析反应速度图像①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点.②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应.升高温度时,△V 吸热>△V放热.③看终点:分清消耗浓度和增生浓度.反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比.④对于时间——速度图像,看清曲线是连续的,还是跳跃的.分清“渐变”和“突变”、“大变”和“小变”.增大反应物浓度V正突变,V逆渐变.升高温度,V 吸热大增,V放热小增.⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向.②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点.③先拐先平:对于可逆反应mA(g) + nB(g) pC(g) + qD(g) ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡.它所代表的温度高、压强大.这时如果转化率也较高,则反应中m+n>p+q.若转化率降低,则表示m+n<p+q.④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系. 化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示.解化学平衡图像题的技巧1、弄清横坐标和纵坐标的意义.2、弄清图像上点的意义,特别是一些特殊点(如与坐标轴的交点、转折点、几条曲线的交叉点)的意义.3、弄清图像所示的增、减性.4、弄清图像斜率的大小.5、看是否需要辅助线.6、看清曲线的起点位置及曲线的变化趋势7、先出现拐点的曲线先平衡,所处的温度较高或压强较大;还可能是使用正催化剂8、定压看温度变化;定温看压强变化.7、化学平衡常数在一定温度下,当一个可逆反应达到平衡状态时,生成物的平衡浓度用化学方程式中的化学计量数作为指数的乘积与反应物的平衡浓度用化学方程式中的化学计量数作为指数的乘积的比值是一个常数,这个常数叫做化学平衡常数,简称平衡常数.用符号K表示.(1)平衡常数K的表达式:对于一般的可逆反应:mA(g) + nB(g) pC(g) + qD(g)当在一定温度下达到化学平衡时,该反应的平衡常数为:【注意】:a.在平衡常数表达式中,反应物A、B 和生成物C、D的状态全是气态,c(A)、c(B)、c(C)、c(D)均为平衡时的浓度.b.当反应混合物中有固体或纯液体时,他们的浓度看做是一个常数1,不必写入平衡常数的表达式中.例如,反应在高温下 Fe3O4(s) + 4H23Fe(s) + 4H2O(g)的平衡常数表达式为:又如,在密闭容器中进行的可逆反应CaCO3(s) CaO(s) + CO2↑的平衡常数表达式为:K=c(CO2)c.平衡常数K的表达式与化学方程式的书写方式有关.例如:N2 + 3H22NH3)()()()(n BcAcDcCcKmqp⋅⋅=)()(2424HcOHcK=)()()(232321HcNcNHcK⋅=2NH 3N 2 + 3H 2 N 2 + H 2NH 3 显然,K 1、K 2、K 3具有如下关系: 2/113)(K K = (2)平衡常数K 值的特征:①K 值的大小与浓度、压强和是否使用催化剂无关.即对于一个给定的反应,在一定温度下,不论起始浓度(或压强)和平衡浓度(或压强)如何,也不论是否使用催化剂,达平衡时,平衡常数均相同.②K 值随温度的变化而变化.对于一个给定的可逆反应,温度不变时,K 值不变(而不论反应体系的浓度或压强如何变化);温度不同时,K 值不同.因此,在使用平衡常数K 值时,必须指明反应温度. (3)平衡表达式K 值的意义:①判断可逆反应进行的方向.对于可逆反应:mA(g) + nB(g)pC(g) +qD(g),如果知道在一定温度下的平衡常数,并且知道某个时刻时反应物和生成物的浓度,就可以判断该反应是否达到平衡状态,如果没有达到平衡状态,则可判断反应进行的方向.将某一时刻时的生成物的浓度用化学方程式中相应的化学计量数为指数的乘积,与某一时刻时的反应物的浓度用化学方程式中相应的化学计量数为指数的乘积之比值,叫做浓度商,用Q C 表示.即:当Q C =K 时,体系达平衡状态;当Q C <K ,为使Q C 等于K ,则分子(生成物浓度的乘积)应增大,分母(反应物浓度的乘积)应减小,因此反应自左向右(正反应方向)进行,直至到达平衡状态;同理,当Q C >K 时,则反应自右向左(逆反应方向)进行,直至到达平衡状态.②表示可逆反应进行的程度.)()()(22/322/133H c N c NH c K ⋅=)()()(322322NH c H c N c K ⋅=)()()()(n B c A c D c C c Q m qp c ⋅⋅=K 值越大,正反应进行的程度越大(平衡时生成物的浓度大,反应物的浓度小),反应物的转化率越高;K 值越小,正反应进行的程度越小,逆反应进行的程度越大,反应物的转化率越低.一般来说,当K>105时,反应可以认为进行完全.化学平衡计算题求解技巧1、化学平衡常数(1)化学平衡常数的数学表达式 (2)化学平衡常数表示的意义平衡常数数值的大小可以反映可逆反应进行的程度大小,K 值越大,反应进行越完全,反应物转化率越高,反之则越低. 2、有关化学平衡的基本计算 (1)物质浓度的变化关系反应物:平衡浓度=起始浓度-转化浓度 生成物:平衡浓度=起始浓度+转化浓度其中,各物质的转化浓度之比等于它们在化学方程式中物质的计量数之比.(2)反应的转化率(α): ×100% (3)在密闭容器中有气体参加的可逆反应,在计算时经常用到理想气体方程式: pV=nRT根据这个方程式可以定性甚至定量地比较气体的性质、参数 (4)计算模式(“三段式”) 浓度(或物质的量等) aA(g)+bB(g)cC(g)+dD(g)(或质量、浓度)反应物起始的物质的量(或质量、浓度)反应物转化的物质的量=α起始 m n 0 0 转化 ax bx cx dx 平衡 m-ax n-bx cx dx根据“三段式”可以求出关于这个可逆反应的某种物质的反应速率、转化率、质量(或体积等)分数以及反应的平衡常数等 技巧一:三步法三步是化学平衡计算的一般格式,根据题意和恰当的假设列出起始量、转化量、平衡量.但要注意计算的单位必须保持统一,可用mol 、mol/L ,也可用L.例1 X 、Y 、Z 为三种气体,把a mol X 和b mol Y 充入一密闭容器中,发生反应X + 2Y2Z ,达到平衡时,若它们的物质的量满足:n (X )+ n (Y )= n (Z ),则Y 的转化率为( )A 、B 、C 、D 、 解析:设Y 的转化率为αX + 2Y2Z起始(mol ) a b 0转化(mol ) αb αb平衡(mol )-a -b αb αb依题意有:-a + -b αb = αb , 解得:α= .故应选 B. 技巧二:差量法差量法用于化学平衡计算时,可以是体积差量、压强差量、物质的量差量等等.%1005⨯+b a %1005)(2⨯+b b a %1005)(2⨯+b a %1005)(2⨯+a b a αb 21αb 21αb 21%1005)(2⨯+b b a例2 某体积可变的密闭容器,盛有适量的A 和B 的混合气体,在一定条件下发生反应: A + 3B2C ,若维持温度和压强不变,当达到平衡时,容器的体积为VL ,其中C 气体的体积占10%,下列推断正确的是( ) ①原混合气体的体积为 L ②原混合气体的体积为 L ③反应达平衡时,气体A 消耗掉 L ④反应达平衡时,气体B 消耗掉 L A 、②③ B 、②④ C 、①③ D 、①④ 解析: A + 3B2C ΔV起始(L ) 1 3 2 2 平衡(L )所以原混合气体的体积为V L + L = L ,由此可得:气体A 消耗掉 L ,气体B 消耗掉 L.故本题选A.变式 某温度下,在密闭容器中发生如下反应,2A(g)2B(g)+C(g),若开始时只充入2 mol A 气体,达平衡时,混合气体的压强比起始时增大了20%,则平衡时A 的体积分数为 .解析:等温度、等体积时,压强增大了20%,也就是气体的物质的量增多了2 mol ×20%= mol ,即平衡时气体的物质的量变为 mol. 2A(g)2B(g) + C(g) Δn2 2 1 1 变化(mol )平衡时,n(A)=2 mol - mol = mol ,n(总)= mol ,故A 的体积分数为: ×100%=50%. 技巧三:守恒法2.4mol1.2mol1、质量守恒 例3、a mol N 2与b mol H 2混合,要一定条件下反应达到平衡,生成了c mol NH 3,则NH 3在平衡体系中质量分数为( ) A 、 B 、 C 、 D 、解析:由质量守恒定律可知:在平衡体系中的混合气体总质量应等于反应前N 2和H 2混合气的总质量.即NH 3在平衡体系中的质量分数为 .故本题应选B.2、原子个数守恒例4 加热时,N 2O 5可按下列分解:N 2O 5 N 2O 3 + O 2、N 2O 3又可按下列分解:N 2O 3N 2O + O 2.今将 4 molN 2O 5充入一升密闭容器中,加热至 t ℃时反应达到了平衡状态.平衡时,c (O 2)= mol/L, c (N 2O 3)= mol/L,c (N 2O )= _______ mol/L ,此时N 2O 5的分解率为 ________.解析:N 2O 5的起始浓度为c (N 2O 5)=4mol/L ,平衡时的气体成份及浓度为: 达平衡时的气体成份:N 2O 5 N 2O 3 N 2O O 2 平衡浓度(mol/L ) x y 由N 原子守恒:422262.12⨯=+⨯+y x 由O 原子守恒:4525.4362.15⨯=⨯++⨯+y x解得:x = mol/L ,y = mol/L ,所以,c (N 2O )= mol/L ,N 2O 5的分解率为: .变式 一定温度下,反应2SO 2(g)+O 2(g)2SO 3(g)达到平衡时,%1001722817⨯-+cb a c%100⨯++cb ac %10022817⨯+ba c%10022834⨯+ba c%5.76%100/4/94.0/4=⨯-Lmol Lmol L mol %10022817⨯+ba c。
化学反应速率与化学平衡知识点归纳

⑴. 化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。
但这些数值所表示的都是同一个反应速率。
因此,表示反应速率时,必须说明用哪种物质作为标准。
用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。
如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m∶n∶p∶q ③一般来说,化学反应速率随反应进行而逐渐减慢。
因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。
⑵. 影响化学反应速率的因素:I. 决定因素(内因):反应物本身的性质。
Ⅱ.条件因素(外因)(也是我们研究的对象):①. 浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。
值得注意的是,固态物质和纯液态物质的浓度可视为常数;②. 压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。
值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。
③. 温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。
④. 催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率。
⑤. 其他因素。
如固体反应物的表面积(颗粒大小)、光、不同溶剂、超声波等。
2. 化学平衡:⑴. 化学平衡研究的对象:可逆反应。
⑵. 化学平衡的概念(略);⑶. 化学平衡的特征:动:动态平衡。
平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡。
⑷. 化学平衡的标志:(处于化学平衡时):①、速率标志:v正=v逆≠0;②、反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③、反应物的转化率、生成物的产率不再发生变化;④、反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤、对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化。
化学反应速率化学平衡重点归纳

第二章 化 学 平 衡[考点梳理]考点一 化学反应得速率与平衡1、 化学反应速率:⑴、 化学反应速率得概念及表示方法:通过计算式:v =Δc /Δt 来理解其概念:①化学反应速率与反应消耗得时间(Δt)与反应物浓度得变化(Δc)有关;②在同一反应中,用不同得物质来表示反应速率时,数值可以相同,也可以就是不同得。
但这些数值所表示得都就是同一个反应速率。
因此,表示反应速率时,必须说明用哪种物质作为标准。
用不同物质来表示得反应速率时,其比值一定等于化学反应方程式中得化学计量数之比。
如:化学反应mA(g) + nB(g) pC(g) + qD(g) 得:v(A)∶v(B)∶v(C)∶v(D) = m ∶n ∶p ∶q ③一般来说,化学反应速率随反应进行而逐渐减慢。
因此某一段时间内得化学反应速率,实际就是这段时间内得平均速率,而不就是瞬时速率。
⑵、 影响化学反应速率得因素:【注意】①化学反应速率得单位就是由浓度得单位(mol ·L -1)与时间得单位(s 、min 或h)决定得,可以就是mol ·L -1·s -1、 mol ·L -1·min -1或mol ·L -1·h -1,在计算时要注意保持时间单位得一致性.②对于某一具体得化学反应,可以用每一种反应物与每一种生成物得浓度变化来表示该反应得化学反 应速率,虽然得到得数值大小可能不同,但用各物质表示得化学反应速率之比等于化学方程式中相 应物质得化学计量数之比.如对于下列反应: mA + nB = pC + qD有:)(A ν∶)(B ν∶)(C ν∶)(D ν=m ∶n ∶p ∶q或:q D p C n B m A )()()()(νννν===③化学反应速率不取负值而只取正值.④在整个反应过程中,反应不就是以同样得速率进行得,因此,化学反应速率就是平均速率而不就是瞬时速率.[有效碰撞] 化学反应发生得先决条件就是反应物分子(或离子)之间要相互接触并发生碰撞,但并不就是反应物分子(或离子)间得每一次碰撞都能发生化学反应.能够发生化学反应得一类碰撞叫做有效碰撞.[活化分子] 能量较高得、能够发生有效碰撞得分子叫做活化分子.说明 ①活化分子不一定能够发生有效碰撞,活化分子在碰撞时必须要有合适得取向才能发生有效碰撞.②活化分子在反应物分子中所占得百分数叫做活化分子百分数.当温度一定时,对某一反应而言,活化分子百分数就是一定得.活化分子百分数越大,活化分子数越多,有效碰撞次数越多.[影响化学反应速率得因素]I 、 决定因素(内因):反应物本身得性质。
化学反应速率和化学平衡笔记

化学反应速率和化学平衡笔记
一、化学反应速率
1. 定义:化学反应速率是指单位时间内反应物或生成物浓度的变化量。
2. 表示方法:通常用单位时间内反应物或生成物浓度的变化量来表示化学反应速率,常用单位为摩尔/(升·秒)或摩尔/(升·分钟)等。
3. 影响因素:
- 反应物浓度:反应物浓度越高,反应速率越快。
- 温度:温度越高,反应速率越快。
- 催化剂:催化剂可以加快反应速率。
- 表面积:反应物的表面积越大,反应速率越快。
二、化学平衡
1. 定义:化学平衡是指在一定条件下,反应物和生成物的浓度不再随时间变化的状态。
2. 特点:
- 动态平衡:化学平衡是一种动态平衡,反应仍在进行,但反应物和生成物的浓度不再随时间变化。
- 平衡常数:化学平衡常数是一个数值,它表示在一定条件下,反应物和生成物的浓度之间的关系。
- 影响因素:
- 浓度:增加反应物或生成物的浓度,平衡会向着减少反应物或增加生成物的方向移动。
- 压力:对于气体反应,增加压力,平衡会向着气体分子数减少的方向移动。
- 温度:升高温度,平衡会向着吸热反应的方向移动。
三、化学反应速率和化学平衡的关系
化学反应速率和化学平衡是密切相关的。
在一定条件下,化学反应速率越快,达到化学平衡所需的时间就越短。
同时,化学平衡常数也与化学反应速率有关,平衡常数越大,反应速率越快。
(完整版)化学反应速率与化学平衡知识点归纳

•一、化学反应速率• 1. 化学反应速率(v)•⑴定义:用来衡量化学反应的快慢,单位时间内反应物或生成物的物质的量的变化•⑵表示方法:单位时间内反应浓度的减少或生成物浓度的增加来表示•⑶计算公式:v=Δc/Δt(υ:平均速率,Δc:浓度变化,Δt:时间)单位:mol/(L·s)•⑷影响因素:•①决定因素(内因):反应物的性质(决定因素)•②条件因素(外因):反应所处的条件• 2.※注意:(1)、参加反应的物质为固体和液体,由于压强的变化对浓度几乎无影响,可以认为反应速率不变(2)、惰性气体对于速率的影响①恒温恒容时:充入惰性气体→总压增大,但是各分压不变,各物质浓度不变→反应速率不变②恒温恒体时:充入惰性气体→体积增大→各反应物浓度减小→反应速率减慢二、化学平衡(一)1.定义:化学平衡状态:一定条件下,当一个可逆反应进行到正逆反应速率相等时,更组成成分浓度不再改变,达到表面上静止的一种“平衡”,这就是这个反应所能达到的限度即化学平衡状态。
2、化学平衡的特征逆(研究前提是可逆反应)等(同一物质的正逆反应速率相等)动(动态平衡)定(各物质的浓度与质量分数恒定)变(条件改变,平衡发生变化)3、判断平衡的依据(二)影响化学平衡移动的因素1、浓度对化学平衡移动的影响(1)影响规律:在其他条件不变的情况下,增大反应物的浓度或减少生成物的浓度,都可以使平衡向正方向移动;增大生成物的浓度或减小反应物的浓度,都可以使平衡向逆方向移动(2)增加固体或纯液体的量,由于浓度不变,所以平衡_不移动_(3)在溶液中进行的反应,如果稀释溶液,反应物浓度__减小__,生成物浓度也_减小_, V正_减小__,V逆也_减小__,但是减小的程度不同,总的结果是化学平衡向反应方程式中化学计量数之和_大_的方向移动。
2、温度对化学平衡移动的影响影响规律:在其他条件不变的情况下,温度升高会使化学平衡向着___吸热反应______方向移动,温度降低会使化学平衡向着_放热反应__方向移动。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
化学反应速率和化学平衡复习专题1. 化学反应速率:⑴化学反应速率的概念及表示方法:通过计算式:v =Δc /Δt来理解其概念:①化学反应速率与反应消耗的时间(Δt)和反应物浓度的变化(Δc)有关;②在同一反应中,用不同的物质来表示反应速率时,数值可以相同,也可以是不同的。
但这些数值所表示的都是同一个反应速率。
因此,表示反应速率时,必须说明用哪种物质作为标准。
用不同物质来表示的反应速率时,其比值一定等于化学反应方程式中的化学计量数之比。
如:化学反应mA(g) + nB(g) pC(g) + qD(g) 的:v(A)∶v(B)∶v(C)∶v(D) = m∶n∶p∶q③一般来说,化学反应速率随反应进行而逐渐减慢。
因此某一段时间内的化学反应速率,实际是这段时间内的平均速率,而不是瞬时速率。
⑵影响化学反应速率的因素:I. 决定因素(内因):反应物本身的性质。
Ⅱ.条件因素(外因)(也是我们研究的对象):①浓度:其他条件不变时,增大反应物的浓度,可以增大活化分子总数,从而加快化学反应速率。
值得注意的是,固态物质和纯液态物质的浓度可视为常数;②压强:对于气体而言,压缩气体体积,可以增大浓度,从而使化学反应速率加快。
值得注意的是,如果增大气体压强时,不能改变反应气体的浓度,则不影响化学反应速率。
③温度:其他条件不变时,升高温度,能提高反应分子的能量,增加活化分子百分数,从而加快化学反应速率。
④催化剂:使用催化剂能等同地改变可逆反应的正、逆化学反应速率。
⑤其他因素。
如固体反应物的表面积(颗粒大小)、光、不同溶剂、超声波等。
2. 化学平衡:⑴化学平衡研究的对象:可逆反应。
⑵化学平衡的概念(略);⑶化学平衡的特征:动:动态平衡。
平衡时v正==v逆≠0等:v正=v逆定:条件一定,平衡混合物中各组分的百分含量一定(不是相等);变:条件改变,原平衡被破坏,发生移动,在新的条件下建立新的化学平衡。
⑷化学平衡的标志:(处于化学平衡时):①速率标志:v正=v逆≠0;②反应混合物中各组分的体积分数、物质的量分数、质量分数不再发生变化;③反应物的转化率、生成物的产率不再发生变化;④反应物反应时破坏的化学键与逆反应得到的反应物形成的化学键种类和数量相同;⑤对于气体体积数不同的可逆反应,达到化学平衡时,体积和压强也不再发生变化。
【例1】在一定温度下,反应A2(g) + B2(g) 2AB(g)达到平衡的标志是( C )A. 单位时间生成n mol的A2同时生成n mol的ABB. 容器内的压强不随时间变化C. 单位时间生成2n mol的AB同时生成n mol的B2D. 单位时间生成n mol的A2同时生成n mol的B2⑸化学平衡状态的判断:举例反应 mA(g) + nB(g) pC(g) + qD(g)混合物体系中各成分的含量①各物质的物质的量或各物质的物质的量分数一定平衡②各物质的质量或各物质的质量分数一定平衡③各气体的体积或体积分数一定平衡④总压强、总体积、总物质的量一定不一定平衡正、逆反应速率的关系①在单位时间内消耗了m molA同时生成m molA,即v正=v逆平衡②在单位时间内消耗了n molB同时生成p molC,均指v正不一定平衡③vA:vB:vC:vD=m:n:p:q,v正不一定等于v逆不一定平衡④在单位时间内生成了n molB,同时消耗q molD,因均指v逆不一定平衡压强①m+n≠p+q时,总压力一定(其他条件一定)平衡②m+n=p+q时,总压力一定(其他条件一定)不一定平衡混合气体的平均分子量①一定时,只有当m+n≠p+q时,平衡②一定,但m+n=p+q时,不一定平衡温度任何化学反应都伴随着能量变化,在其他条件不变的条件下,体系温度一定时平衡体系的密度密度一定不一定平衡3.化学平衡移动:⑴勒沙持列原理:如果改变影响平衡的一个条件(如浓度、压强和温度等),平衡就向着能够减弱这种改变的方向移动。
其中包含:①影响平衡的因素:浓度、压强、温度三种;②原理的适用范围:只适用于一项条件发生变化的情况(即温度或压强或一种物质的浓度),当多项条件同时发生变化时,情况比较复杂;③平衡移动的结果:只能减弱(不可能抵消)外界条件的变化。
⑵平衡移动:是一个“平衡状态→不平衡状态→新的平衡状态”的过程。
一定条件下的平衡体系,条件改变后,可能发生平衡移动。
即总结如下:⑶平衡移动与转化率的关系:不要把平衡向正反应方向移动与反应物转化率的增大等同起来。
⑷影响化学平衡移动的条件:化学平衡移动:(强调一个“变”字)①浓度、温度的改变,都能引起化学平衡移动。
而改变压强则不一定能引起化学平衡移动。
强调:气体体积数发生变化的可逆反应,改变压强则能引起化学平衡移动;气体体积数不变的可逆反应,改变压强则不会引起化学平衡移动。
催化剂不影响化学平衡。
②速率与平衡移动的关系:I. v正== v逆,平衡不移动;Ⅱ. v正 > v逆,平衡向正反应方向移动;Ⅲ. v正 < v逆,平衡向逆反应方向移动。
③平衡移动原理:(勒沙特列原理):④分析化学平衡移动的一般思路:速率不变:如容积不变时充入惰性气体强调:加快化学反应速率可以缩短到达化学平衡的时间,但不一定能使平衡发生移动。
⑸反应物用量的改变对化学平衡影响的一般规律:Ⅰ、若反应物只有一种:aA(g)=bB(g) + cC(g),在不改变其他条件时,增加A的量平衡向正反应方向移动,但是A的转化率与气体物质的计量数有关:(可用等效平衡的方法分析)。
①若a = b + c :A的转化率不变;②若a > b + c : A的转化率增大;③若a < b + c A的转化率减小。
Ⅱ、若反应物不只一种:aA(g) + bB(g)=cC(g) + dD(g),①在不改变其他条件时,只增加A的量,平衡向正反应方向移动,但是A的转化率减小,而B的转化率增大。
②若按原比例同倍数地增加A和B,平衡向正反应方向移动,但是反应物的转化率与气体物质的计量数有关:如a+b = c + d,A、B的转化率都不变;如a+ b>c+ d,A、B的转化率都增大;如a + b < c + d,A、B的转化率都减小。
4.等效平衡问题的解题思路:⑴概念:同一反应,在一定条件下所建立的两个或多个平衡中,混合物中各成分的含量相同,这样的平衡称为等效平衡。
⑵分类:①等温等容条件下的等效平衡:在温度和容器体积不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量相同,则两平衡等效,这种等效平衡可以称为等同平衡。
②等温等压条件下的等效平衡:在温度和压强不变的条件下,改变起始物质的加入情况,只要可以通过可逆反应的化学计量数比换算成左右两边同一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为等比例平衡。
③等温且△n=0条件下的等效平衡:在温度和容器体积不变的条件下,对于反应前后气体总分子数不变的可逆反应,只要可以通过可逆反应的化学计量数比换算成左右两边任意一边物质的物质的量比值相同,则两平衡等效,这种等效平衡可以称为不移动的平衡。
5、速率和平衡图像分析:⑴分析反应速度图像:①看起点:分清反应物和生成物,浓度减小的是反应物,浓度增大的是生成物,生成物多数以原点为起点。
②看变化趋势:分清正反应和逆反应,分清放热反应和吸热反应。
升高温度时,△V吸热>△V放热。
③看终点:分清消耗浓度和增生浓度。
反应物的消耗浓度与生成物的增生浓度之比等于反应方程式中各物质的计量数之比。
④对于时间——速度图像,看清曲线是连续的,还是跳跃的。
分清“渐变”和“突变”、“大变”和“小变”。
增大反应物浓度V正突变,V逆渐变。
升高温度,V吸热大增,V放热小增。
⑵化学平衡图像问题的解答方法:①三步分析法:一看反应速率是增大还是减小;二看△V正、△V逆的相对大小;三看化学平衡移动的方向。
②四要素分析法:看曲线的起点;看曲线的变化趋势;看曲线的转折点;看曲线的终点。
③先拐先平:对于可逆反应mA(g) + nB(g) pC(g) + qD(g) ,在转化率-时间曲线中,先出现拐点的曲线先达到平衡。
它所代表的温度高、压强大。
这时如果转化率也较高,则反应中m+n>p+q。
若转化率降低,则表示m+n<p+q。
④定一议二:图像中有三个量时,先确定一个量不变,再讨论另外两个量的关系。
化学反应速率化学反应进行的快慢程度,用单位时间反应物浓度的减少或生成物浓度的增加来表示。
通常用单位时间内反应物浓度的减小或生成物浓度的减小或生成物浓度的增加来表示。
表达式:△v(A)=△c(A)/△t单位:mol/(L·s)或mol/(L·min)影响化学反应速率的因素:温度,浓度,压强,催化剂。
另外,x射线,γ射线,固体物质的表面积也会影响化学反应速率化学反应的计算公式:例对于下列反应:mA+nB=pC+qD有v(A):v(B):v(C):v(D)=m:n:p:q对于没有达到化学平衡状态的可逆反应:v(正)≠v(逆)影响化学反应速率的因素:压强:对于有气体参与的化学反应,其他条件不变时(除体积),增大压强,即体积减小,反应物浓度增大,单位体积内活化分子数增多,单位时间内有效碰撞次数增多,反应速率加快;反之则减小。
若体积不变,加压(加入不参加此化学反应的气体)反应速率就不变。
因为浓度不变,单位体积内活化分子数就不变。
但在体积不变的情况下,加入反应物,同样是加压,增加反应物浓度,速率也会增加。
温度:只要升高温度,反应物分子获得能量,使一部分原来能量较低分子变成活化分子,增加了活化分子的百分数,使得有效碰撞次数增多,故反应速率加大(主要原因)。
当然,由于温度升高,使分子运动速率加快,单位时间内反应物分子碰撞次数增多反应也会相应加快(次要原因)催化剂:使用正催化剂能够降低反应所需的能量,使更多的反应物分子成为活化分子,大大提高了单位体积内反应物分子的百分数,从而成千上万倍地增大了反应物速率.负催化剂则反之。
浓度:当其它条件一致下,增加反应物浓度就增加了单位体积的活化分子的数目,从而增加有效碰撞,反应速率增加,但活化分子百分数是不变的。
其他因素:增大一定量固体的表面积(如粉碎),可增大反应速率,光照一般也可增大某些反应的速率;此外,超声波、电磁波、溶剂等对反应速率也有影响。
溶剂对反应速度的影响在均相反应中,溶液的反应远比气相反应多得多(有人粗略估计有90%以上均相反应是在溶液中进行的)。
但研究溶液中反应的动力学要考虑溶剂分子所起的物理的或化学的影响,另外在溶液中有离子参加的反应常常是瞬间完成的,这也造成了观测动力学数据的困难。
最简单的情况是溶剂仅引起介质作用的情况。
在溶液中起反应的分子要通过扩散穿周围的溶剂分子之后,才能彼此接触,反应后生成物分子也要穿国周围的溶剂分子通过扩散而离开。