雷达机动目标跟踪技术研究
雷达机动目标航迹追踪数据关联问题算法研究

对系数 a j 进行最小二乘估计 a j ,可由下式求解:
A ( P T P ) 1 P T X
式中:
1 0 a a1 1 A , P a m 1 1 1 am
of adaptive window and prediction algorithm is put forward. Is the window of the region beginning, will be the first data to target a, the second data to target two, at the back of the data by using clustering analysis method of small scale, extract the classification of 6 sets of data as the initial data. Because the target path overlapping and separation, need to add window section analysis data trends. For the add window location and size, can be identified by the root mean square error of adaptive trajectory dots. At the same time, have to solve the data correlation data points are available, and forecast the data points movement trend, can be carried out on the next data classification. Programming to realize the algorithm, the classification effect is considerable. For different target trajectory, the target trajectory polynomial fitting, and the target track. Key words: polynomial prediction window multi-target tracking data association self-adaptive prediction algorithm by adding
雷达测量中的目标识别与跟踪技术

雷达测量中的目标识别与跟踪技术引言雷达技术作为一种广泛应用于军事、航空、航海和交通领域的测量技术,一直以来都备受关注和研究。
在雷达应用领域中,目标识别与跟踪技术是十分重要的一个研究方向,主要用于确定被测目标的特征或性质,随后跟踪该目标的运动变化。
本文将深入探讨雷达测量中的目标识别与跟踪技术。
一、雷达目标识别技术1. 散射截面及目标特征分析雷达识别某一特定目标的首要问题是确定目标的散射截面。
散射截面的值决定了目标对雷达波的反射程度,与目标的形状、大小和边缘特性等有关。
目标特征分析可以帮助确定不同目标之间的差异,并提供用于识别目标的信息。
2. 多普勒特征分析多普勒效应是指由于目标的运动而引起的接收信号频率发生变化的现象。
通过分析接收信号的多普勒频移,可以获得目标的运动状态、速度和方向,从而进一步识别目标。
3. 反射波束特征分析雷达工作时产生的波束会与目标发生相互作用,反射出的信号会带有目标的形状和结构信息。
通过分析返回信号的波束特征,可以推测出目标的形状、方位和内部结构等,为目标识别提供重要线索。
二、雷达目标跟踪技术1. 滤波器与滤波技术针对目标跟踪问题,滤波器是一种常用的处理手段。
常见的滤波器有卡尔曼滤波器、粒子滤波器和无迹卡尔曼滤波器等。
这些滤波器通过对雷达信号进行滤波处理,估计目标的状态并持续跟踪目标运动。
2. 目标运动模型目标运动模型是描述目标运动规律的数学模型。
常见的目标运动模型有匀速模型、自由加速度模型和粒子模型等。
通过建立适当的目标运动模型,可以更好地预测目标的运动行为,提高目标跟踪的准确性和鲁棒性。
3. 数据关联算法数据关联算法是在已知目标状态的情况下,根据测量数据关联目标和测量结果,并进行目标跟踪的一种方法。
常见的数据关联算法有最近邻算法、卡尔曼滤波算法和粒子滤波算法等。
这些算法能够有效处理多目标跟踪问题,提高跟踪性能。
三、雷达目标识别与跟踪在实际应用中的挑战与展望1. 复杂环境下的干扰雷达目标识别与跟踪在实际应用中面临着复杂的环境干扰,比如地形变化、气象条件和其他电磁源等。
雷达目标识别与跟踪算法性能评估研究

雷达目标识别与跟踪算法性能评估研究摘要:雷达目标识别与跟踪是雷达技术中的重要研究领域。
本文致力于对雷达目标识别与跟踪算法的性能进行评估研究,旨在提高雷达系统的性能和准确性,为各个领域中的雷达应用提供参考。
引言:雷达技术作为一种主要的探测和感知技术,广泛应用于军事、航空、导航以及交通等领域。
目标识别与跟踪作为雷达技术中重要的一环,其准确性和性能评估关系到整个雷达系统的工作效果。
一、雷达目标识别算法概述目标识别是雷达技术中的一个基本问题,它主要包括目标检测、目标定位与目标识别三个步骤。
目标识别算法的性能评估是评估目标识别准确性的关键指标,通常包括目标检出率、误检率、目标定位误差等指标。
1.1 目标检测目标检测是雷达目标识别算法中的第一步,其目的是从雷达回波中区分出目标和噪声。
常用的目标检测算法包括恒虚警率检测算法、小波变换、相关算法等。
1.2 目标定位目标定位是雷达目标识别中的第二步,其目的是在给定的雷达回波中确定目标的位置。
常用的目标定位算法包括匹配滤波算法、互相关算法、波束形成算法等。
1.3 目标识别目标识别是雷达目标识别算法中的最后一步,其目的是对已经定位的目标进行分类和识别。
常用的目标识别算法包括神经网络算法、支持向量机算法、模板匹配算法等。
二、雷达目标跟踪算法概述雷达目标跟踪是在已经识别和定位的目标基础上,通过连续观测和分析,实现目标位置的预测和更新。
雷达目标跟踪的性能评估是评估跟踪准确性和稳定性的重要指标,通常包括跟踪准确率、跟踪失败率、位置预测误差等指标。
2.1 线性滤波器算法线性滤波器算法是雷达目标跟踪算法中的一类常见算法,包括卡尔曼滤波器算法、粒子滤波器算法等。
这些算法基于状态空间模型进行目标跟踪,通过对连续观测序列进行预测和更新来实现目标跟踪。
2.2 非线性滤波器算法非线性滤波器算法主要包括扩展卡尔曼滤波器算法、无迹卡尔曼滤波器算法等,这些算法通过引入非线性模型和非高斯噪声来改进传统线性滤波器算法的跟踪性能。
基于多普勒雷达的目标跟踪与识别技术研究

基于多普勒雷达的目标跟踪与识别技术研究随着科技的发展和应用的广泛,雷达技术作为一种重要的探测技术,得到了越来越广泛的应用。
多普勒雷达作为雷达技术的一种,以其高精度、高速度和抗干扰性强等优势,得到了越来越广泛的关注和应用。
基于多普勒雷达的目标跟踪与识别技术研究是一个重要的研究领域,本文将对其进行深入探讨。
一、多普勒雷达基本原理多普勒雷达在目标识别与跟踪技术中具有重要地位,因此其基本原理需要掌握清楚。
多普勒雷达采用的是回波波长的变化,测量目标的速度和方向,从而能够有效地识别和跟踪目标。
其基本的物理原理是通过测量物体在雷达波束入射方向上的径向速度来实现目标跟踪和识别。
二、基于多普勒雷达的目标跟踪目标跟踪是多普勒雷达技术应用领域中最为基础、重要的领域之一。
它的作用是寻找并跟踪雷达系统中的目标物,追踪其位置、速度、方向等信息,实现对其运动状态的精确掌握。
在多普勒雷达指导和控制领域中,目标跟踪可拓展到多种应用领域,如飞行控制、导航制导、防护等。
基于多普勒雷达的目标跟踪技术主要包括了目标运动状态估计、多目标跟踪、目标跟踪算法、跟踪器设计等领域。
运动状态估计是多普勒雷达信号处理必须解决的问题之一,它关联了多普勒雷达信号中的目标速度、方向等信息。
多目标跟踪技术可实现对多个目标实现状态估计和跟踪,这是一个非常重要的应用领域。
而目标跟踪算法则是实现目标跟踪技术的核心,目前主要有最大似然、Kalman滤波器、粒子滤波器等算法。
跟踪器设计则是基于目标跟踪算法和多普勒雷达的信号处理技术而实现的。
三、基于多普勒雷达的目标识别基于多普勒雷达的目标识别技术则通过多普勒雷达信号分析,实现对目标的识别和分类。
在多种应用领域中,如武器制导、警用勤务等,基于多普勒雷达信号的目标识别技术都有重要应用。
基于多普勒雷达的目标识别主要基于其信号的特征来实现,包括目标回波频谱、多普勒频谱特征等。
基本的目标识别过程是:先通过多普勒雷达信号处理获取目标特征;再利用目标特征来识别与分类目标。
雷达信号处理中的目标识别与跟踪研究

雷达信号处理中的目标识别与跟踪研究雷达(Radar)是一种利用电磁波进行探测和测距的技术。
它通过发射脉冲电磁波并接收其反射信号,利用信号的时间延迟和频率特征来探测和跟踪周围的目标物体。
在雷达信号处理中,目标识别与跟踪是两个重要的研究方向,它们对于实现雷达的自主目标探测和跟踪具有重要作用。
目标识别是在雷达信号中确定目标的位置、速度和其他特征属性的过程。
它的主要任务是将雷达接收到的信号与预先建立的目标模型进行匹配,通过特征提取和目标比对算法来判断目标是否存在。
目标识别可以分为传统方法和深度学习方法两种。
传统的目标识别方法主要依靠数学模型和信号处理算法。
常见的方法包括卡尔曼滤波器、最小二乘估计以及基于特征提取的算法等。
这些方法通过对信号的频谱、时频分析和特征提取等技术手段,对目标进行匹配和判断。
虽然传统方法在一定程度上可以实现目标识别,但是在处理复杂场景和目标变化较大的情况下效果有限。
近年来,深度学习方法在目标识别领域取得了显著的成果。
深度学习利用神经网络模型对大量数据进行训练,实现对数据的高级特征提取和模式识别。
在雷达信号处理中,深度学习可以利用卷积神经网络(CNN)和循环神经网络(RNN)等网络结构,对雷达信号进行直接处理和分类。
这种端到端的学习方式能够更好地解决目标识别中的非线性、多样性和时变性等问题。
目标跟踪是在目标识别基础上,在雷达扫描过程中连续追踪目标运动状态的过程。
目标跟踪的主要任务是通过对雷达接收到的连续信号进行滤波和关联,预测目标的位置和运动轨迹,实现实时监测和跟踪。
目标跟踪可以分为基于滤波的方法和基于关联的方法两种。
基于滤波的目标跟踪方法主要应用卡尔曼滤波器和扩展卡尔曼滤波器等算法。
这些方法通过建立目标的状态空间模型,对目标位置和速度进行状态估计和预测。
通过更新观测信息,不断优化目标的运动轨迹。
这种方法简单且实时性较好,适用于快速目标跟踪。
基于关联的目标跟踪方法主要利用关联算法对连续的雷达信号进行处理。
基于多普勒雷达的目标识别与跟踪技术研究

基于多普勒雷达的目标识别与跟踪技术研究引言:多普勒雷达是一种能够实时监测和跟踪目标运动状态的重要工具。
在现代军事、民用航空和交通管理等领域,多普勒雷达的应用日益广泛。
通过利用多普勒效应,多普勒雷达可以通过测量目标返回的雷达信号频率变化,精确地计算目标的运动状态和速度,从而实现目标的识别和跟踪。
本文将重点研究基于多普勒雷达的目标识别与跟踪技术,探讨其原理、方法和应用。
一、多普勒雷达原理多普勒效应是物理学中的一个基本原理,它描述了当一个物体相对于观察者运动时,物体的频率会发生变化。
多普勒雷达利用这一原理来识别目标的运动状态。
多普勒雷达在发射脉冲信号后,通过接收目标返回的回波信号,测量信号频率的变化。
根据多普勒效应,当目标向雷达靠近时,回波信号频率会增大;当目标远离雷达时,回波信号频率会减小。
通过计算回波信号频率的变化,可以确定目标的运动速度和方向。
二、多普勒雷达目标识别技术1. 频谱分析法频谱分析法是一种基于频谱特征的目标识别技术。
通过分析回波信号的频谱特征,可以确定目标的速度。
当目标的速度超过雷达系统的测量范围时,回波信号的频谱将出现模糊,难以识别。
因此,频谱分析法在目标速度较小的情况下应用较为广泛。
2. 脉冲压缩技术脉冲压缩技术是一种通过增加脉冲信号的带宽来提高雷达分辨率的方法。
通过将发射的脉冲信号与接收到的回波信号进行相关运算,可以实现对目标的高分辨率识别。
脉冲压缩技术可以有效地识别高速运动目标。
3. 频域分析法频域分析法是一种基于频域特征的目标识别技术。
通过将回波信号转换到频域,可以获得目标的频谱特征。
不同目标由于尺寸、材料和运动状态的不同,其频域特征也会有所差异。
通过对比目标的频域特征和参考库中的特征,可以实现目标的识别和分类。
三、多普勒雷达目标跟踪技术1. 单目标跟踪技术单目标跟踪技术是一种基于目标运动特征的跟踪方法。
通过计算目标的速度和方向,可以预测目标的运动轨迹,并实时更新目标的位置信息。
机载火控雷达机动目标跟踪的开题报告

机载火控雷达机动目标跟踪的开题报告一、题目机载火控雷达机动目标跟踪二、研究背景随着现代战争的不断发展,机载武器系统在实现对地、对海和对空面多用途和全天候作战中的优势越来越突出。
其中机载火控雷达是现代空战中必不可少的一种武器装备,能够在高速、高度、复杂电磁环境、敌人干扰和欺骗等条件下,对目标实施精确打击。
机载火控雷达的机动目标跟踪是该系统中一个重要环节,主要是为了在多种环境下、在不同射程下,追踪机动目标、获取并跟踪其位置、速度和加速度等关键参数,为精确打击目标提供支持。
因此,在现代空战中,机载火控雷达机动目标跟踪是研究的热点和难点问题之一,对于提升机载火控雷达系统的作战效能和打击精度意义重大。
三、研究目的本研究的主要目的是探究机载火控雷达机动目标跟踪的技术原理和应用方法,深入分析目标机动运动规律、测量方法和追踪算法等关键技术,进一步完善机载火控雷达系统的性能和打击能力。
具体目标如下:1.研究机载火控雷达机动目标跟踪技术原理和应用方法,理论分析机载火控雷达系统的目标追踪性能和打击精度。
2.系统分析机动目标的运动特性,建立机动目标运动模型,探究测量方法和定位精度。
3.研究机动目标跟踪算法,在不同环境、不同距离和不同目标速度条件下,考虑机载火控雷达系统自身的误差和干扰因素,实现对机动目标的实时跟踪和精确打击。
4.通过对机载火控雷达系统的机动目标跟踪性能进行实验验证,探究机载火控雷达系统在多种环境、不同射程、不同目标速度下的跟踪精度和打击能力。
四、研究方法本研究主要采用理论分析和实验验证的方法,具体包括:1.理论分析法:通过文献资料和理论研究,深入探究机载火控雷达机动目标跟踪的原理、测量方法和跟踪算法等关键技术,建立机动目标运动模型,分析和比较不同算法的优缺点,为研究机载火控雷达系统的跟踪性能提供理论基础。
2.实验验证法:搭建机载火控雷达系统模拟实验平台,进行机动目标跟踪实验,在不同环境、不同射程、不同目标速度下,测试机载雷达系统的跟踪性能和打击能力,并与理论分析结果进行比较和验证。
基于路侧激光雷达的交通多目标跟踪与信息提取技术研究

多目标跟踪与信息 提取的挑战与重要 性
研究现状与挑战
激光雷达在交通领域的应用现 状
多目标跟踪与信息提取的技术 发展及瓶颈
数据关联与过滤、目标跟踪算 法、场景解析与语义信息提取
等关键技术的挑战
研究内容与方法
研究的主要内容
包括数据预处理、多目标跟踪算法设计、场景解析与语义信息提取等
采用的研究方法
深度学习、机器学习、图像处理、数据挖掘等
该技术可以广泛应用于城市道路、高速公路、停车场等场景中,提高交 通运营效率和管理水平,保障交通安全。
通过推广和应用该技术,可以带来显著的社会效益和经济效益,为智能 交通领域的发展提供有力支持。
THANKS
感谢观看
பைடு நூலகம்
目标检测与跟踪算法
01
02
03
目标检测
通过对预处理后的点云数 据进行分割、聚类等操作 ,检测出道路上的车辆、 行人等目标。
特征提取
对检测到的目标进行特征 提取,如形状、大小、运 动轨迹等,以区分不同目 标类型。
目标跟踪
利用目标检测和特征提取 的结果,采用跟踪算法对 目标进行连续跟踪,如多 目标跟踪、航迹关联等。
卡尔曼滤波算法的优点是精度高、计算量小,适用于实 时处理。但是,对于非线性系统,卡尔曼滤波算法需要 进行扩展或变形处理,这可能导致计算量增加。
粒子滤波算法
粒子滤波算法是一种基于贝叶斯统计 的滤波算法,通过随机采样和重要性 重抽样实现对运动目标的跟踪。在多 目标跟踪中,粒子滤波算法可以处理 多个目标的运动状态和相互之间的关 联。
目前算法主要针对静态目标进行识别和跟踪,对于动态目标的跟踪性能还有待提高,可以进一步研究 基于动态目标跟踪的算法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 绪论1.1 课题背景及目的目标跟踪问题实际上就是目标状态的跟踪滤波问题,即根据传感器已获得的目标量测数据对目标状态进行精确的估计[1]。
它是军事和民用领域中一个基本问题,可靠而精确地跟踪目标是目标跟踪系统设计的主要目的。
在国防领域,目标跟踪可用于反弹道导弹的防御、空防预警、战场区域监视、精确制导和低空突防等。
在民用领域,则用于航空和地面交通管制、机器人的道路规划和障碍躲避、无人驾驶车的跟踪行驶、电子医学等。
作为科学技术发展的一个方面,目标跟踪问题可以追溯到第二次世界大战的前夕,即1937年世界上出现第一部跟踪雷达站SCR-28的时候。
之后,许多科学家和工程师一直努力于该项课题的研究,各种雷达、红外、声纳和激光等目标跟踪系统相继得到发展并且日趋完善。
运动目标的机动会使跟踪系统的性能恶化,对机动目标进行跟踪是人们多年来一直关注的问题。
随着现代航空航天技术的飞速发展,机动目标在空间飞行的速度、角度、加速度等参数不断变化,使得目标的位置具有很强的相关性,因此,提高对这类目标的跟踪性能便成为越来越重要的问题,迫切需要研究更为优越的跟踪滤波方法。
机动目标的跟踪研究,已成为当今电子战的研究热点之一。
今天,精密跟踪雷达不仅广泛应用于各类武器控制和各类实验靶场,而且还广泛应用于各种空间探测、跟踪和识别领域,以及最先进的武器控制系统。
跟踪模型和匹配滤波是机动目标跟踪的两个关键部分,机动目标的精确跟踪在过去和现在都是一个难题,最根本原因在于跟踪滤波采用的目标动力学模型和机动目标实际动力学模型不匹配,导致跟踪滤波器发散,跟踪性能严重下降。
本文将机动目标作为研究对象,从目标的运动建模和匹配滤波算法入手,提出或修正跟踪算法,从而实现对机动目标的精确跟踪。
1.2 机动目标跟踪技术及其发展状况目标机动是指运动当中的目标,其运动方式在不断地发生变化,从一种形式变化为另一种形式,目标的运动可能从匀速到变速,也可能送直线到转弯,它的运动方式并不会从一而终。
通俗地说,就是“目标速度的大小和方向发生变化”。
一般情况下,机动目标跟踪方法概括来讲可以分为以下两类:具有机动检测的跟踪算法和无需机动检测的自适应跟踪算法。
机动目标的跟踪需要综合运用统计决策、滤波算法以及其它的数学方法,将传感器所接受到的信号数据进行处理,得到目标的位置、速度、加速度等估计信息。
图1.1给出了机动目标跟踪的基本原理图。
图1.1 机动目标跟踪基本原理图对于机动目标跟踪来说,所面临的主要挑战是两种离散的不确定性:量测起源的不确定性和目标运动方式不确定性。
量测起源的不确定性是指由传感器系统提供的量测数据可能是外部的干扰数据,它有可能是由杂波、虚警和相邻的目标所引起的,也可能是被跟踪目标的对抗系统所主动发出的虚假信息。
目标运动方式的不确定性是指目标在未知的时间段内可能作已知的或未知的机动。
一般情况下,目标的非机动方式以及目标发生机动时所表现出的不同机动形式都可以通过数学模型来加以描述。
机动目标跟踪过程中,采用不正确的目标运动模型会导致跟踪系统的跟踪性能严重下降。
本文的重点是如何处理目标运动的机动以及对其的跟踪问题。
1.2.1 机动目标跟踪模型现代跟踪系统一般都采用类似卡尔曼滤波的迭代算法,因此对机动目标进行建模就显得尤为重要。
机动目标模型是机动目标跟踪与预测的基本要素之一,也是一个关键而又棘手的问题。
早期,人们在构造目标运动建模时,由于缺乏有关目标运动的精确数据及存在许多不可预测的现象,一般认为目标作匀速直线运动,而随机加速度常常被看成是具有随机特性的扰动输入,并假定其服从零均值的高斯白噪声分布,这时,建立在线性无偏、最小均方差准则下的递推的卡尔曼滤波算法可直接使用。
然而,当目标发生诸如拐弯或躲避等机动动作时,上述假定则不尽合理。
由于目标的动力学特点及目标性能限制,使得机动具有一定的相关性。
对机动目标建模不仅是滤波器的重要组成,也是从运动学机理上解决目标机动的方法[2]。
1、基于直线运动的机动目标模型(1) 微分多项式模型笛卡尔坐标系中,若用()(),(),()x t y t z t 来表示目标在时刻t 的位置,则其运动轨迹可以用多项式来逼近。
尽管用多项式逼近目标运动轨迹,其近似性好,但对跟踪系统来说并不合适,因为跟踪系统所要求的是对目标运动状态的估计,而不是轨迹曲线的拟合和平滑。
(2)匀速(CV )和匀加速(CA )模型CV 和VA 模型将目标的运动先验地定义为匀速或匀加速运动,机动被看做是一种随机的输入,其大小体现在过程噪声的协方差矩阵中。
当目标无机动,即目标作匀速或匀加速直线运动时,可分别采用二阶CV 或三阶CA 模型[3]。
(3)时间相关模型(Singer 模型)机动目标建模问题的本质是如何准确地描述加速度()a t 。
对于处于一般机动情况下的运动目标,均可采用二阶系统一阶时间相关模型很好地描述[4]。
该模型形式简单,只比CA 模型多了一个表述机动频率的量,对于匀速和匀加速范围之间的目标机动,有很好的描述能力。
(4)Jerk 模型Jerk 是目标加速度的导数,对于机动性的运动目标,利用目标的Jerk 描述目标机动更为方便。
K.Mehrotra 指出,各种机动目标模型在跟踪复杂机动时性能不佳的主要原因是状态向量的导数阶数不足[5]。
为此,在目标机动模型的状态分量中加入了目标位置的三阶导数,及加速度的变化率或Jerk 。
2、基于圆周的机动目标模型(1) 圆周模型1992年,Watson 和Blair 提出了圆周模型,该模型将目标的运动近似为匀速圆周运动,根据角速度、加速度和速度之间的运动学关系,可以将目标的圆周运动包含在一个以角速度ω为参数的转移矩阵中[6]。
该模型是用圆弧代替直线来近似采样周期内的目标运动,当采样周期趋于零时,该模型与CV 模型的形式一致。
(2) 弧线模型Best 和Norton 设目标法向加速度的变化率远远小于切向速度的变化率,推出弧线模型[7],该模型的转移矩阵与匀速圆周运动的转移矩阵相同,但多了切向加速度,是更一般的弧线情况。
(3) Helferty 模型Helferty 将Singer 建模的思想推广到圆周运动,提出Helferty 模型[8]。
该模型假设目标加速度a 在x 、y 轴上的分量彼此独立,其转弯的角速度ω均匀分布于[],ππ-,并假设加速度指数相关。
但该模型需要增广三个状态变量,维数太大,相应计算量大。
1.2.2 机动目标跟踪中的状态估计技术20世纪40年代,Kolmogorov 和Wiener 等提出了平稳随机过程的最优线性滤波问题,首先实现了动态估计,其主要结果及时通过Wiener —Hopf 方程求出滤波器的最优传递函数。
这种最优线性滤波,通常称为维纳滤波(Wiener filtering)。
维纳滤波具有完整的滤波器传递函数的解析解,并可以估计与有效信号相关的多种信息。
但维纳滤波要求被估计量和量测必须是平稳的随机过程,且工程上不宜实现。
针对维纳滤波在应用上的缺点,卡尔曼滤波算法提供了比较好的解决办法。
卡尔曼滤波采用目标的状态空间描述方法,能方便地引入模型的过程噪声,从而不需要待估计的状态在数据的采样期间保持常数。
在卡尔曼滤波的基础上,Bar-Shalom认为当数据的概率分布具有“长拖尾”现象时,使用最大似然估计(MLE)要远比最小方差估计的精度高。
因此,当在跟踪过程中,数据关联不准确,或者量测数据出现强烈色噪声时,可以考虑使用基于最大似然估计的方法来估计目标的状态。
Moose给出了一种实时最大似然估计算法,目标的机动和非机动能实时地检测出来,而在这两种状态之间切换时,前一状态可以为后一状态提供有效地初始值。
扩展的卡尔曼滤波器是线性系统卡尔曼滤波器在非线性系统中的一种直接而又自然地推广,它是基于非线性对象的近似线性化模型进行设计的,也得到了广泛的应用。
1.2.3 机动目标跟踪方法机动目标跟踪算法可以分为两类:单模型算法和多模型算法。
在单模型算法中,一个滤波周期内有且仅有一个设定的目标运动模型;多模型机动目标跟踪算法是指在一个滤波周期内村子多个不同目标运动模型的滤波算法,算法整体状态估计通常为各滤波器状态估计的组合。
1.3 本论文的主要工作本论文的研究工作是在已有理论方法的基础上,对机动目标跟踪技术进行深入研究。
本文包括以下主要内容。
1、概述机动目标跟踪技术发展状况。
2、介绍雷达系统模型,重点讨论一般雷达系统量测方程和状态方程的建立。
3、详细介绍了雷达的目标跟踪算法—卡尔曼滤波算法。
鉴于要实现对机动目标的有效跟踪,因而对基于机动检测的跟踪算法进行研究。
4、论文重点对MATLAB仿真的流程以及实验结果进行了介绍与分析。
5、对主要工作进行总结,给出进一步研究的建议和设想。
2系统模型雷达目标跟踪的基础是估计理论,它要求建立系统模型来描述目标动态特性和雷达量测过程。
状态变量法是描述系统模型的一种很有价值的方法,其所定义的状态变量应是能够全面反映系统动态特性的一组维数最少的变量[9],该方法把某一时刻的状态变量表示为前一时刻的状态变量表示为前一时刻状态变量的函数,系统的输入输出关系是用状态转移模型和输出观测模型在时域内加以描述的。
状态反映了系统的“内部条件”,输入可以由确定的时间函数和代表不可预测的变量或噪声的随机过程组成的状态方程来描述,输出是状态向量的函数,通常受到随机观测误差的扰动,可由量测方程描述。
状态方程和量测方程之间的关系如图2.1所示。
图2.1 滤波问题的图解说明2.1 状态方程状态方程是目标运动规律的假设,例如假设目标在平面内做匀速直线运动,则离散时间系统下k t 时刻的状态(),k k x y 可表示为00k x k x x x v t x v kT =+=+(2.1)00k y k y y y v t y v kT =+=+(2.2)式中,()00,x y 为初始时刻目标的位置,x v 和y v 分别为目标在x 轴和y 轴的速度,T 为采样间隔。
式(2.1)和式(2.2)用递推形式可表示为1k k x k k x x v T x x T +=+=+&(2.3)1k k y k k y y v T y y T +=+=+&(2.4)目标状态方程用矩阵形式可表示为()()()1X k F k X k +=(2.5)式中,状态向量()X k 和系统状态转移矩阵()F k 分别为()[]k k k k X k x x y y '=&&(2.6)()10001000010001T F k T ⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎣⎦(2.7)若假设目标在平面内做匀加速直线运动,则目标的状态(k x ,k y )用递推形式可表示为 211()/22k k xk k k k x x v aT T x x T x T +=++=++&&& (2.8) 211()/22k k yk k k k y y v aT T y y T y T +=++=++&&&(2.9)目标状态方程用矩阵形式仍可表示为()()()1X k F k X k +=(2.10)式中,()[]k k k k k k X k x x x y y y '=&&&&&&(2.11)()221100020100000100010001200001000001T T T F k T T T ⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦(2.12)状态向量维数增加估计会更准确,但估计的计算量也会相应地增加,因此在满足模型的精度和跟踪性能的条件下,尽可能地采用简单的数学模型。