2010年4月苏科版七年级下期中考试数学试卷及答案
七年级下册期中数学试卷及答案(苏科版)

七年级(下)期中数学试卷一.选择题1.下列长度的3根小棒,能搭成三角形的是()A.9,5,2 B.5,4,9 C.4,6,9 D.8,5,132.下列计算错误的是()A.x3m+1=(x3)m+1B.x3m+1=x•x3mC.x3m+1=x m•x2m•x D.x3m+1=(x m)3•x3.如果3x=m,3y=n,那么3x﹣y等于()A.m+n B.m﹣n C.mn D.4.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C.D.﹣5.下列各式中,为完全平方式的是()A.a2+2a+ B.a2+a+C.x2﹣2x﹣1 D.x2﹣xy+y26.下列因式分解中,正确的是()A.﹣2x3﹣3xy3+xy=﹣xy(2x2﹣3y2+1)B.﹣y2﹣x2=﹣(y+x)(y﹣x)C.16x2+4y2﹣16xy=4(2x﹣y)2D.x2y+2xy+4y=y(x+2)27.下列方程组中,是二元一次方程组的是()A.B.C.D.8.设(y≠0),则=()A.12 B.C.﹣12 D.9.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a10.设方程组的解是,那么a,b的值分别为()A.﹣2,3 B.3,﹣2 C.2,﹣3 D.﹣3,2二.填空题11.(4x)2﹣8xy+y2= 2,(a﹣2b)=(2b)2﹣a2.12.若x2+kx+16是完全平方式,则k的值为.13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a= ,b= .14.是方程3mx﹣2y﹣1=0的解,则m= .15.如果x3n=3,那么x6n= .16.计算:2a3b•(﹣3ab)3= .17.若a+b=﹣3,ab=2,则a2+b2= ,(a﹣b)2= .18.|x﹣2y+1|+|x+y﹣5|=0,则x+y= .19.若a﹣=3,则a2﹢﹦.三.解答题20.计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)21.分解因式:(1)4a2﹣16(2)﹣36x2+12xy﹣y2.22.解方程组:(1)(2).23.已知3×9m×27m=321,求m的值.24.已知方程组与方程组有相同的解,求a、b的值.25.甲乙两人相距10千米,两人同时出发,同向而行,甲2.5小时可以追上乙;相向而行,1小时相遇,求两人的速度.26.如图,点A、B、C、D在一条直线上,EA⊥A D,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?七年级(下)期中数学试卷参考答案与试题解析一.选择题1.下列长度的3根小棒,能搭成三角形的是()A.9,5,2 B.5,4,9 C.4,6,9 D.8,5,13【考点】三角形三边关系.【分析】根据三角形的三边关系定理:三角形两边之和大于第三边进行分析即可.【解答】解:A、5+2<9,不能构成三角形,故此选项错误;B、5+4=9,不能构成三角形,故此选项错误;C、4+6>9,能构成三角形,故此选项正确;D、5+8=13,不能构成三角形,故此选项错误;故选:C.【点评】此题主要考查了三角形的三边关系定理,在运用三角形三边关系判定三条线段能否构成三角形时并不一定要列出三个不等式,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.2.下列计算错误的是()A.x3m+1=(x3)m+1B.x3m+1=x•x3mC.x3m+1=x m•x2m•x D.x3m+1=(x m)3•x【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】结合选项分别进行幂的乘方和积的乘方、同底数幂的乘法等运算,然后选择正确选项.【解答】解:A、(x3)m+1=x3m+3,原式计算错误,故本选项正确;B、x3m+1=x•x3m,原式计算正确,故本选项错误;C、x m•x2m•x=x3m+1,原式计算正确,故本选项错误;D、x3m+1=(x m)3•x,原式计算正确,故本选项错误.故选A.【点评】本题考查了幂的乘方和积的乘方以及同底数幂的乘法,解答本题的关键是掌握幂的乘方和积的乘方和同底数幂的乘法法则.3.如果3x=m,3y=n,那么3x﹣y等于()A.m+n B.m﹣n C.mn D.【考点】同底数幂的除法.【分析】根据同底数幂相除,底数不变,指数相减,整理后再根据指数相等列出方程求解即可.【解答】解:∵3x=m,3y=n,∴3x﹣y=3x÷3y=,故选D.【点评】本题考查了同底数幂的除法,熟练掌握运算性质,根据指数相等列式是解本题的关键.4.(﹣3)100×(﹣3)﹣101等于()A.﹣3 B.3 C. D.﹣【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】运用同底数幂的乘法及负整数幂的法则计算.【解答】解:(﹣3)100×(﹣3)﹣101=(﹣3)100﹣101=﹣.故选:D.【点评】本题主要考查了同底数幂的乘法及负整数幂的知识,解题的关键是熟记法测.5.下列各式中,为完全平方式的是()A.a2+2a+ B.a2+a+ C.x2﹣2x﹣1 D.x2﹣xy+y2【考点】完全平方式.【专题】计算题.【分析】利用完全平方公式的结构特征判断即可得到结果.【解答】解:a2+a+=(a+)2,故选B【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.6.下列因式分解中,正确的是()A.﹣2x3﹣3xy3+xy=﹣xy(2x2﹣3y2+1)B.﹣y2﹣x2=﹣(y+x)(y﹣x)C.16x2+4y2﹣16xy=4(2x﹣y)2D.x2y+2xy+4y=y(x+2)2【考点】提公因式法与公式法的综合运用.【分析】根据提公因式法分解因式,平方差公式,完全平方公式对各选项分析判断后利用排除法求解.【解答】解:A、应为﹣2x3﹣3xy3+xy=﹣x(2x2+3y3﹣y),错误;B、﹣y2﹣x2不符合平方差公式的特征,不能进行因式分解,错误;C、16x2+4y2﹣16xy=4(2x﹣y)2,正确;D、应为x2y+2xy+4y=y(x2+2x+4),错误.故选C.【点评】本题主要考查提公因式法,公式法分解因式,找准公因式、熟记公式结构特点是求解此类问题的关键.7.下列方程组中,是二元一次方程组的是()A.B.C.D.【考点】二元一次方程组的定义.【分析】根据二元一次方程组的定义逐个判断即可.【解答】解:A、不是二元一次方程组,故本选项错误;B、不是二元一次方程组,故本选项错误;C、不是二元一次方程组,故本选项错误;D、是二元一次方程组,故本选项正确;故选D.【点评】本题考查了二元一次方程组的定义的应用,主要考查学生对二元一次方程组的定义的理解能力.8.设(y≠0),则=()A.12 B. C.﹣12 D.【考点】解二元一次方程组.【分析】先观察所给方程组与所求代数式的特点可发现,所求代数式中不含未知数y,故可用代入法把y 消去,直接求出x、z的比值.【解答】解:①可变形为y=…③,把③代入②得, +4z=0,去分母、移项得,x=﹣12z,两边同除以12得=﹣12.故选C.【点评】此题比较简单,解答此题的关键是注意观察方程组中的方程与所求代数式之间的关系,消去所求代数式中不含有的未知数,利用等式的性质直接求出x、z的比值.9.如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a、b、c三数的大小为()A.a>b>c B.c>a>b C.a>c>b D.c>b>a【考点】负整数指数幂;零指数幂.【专题】计算题.【分析】分别计算出a、b、c的值,然后比较有理数的大小即可.【解答】解:a=(﹣99)0=1,b=(﹣0.1)﹣1=﹣10,c==,故可得b<c<a.故选C.【点评】此题考查了负整数指数幂及零指数幂的知识,属于基础题,解答本题的关键是掌握负整数指数幂的运算法则,难度一般.10.设方程组的解是,那么a,b的值分别为()A.﹣2,3 B.3,﹣2 C.2,﹣3 D.﹣3,2【考点】二元一次方程组的解.【分析】把代入方程组,得到关于a,b的方程组,再进一步解方程组.【解答】解:把代入方程组,得,解得.故选A.【点评】能够把方程组的解代入得到新的方程组,从而求解.二.填空题11.(4x)2﹣8xy+y2= (4x﹣y)2,(a﹣2b)(﹣a﹣2b)=(2b)2﹣a2.【考点】完全平方公式;平方差公式.【分析】根据完全平方公式、平方差公式,即可解答.【解答】解:(4x)2﹣8xy+y2=(4x﹣y)2,(a﹣2b)(﹣a﹣2b)=(2b)2﹣a2.故答案为:(4x﹣y),(﹣a﹣2b).【点评】本题考查了完全平方公式、平方差公式,解决本题的关键是熟记平方差公式、完全平方公式.12.若x2+kx+16是完全平方式,则k的值为±8.【考点】完全平方式.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【解答】解:∵x2+kx+16=x2+kx+42,∴kx=±2•x•4,解得k=±8.故答案为:±8.【点评】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.13.如果2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,那么数a= 3 ,b= 4 .【考点】二元一次方程的定义.【分析】根据一元二次方程的定义,令未知数的次数为1,即可列方程解答.【解答】解:∵2x2a﹣b﹣1﹣3y3a+2b﹣16=10是一个二元一次方程,∴,解得,,故答案为3,4.【点评】本题考查了二元一次方程的定义,根据题意列出方程是解题的关键.14.是方程3mx﹣2y﹣1=0的解,则m= .【考点】二元一次方程的解.【专题】计算题;一次方程(组)及应用.【分析】把x与y的值代入方程计算即可求出m的值.【解答】解:把代入方程3mx﹣2y﹣1=0,得:3m﹣4﹣1=0,解得:m=,故答案为:【点评】此题考查了二元一次方程的解,方程的解即为能使方程左右两边相等的未知数的值.15.如果x3n=3,那么x6n= 9 .【考点】幂的乘方与积的乘方.【分析】根据幂的乘方和积的乘方的运算法则求解.【解答】解:∵x3n=3,∴x6n=(x3n)2=9.故答案为:9.【点评】本题考查了幂的乘方和积的乘方,解答本题的关键是掌握幂的乘方和积的乘方的运算法则.16.计算:2a3b•(﹣3ab)3= ﹣54a6b4.【考点】单项式乘单项式.【分析】根据单项式乘单项式法则计算即可得到结果.【解答】解:2a3b•(﹣3ab)3=﹣54a6b4,故答案为:﹣54a6b4.【点评】此题考查了单项式乘单项式,熟练掌握运算法则是解本题的关键.17.若a+b=﹣3,ab=2,则a2+b2= 5 ,(a﹣b)2= 1 .【考点】完全平方公式.【专题】计算题.【分析】把已知条件a+b=﹣3,两边平方整理即可求出a2+b2的值,再根据(a﹣b)2=a2+b2﹣2ab代入数据计算即可求解.【解答】解:∵a+b=﹣3,∴a2+2ab+b2=9,∵ab=2,∴a2+b2=9﹣2×2=9﹣4=5;(a﹣b)2=a2+b2﹣2ab=5﹣2×2=5﹣4=1.【点评】本题是对完全平方公式的考查,熟记公式特点是解题的关键.18.|x﹣2y+1|+|x+y﹣5|=0,则x+y= 5 .【考点】解二元一次方程组;非负数的性质:绝对值.【专题】计算题;一次方程(组)及应用.【分析】已知等式利用非负数的性质化简求出x+y的值即可.【解答】解:∵|x﹣2y+1|+|x+y﹣5|=0,∴,则x+y=5,故答案为:5【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.19.若a﹣=3,则a2﹢﹦11 .【考点】完全平方公式.【专题】计算题.【分析】将已知等式两边平方,利用完全平方公式展开,变形即可求出所求式子的值.【解答】解:将a﹣=3两边平方得:(a﹣)2=9,即a2+﹣2=9,则a2+=11.故答案为:11【点评】此题考查了完全平方公式,熟练掌握完全平方公式是解本题的关键.三.解答题20.计算:(1)(x+2y)(2x﹣y)(2)(2a﹣3b)(﹣2a﹣3b)【考点】平方差公式.【分析】(1)根据多项式乘以多项式,即可解答;(2)根据平方差公式,即可解答.【解答】解:(1)(x+2y)(2x﹣y)=2x2+3xy﹣2y2;(2)(2a﹣3b)(﹣2a﹣3b)=(﹣3b)2﹣(2a)2=9b2﹣4a2.【点评】本题考查了平方差公式,解决本题的关键是熟记平方差公式.21.分解因式:(1)4a2﹣16(2)﹣36x2+12xy﹣y2.【考点】因式分解-运用公式法.【分析】(1)先提取公因式,再利用平方差公式因式分解即可;(2)先提取公因式,再利用完全平方公式因式分解即可.【解答】解:(1)原式=4(a2﹣4)=4(a+2)(a﹣2);(2)原式=﹣(36x2﹣12xy+y2)=﹣(6x﹣y)2.【点评】此题考查利用公式法因式分解,掌握平方差公式和完全平方公式是解决问题的关键.22.解方程组:(1)(2).【考点】解二元一次方程组.【专题】计算题;一次方程(组)及应用.【分析】(1)方程组利用加减消元法求出解即可;(2)方程组整理后,利用加减消元法求出解即可.【解答】解:(1),①×3+②得:17x=0,即x=0,把x=0代入①得:y=﹣3,则方程组的解为;(2)方程组整理得:,①×3+②×2得:17x=408,即x=24,把x=24代入①得:y=12,则方程组的解为.【点评】此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.23.已知3×9m×27m=321,求m的值.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】先把9m×27m分解成32m×33m,再根据同底数幂的乘法法则进行计算即可求出m的值.【解答】解:∵3×9m×27m=3×32m×33m=31+2m+3m=321,∴1+2m+3m=21,∴m=4.【点评】此题考查了同底数幂的乘法,幂的乘方与积的乘方,理清指数的变化是解题的关键.24.已知方程组与方程组有相同的解,求a、b的值.【考点】二元一次方程组的解.【分析】根据题意得出方程组的解与题中两方程组解相同,进而得出x,y的值代入另两个方程求出a,b 的值即可.【解答】解:由题意得出:方程组的解与题中两方程组解相同,解得:,将x=1,y=﹣2代入ax+5y=4,解得:a﹣10=4,∴a=14,将x=1,y=﹣2,代入5x+by=1,得5﹣2b=1,∴b=2.【点评】此题主要考查了二元一次方程的解,根据题意得出两方程的同解方程是解题关键.25.甲乙两人相距10千米,两人同时出发,同向而行,甲2.5小时可以追上乙;相向而行,1小时相遇,求两人的速度.【考点】二元一次方程组的应用.【分析】设甲的速度为x千米/小时,乙的而速度为y千米/小时,根据题意可得,甲2.5小时比乙2.5小时多走10千米,甲乙1小时可走10千米,据此列方程组求解.【解答】解:设甲的速度为x千米/小时,乙的而速度为y千米/小时,由题意得,,解得:.答:甲的速度为7千米/小时,乙的度数为3千米/小时.【点评】本题考查了二元一次方程组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程组求解.26.如图,点A、B、C、D在一条直线上,EA⊥AD,FB⊥AD,垂足分别为A、B,∠E=∠F,CE与DF平行吗?为什么?【考点】平行线的判定.【分析】由垂直可证明AE∥BF,可得到∠E=∠EGF=∠F,可判定CE∥DF.【解答】解:CE∥DF,理由如下:∵AE⊥AD,BF⊥AD,∴∠A=∠FBD,∴AE∥BF,∴∠E=∠EGF,又∵∠E=∠F,∴∠EGF=∠F,∴CE∥DF.【点评】本题主要考查平行线的判定和性质,掌握平行线的判定和性质是解题的关键,即①同位角相等⇔两直线平行,②内错角相等⇔两直线平行,③同旁内角互补⇔两直线平行.。
苏教七年级下册期中考试数学学试题详细答案

苏教版七年级下册期中考试数学学试题一、选择题〔每题3分,共18分.〕1.2﹣1等于〔〕A.2B.C.﹣2D.﹣2.以下运算正确的选项是〔A.a+a=a2 B.a2?a3=a6〕2 24D.〔a﹣2〕2=a2﹣43.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=15°,那么∠2的度数是〔〕A.15°B.25°C.30°D.35°4.803﹣80能被〔〕整除.A.76 B.78 C.79D.825.如下图,分别以n边形的顶点为圆心,以1cm为半径画圆,那么图中阴影局部的面积之和为〔〕2222A.πcm B.2πcm C.4πcm D.nπcm6.二元一次方程2x+5y=32的正整数解有〔〕组.A.3B.4C.5D.6二、填空题〔每题3分,共30分〕7.某种植物花粉的直径为,将数据用科学记数法表示为.8.分解因式:a2﹣ab=.9.等腰三角形的两边长分别是10.是二元一次方程3cm和6cm,那么它的周长是kx﹣y=3的一个解,那么k.的值是.11.假设代数式x2+mx+9〔m为常数〕是一个完全平方式,那么m的值为.12.如图,△ABC 中,DE ∥BC ,将△ADE 沿DE 翻折,点A 落在平面内的A ′处,∠B=50°,那么∠BDA ′的度数是.13.现有假设干张卡片,分别是正方形卡片 A 、B 和长方形卡片 C ,卡片大小如下图.如果要 拼一个长为〔3a+b 〕,宽为〔a+2b 〕的大长方形,那么需要 C 类卡片 张.14.假设3x =4,9y =7,那么3x ﹣2y的值为.2 2.15.假设m ﹣n=3,mn=﹣2,那么m+n=16.如图①:MA 1∥NA 2,图②:MA 1∥NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,,那么第n 个图 中的∠A 1+∠A 2+∠A 3+ +∠A n+1= °〔用含n 的代数式表示〕.17.计算: 〔1〕2a 3?〔a 2〕3÷a〔2〕〔x+2y 〕〔x ﹣y 〕18.先化简,再求值:x 〔x ﹣4y 〕+〔2x+y 〕〔2x ﹣y 〕﹣〔2x ﹣y 〕2,其中x=﹣2, .19.因式分解:〔1〕a 2+4a+4 〔2〕9〔x+y 〕2﹣〔x ﹣y 〕2. 20.解方程组:〔1〕〔2〕.22.如图,AB ∥DC ,AD ∥BC ,E 为BC 延长线上一点,连结AE 与CD 相交于点F ,假设∠CFE=∠E .试说明AE平分∠BAD.23.试用方程〔组〕解决问题:某校七年级〔1〕班45名同学为“支援灾区〞共捐款1800元,捐款情况如表:捐款〔元〕102040100人数67表中捐款20元和40元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.24.如图,△ABC中,AD是BC边上的中线,AE是BC边上的高.〔1〕假设∠ACB=100°,求∠CAE的度数;〔2〕假设S△ABC=12,CD=4,求高AE的长.25.△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.〔1〕如图1,连接CE,①假设CE∥AB,求∠BEC的度数;②假设CE平分∠ACD,求∠BEC的度数.〔2〕假设直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.26.关于x、y的方程组〔1〕当x=y时,求a的值;〔2〕求代数式22x?4y的值;〔3〕假设x y=1,求a的值.参考答案与试题解析一、选择题〔每题3分,共18分.〕1.2﹣1等于〔〕A.2B.C.﹣2D.﹣【考点】负整数指数幂.【分析】根据负整数指数幂与正整数指数幂互为倒数,可得答案.【解答】解:原式=,应选:B.2.以下运算正确的选项是〔〕A.a+a=a2B.a2?a3=a6C.〔﹣2a2〕2=4a4D.〔a﹣2〕2=a2﹣4【考点】完全平方公式;合并同类项;同底数幂的乘法;幂的乘方与积的乘方.【分析】根据合并同类项法那么、幂的运算、完全平方式分别计算可得答案.【解答】解:A、a+a=2a,此选项错误;B、a2?a3=a5,此选项错误;C、〔﹣2a2〕2=4a4,此选项正确;D、〔a﹣2〕2=a2﹣4a+4,此选项错误;应选:C.3.如图,把一块含有那么∠2的度数是〔45°角的直角三角板的两个顶点放在直尺的对边上.如果∠〕1=15°,A.15°B.25°C.30°D.35°【考点】平行线的性质.【分析】直接利用平行线的性质结合等腰直角三角形的性质得出答案.【解答】解:如下图:由题意可得:∠1=∠3=15°,那么∠2=45°﹣∠3=30°.应选:C.4.803﹣80能被〔〕整除.A.76 B.78 C.79D.82【考点】提公因式法与公式法的综合运用.【分析】先提取公因式80,再根据平方查公式进行二次分解,即可得803﹣80=80×81×79,继而求得答案.【解答】解:∵803﹣80=80×=80×〔80+1〕×〔80﹣1〕=80×81×79.3∴80﹣80能被79整除.5.如下图,分别以n边形的顶点为圆心,以1cm为半径画圆,那么图中阴影局部的面积之和为〔〕2222A.πcm B.2πcm C.4πcm D.nπcm【考点】扇形面积的计算;多边形内角与外角.【分析】由于多边形的外角和为360°,那么所有阴影的扇形的圆心角的和为360度,故阴影局部的面积=π×12=π.【解答】解:∵多边形的外角和为360°,22∴S A1+S A2++S An=S圆=π×1=π〔cm〕.应选A..6.二元一次方程2x+5y=32的正整数解有〔〕组.A.3B.4C.5D.6【考点】二元一次方程的解.【分析】把方程用含x的式子表示出y,再根据x、y均为正整数进行讨论即可求得答案.【解答】解:方程2x+5y=32可变形为y=,∵x、y均为正整数,∴32﹣2x>0且为5的倍数,当x=1时,y=6,当x=6时,y=4,当x=11时,y=2,∴方程2x+5y=32的正整数解有3组,应选A.二、填空题〔每题3分,共30分〕7.某种植物花粉的直径为,将数据用科学记数法表示为×10﹣.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的的个数所决定.【解答】解:将数据用科学记数法表示为×10﹣4,故答案为:×10﹣4.28.分解因式:a﹣ab= a〔a﹣b〕.【分析】直接把公因式a提出来即可.【解答】解:a2﹣ab=a〔a﹣b〕.9.等腰三角形的两边长分别是3cm和6cm,那么它的周长是15cm.【考点】等腰三角形的性质;三角形三边关系.【分析】题目给出等腰三角形有两条边长为3cm和6cm,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形.【解答】解:当腰为3cm时,3+3=6,不能构成三角形,因此这种情况不成立.当腰为6cm时,6﹣3<6<6+3,能构成三角形;此时等腰三角形的周长为6+6+3=15cm.故答案为:15cm.10.是二元一次方程kx﹣y=3的一个解,那么k的值是 2.【考点】二元一次方程的解.【分析】根据方程的解满足方程,可得关于k的方程,根据解方程,可得答案.【解答】解:由是二元一次方程kx﹣y=3的一个解,得2k﹣1=3,解得k=2,故答案为:2.211.假设代数式x+mx+9〔m为常数〕是一个完全平方式,那么m的值为±6.【分析】利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵代数式x2+mx+9〔m为常数〕是一个完全平方式,故答案为:±612.如图,△ABC中,DE∥BC,将△ADE沿DE翻折,点A落在平面内的A′处,∠B=50°,那么∠BDA′的度数是80°.【考点】翻折变换〔折叠问题〕.【分析】由两直线平行,同位角相等推知∠ADE=∠B=50°;由折叠的性质知∠ADE=∠A′DE,所以∠BDA′=180°﹣2∠B=80°.【解答】解:∵DE∥BC,∴∠ADE=∠B=50°〔两直线平行,同位角相等〕;又∵∠ADE=∠A′DE,∴∠A′DA=2∠B,∴∠BDA′=180°﹣2∠B=80°故答案为:80°.13.现有假设干张卡片,分别是正方形卡片A、B和长方形卡片C,卡片大小如下图.如果要拼一个长为〔3a+b〕,宽为〔a+2b〕的大长方形,那么需要C类卡片7张.【考点】多项式乘多项式.【分析】根据长方形的面积=长×宽,求出长为3a+b,宽为a+2b的大长方形的面积是多少,判断出需要C类卡片多少张即可.【解答】解:长为3a+b,宽为a+2b的长方形的面积为:2222∵A类卡片的面积为a,B类卡片的面积为b,C类卡片的面积为ab,故答案为:7.14.假设3x=4,9y=7,那么3x﹣2y的值为.【考点】同底数幂的除法;幂的乘方与积的乘方.x﹣2y x2y x y【分析】根据3 =3÷3=3÷9即可代入求解.【解答】解:3x﹣2y=3x÷32y=3x÷9y=.故答案是:.2215.假设m﹣n=3,mn=﹣2,那么m+n= 5.【考点】完全平方公式.【分析】直接利用完全平方公式将原式变形进而将代入求出答案.【解答】解:∵m ﹣n=3,mn=﹣2,222+2mn∴m+n=〔m ﹣n 〕=32+2×〔﹣2〕 =5.故答案为:5.16.如图①:MA 1∥NA 2,图②:MA 1∥NA 3,图③:MA 1∥NA 4,图④:MA 1∥NA 5,,那么第n 个图 中的∠A 1+∠A 2+∠A 3+ +∠A n+1= 180?n °〔用含n 的代数式表示〕.【考点】平行线的性质.【分析】分别求出图①、图②、图③中,这些角的和,探究规律后,理由规律解决问题即可.【解答】解:如图①中,∠A 1+∠A 2=180°=1×180°,如图②中,∠A 1+∠A 2+∠A 3=360°=2×180°, 如图③中,∠A 1+∠A 2+∠A 3+∠A 4=540°=3×180°, ,第个图,∠A 1+∠A 2+∠A 3++∠A n+1学会从=n?180°,故答案为180?n三、解答题〔本大题共 102分〕 17.计算:〔1〕2a 3?〔a 2〕3÷a〔2〕〔x+2y 〕〔x ﹣y 〕【考点】整式的混合运算.【分析】〔1〕原式利用幂的乘方运算法那么计算,再利用单项式乘除单项式法那么计算即可得到 结果;〔2〕原式利用多项式乘以多项式法那么计算,合并即可得到结果. 【解答】解:〔1〕原式=3a 9÷a=2a 8;〔2〕原式=x 2﹣xy+2xy ﹣2y 2=x 2+xy ﹣2y 2.18.先化简,再求值:x〔x﹣4y〕+〔2x+y〕〔2x﹣y〕﹣〔2x﹣y〕2,其中x=﹣2,.【考点】整式的混合运算—化简求值.【分析】原式利用平方差公式,完全平方公式,以及单项式乘以多项式法那么计算,去括号合并得到最简结果,把x与y的值代入计算即可求出值.【解答】解:原式=x2﹣4xy+4x2﹣y2﹣4x2+4xy﹣y2=x2﹣2y2,当x=﹣2,y=﹣时,原式=4﹣=.19.因式分解:〔1〕a2+4a+4〔2〕9〔x+y〕2﹣〔x﹣y〕2.【分析】〔1〕直接利用完全平方公式进行分解即可;〔2〕首先利用平方差公式进行分解,再合并同类项后,利用提公因式法再次进行分解即可.【解答】解:〔1〕原式=〔a+2〕2;〔2〕原式=[3〔x+y〕﹣〔x﹣y〕][3〔x+y〕+〔x﹣y〕]=4〔2x+y〕〔x+2y〕.20.解方程组:〔1〕〔2〕.【考点】解二元一次方程组.【分析】〔1〕方程组利用加减消元法求出解即可;〔2〕方程组整理后,利用加减消元法求出解即可.【解答】解:〔1〕,①×2﹣②得:﹣4y=﹣21,即y=3,把y=3代入①得:x=6,那么方程组的解为;〔2〕方程组整理得:,①+②得:8x=16,即x=2,把x=2代入①得:y=3,那么方程组的解为.21.如图,网格中每个小正方形边长为1,△ABC的顶点都在格点上.将△ABC向左平移2格,再向上平移3格,得到△A′B′C′.〔1〕请在图中画出平移后的△A′B′C′;〔2〕假设连接BB′,CC′,那么这两条线段的关系是平行且相等;〔3〕△ABC在整个平移过程中线段 AB扫过的面积为12.【考点】作图﹣平移变换.【分析】〔1〕利用网格特点和平移的性质分别画出点A、B、C的对应点A′、B′、C′即可得到△A′B′C′;〔2〕根据平移的性质求解;〔3〕由于线段AB扫过的局部为平行四边形,那么根据平行四边形的面积公式可求解.【解答】解:〔1〕如图,△A′B′C′为所作;〔2〕BB′∥CC′,BB′=CC′;〔3〕线段AB扫过的面积=4×3=12.故答案为平行且相等;12.22.如图,AB∥DC,AD∥BC,E为BC延长线上一点,连结AE与CD相交于点F,假设∠CFE=∠E.试说明AE平分∠BAD.【考点】平行线的性质.【分析】根据平行线的性质得到∠1=∠CFE,∠2=∠E,等量代换即可得到结论.【解答】解:∵AB∥DC,∴∠1=∠CFE,∵AD∥BC,∴∠2=∠E,∵∠CFE=∠E,∴∠1=∠2.∴AE平分∠BAD.23.试用方程〔组〕解决问题:某校七年级〔1〕班45名同学为“支援灾区〞共捐款1800元,捐款情况如表:捐款〔元〕102040100人数67表中捐款20元和40元的人数不小心被墨水污染,看不清楚,请你确定表中的数据.【考点】二元一次方程组的应用.【分析】直接捐款20元的有x人,捐款40元的有y人,利用七年级〔1〕班45名同学得出关于x,y的等式,再利用共捐款1800元,得出等式组成方程组求出答案.【解答】解:设捐款20元的有x人,捐款40元的有y人,根据题意可得:,解得:,答:捐款20元的有12人,捐款40元20人.24.如图,△ABC中,AD是BC边上的中线,AE是BC边上的高.〔1〕假设∠ACB=100°,求∠CAE的度数;〔2〕假设S△ABC=12,CD=4,求高AE的长.【考点】三角形的面积;三角形的外角性质.【分析】〔1〕根据∠ACB是△ACE的外角进行计算即可;〔2〕根据CD的长求得BC的长,再根据△ABC的面积为12,求得AE的长.【解答】解:〔1〕∵AE是BC边上的高,∴∠E=90°,又∵∠ACB=100°,∴∠CAE=100°﹣90°=10°;〔2〕∵AD是BC上的中线,DC=4,∴D为BC的中点,∴BC=2DC=8,∵AE是BC边上的高,S△ABC=12,∴S△ABC=BC?AE,即×8×AE=12,∴AE=3.25.△ABC中,∠A=60°,∠ACB=40°,D为BC边延长线上一点,BM平分∠ABC,E为射线BM上一点.〔1〕如图1,连接CE,①假设CE∥AB,求∠BEC的度数;②假设CE平分∠ACD,求∠BEC的度数.〔2〕假设直线CE垂直于△ABC的一边,请直接写出∠BEC的度数.【考点】平行线的性质.【分析】〔1〕①根据三角形的内角和得到∠ABC=80°,由角平分线的定义得到∠ABE=ABC=40°,根据平行线的性质即可得到结论;②根据邻补角的定义得到∠ACD=180°﹣∠ACB=140°,根据角平分线的定义得到∠CBE=ABC=40°,∠ECD=ACD=70°,根据三角形的外角的性质即可得到结论;〔2〕①当CE⊥BC时,②如图2,当CE⊥AB于F时,③如图3,当CE⊥AC时,根据垂直的定义和三角形的内角和即可得到结论.【解答】解:〔1〕①∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∵BM平分∠ABC,∴∠ABE=ABC=40°,∵CE∥AB,∴∠BEC=∠ABE=40°;②∵∠A=60°,∠ACB=40°,∴∠ABC=80°,∠ACD=180°﹣∠ACB=140°,∵BM平分∠ABC,CE平分∠ACD,∴∠CBE=ABC=40°,∠ECD=ACD=70°,∴∠BEC=∠ECD﹣∠CBE=30°;〔2〕①如图1,当CE⊥BC时,∵∠CBE=40°,∴∠BEC=50°;②如图2,当CE⊥AB于F时,∵∠ABE=40°,∴∠BEC=90°+40°=130°,③如图3,当CE⊥AC时,∵∠CBE=40°,∠ACB=40°,∴∠BEC=180°﹣40°﹣40°﹣90°=10°.26.关于x、y的方程组〔1〕当x=y时,求a的值;〔2〕求代数式22x?4y的值;〔3〕假设x y=1,求a的值.【考点】解二元一次方程组.【分析】〔1〕把x=y代入方程组,求出a的值即可;〔2〕把a看做数表示出方程组的解,将原式变形后代入计算即可求出值;〔3〕将表示出的x与y代入等式,确定出a的值即可.【解答】解:〔1〕把x=y代入方程组得:,解得:a=;〔2〕,①﹣②得:3y=6﹣3a,即y=2﹣a,把y=2﹣a代入①得:x=a﹣3,∴x+y=a﹣3+2﹣a=﹣1,那么22x?4y=22x?22y=22〔x+y〕=2﹣2=;〔3〕由x y=1,得到〔a﹣3〕2﹣a=1,假设2﹣a=0,即a=2时,等式成立;假设a﹣3=1,即a=4时,等式成立,综上,a的值为2或4.2021年3月4日。
苏科版七年级下期中数学试卷含答案解析

七年级(下)期中数学试卷一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2C.(ab)2=a2b2D.(a2)3=a52.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6B.2m﹣8C.2m D.﹣2m3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19B.20C.25D.304.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1B.2C.3D.4二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为.8.若3m=5,3n=6,则3m﹣n的值是.9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为.12.已知等腰三角形一边等于5,另一边等于9,它的周长是.13.一个n边形的所有内角与所有外角的和是900°,那么n=.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=°.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成个面积是1的三角形.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣2+2.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.-学年江苏省泰州市泰兴市黄桥东区七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每题3分)1.下列计算正确的是()A.a2+a2=a4B.2a﹣a=2C.(ab)2=a2b2D.(a2)3=a5【考点】幂的乘方与积的乘方;合并同类项.【分析】根据合并同类项的法则,同底数幂的乘法以及幂的乘方的知识求解即可求得答案.【解答】解:A、a2+a2=2a2,故本选项错误;B、2a﹣a=a,故本选项错误;C、(ab)2=a2b2,故本选项正确;D、(a2)3=a6,故本选项错误;故选:C.2.已知:a+b=m,ab=﹣4,化简(a﹣2)(b﹣2)的结果是()A.6B.2m﹣8C.2m D.﹣2m【考点】整式的混合运算—化简求值.【分析】(a﹣2)(b﹣2)=ab﹣2(a+b)+4,然后代入求值即可.【解答】解:(a﹣2)(b﹣2)=ab﹣2(a+b)+4=﹣4﹣2m+4=﹣2m.故选D.3.已知三角形两边的长分别是4和10,则此三角形的周长可能是()A.19B.20C.25D.30【考点】三角形三边关系.【分析】首先求出三角形第三边的取值范围,进而求出三角形的周长取值范围,据此求出答案.【解答】解:设第三边的长为x,∵三角形两边的长分别是4和10,∴10﹣4<x<10+4,即6<x<14.则三角形的周长:20<L<28,C选项25符合题意,故选C.4.下列从左边到右边的变形,属于因式分解的是()A.(x+1)(x﹣1)=x2﹣1B.x2﹣2x+1=x(x﹣2)+1C.x2﹣4y2=(x+4y)(x﹣4y)D.x2﹣x﹣6=(x+2)(x﹣3)【考点】因式分解的意义.【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【解答】解:A、是整式的乘法,故A错误;B、没把一个多项式转化成几个整式积,故B错误;C、没把一个多项式转化成几个整式积,故C错误;D、把一个多项式转化成几个整式积,故D正确;故选:D.5.下列语句:①任何数的零次方都等于1;②如果两条直线被第三条直线所截,那么同位角相等;③一个图形和它经过平移所得的图形中,两组对应点的连线平行且相等;④平行线间的距离处处相等.说法错误的有()个.A.1个B.2个C.3个D.4个【考点】平移的性质;同位角、内错角、同旁内角;平行线之间的距离.【分析】利用平移的性质、三线八角及平行线之间的距离的定义等知识逐一判断后即可确定正确的选项.【解答】解:①任何非0实数的零次方都等于1,故错误;②如果两条平行直线被第三条直线所截,那么同位角相等,故错误;③一个图形和它经过平移所得的图形中,两组对应点的连线平行或共线,故本小题错误;④平行线间的距离处处相等,正确,错误的有3个,故选C.6.如图,若△ABC的三条内角平分线相交于点I,过I作DE⊥AI分别交AB、AC于点D、E,则图中与∠ICE一定相等的角(不包括它本身)有()个.A.1B.2C.3D.4【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】根据角平分线的定义求得∠1=∠2.然后利用三角形内角和定理得到∠2=∠5,进而证得∠5=∠1.【解答】解:①根据角平分线的性质易求∠1=∠2;②∵△ABC的三条内角平分线相交于点I,∴∠BIC=180°﹣(∠3+∠2)=180°﹣(∠ABC+∠ACB)=180°﹣=90°+∠BAC;∵AI平分∠BAC,∴∠DAI=∠DAE.∵DE⊥AI于I,∴∠AID=90°.∴∠BDI=∠AID+∠DAI=90°+∠BAC.∴∠BIC=∠BDI.∴180°﹣(∠4+∠5)=180°﹣(∠2+∠3).又∵∠3=∠4,∴∠2=∠5,∴∠5=∠1,综上所述,图中与∠ICE一定相等的角(不包括它本身)有2个.故选:B.二、填空题(共10小题,每小题3分,满分30分)7.计算(﹣a4)2的结果为a8.【考点】幂的乘方与积的乘方.【分析】先根据积的乘方,把积中每一个因式分别乘方,再把所得的幂相乘;再根据幂的乘方,底数不变指数相乘,从而得出结果.【解答】解:原式=(﹣a4)2的=(﹣1)2(a4)2=a8,故答案为a8.8.若3m=5,3n=6,则3m﹣n的值是.【考点】同底数幂的除法.【分析】根据同底数幂的除法代入解答即可.【解答】解:因为3m=5,3n=6,所以3m﹣n=3m÷3n=,故答案为:9.生物学家发现了一种病毒的长度约为0.00000432毫米,数据0.00000432用科学记数法表示为 4.32×10﹣6.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:将0.00000432用科学记数法表示为4.32×10﹣6.故答案为:4.32×10﹣6.10.在(x+1)(2x2﹣ax+1)的运算结果中x2的系数是﹣6,那么a的值是8.【考点】多项式乘多项式.【分析】先运用多项式的乘法法则进行计算,再根据运算结果中x2的系数是﹣6,列出关于a的等式求解即可.【解答】解:(x+1)(2x2﹣ax+1)=2x3﹣ax2+x+2x2﹣ax+1=2x3+(﹣a+2)x2+(1﹣a)x+1;∵运算结果中x2的系数是﹣6,∴﹣a+2=﹣6,解得a=8,故答案为:8.11.已知x+y=3,x2+y2﹣3xy=4,则x3y+xy3的值为7.【考点】因式分解的应用.【分析】根据已知条件,运用完全平方公式求得xy的值,再进一步运用因式分解的方法整体代入求得代数式的值.【解答】解:∵x+y=3,∴(x+y)2=9,即x2+y2+2xy=9①,又x2+y2﹣3xy=4②,①﹣②,得5xy=5,xy=1.∴x2+y2=4+3xy=7.∴x3y+xy3=xy(x2+y2)=7.故答案为7.12.已知等腰三角形一边等于5,另一边等于9,它的周长是19或23.【考点】等腰三角形的性质;三角形三边关系.【分析】因为题中没有确定底和腰,故要分两种情况进行做题,即把边长为5的作为腰和把边长为9的作为腰,然后分别求出周长.【解答】解:分两种情况:①当边的长为5的为腰时,周长=5+5+9=19;②当边的长为9的为腰时,周长=9+9+5=23.经验证这两种情况都可组成三角形,都成立.故答案为:19或23.13.一个n边形的所有内角与所有外角的和是900°,那么n=5.【考点】多边形内角与外角.【分析】根据多边形的外角和是360度,即可求得多边形的内角和的度数,依据多边形的内角和公式即可求解.【解答】解:多边形的内角和是:900﹣360=540°,设多边形的边数是n,则(n﹣2)•180=540,解得:n=5.故答案为5.14.如图,若CD平分∠ACE,BD平分∠ABC,∠A=45°,则∠D=22.5°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据角平分线定义求出∠ABC=2∠DBC,∠ACE=2∠DCE,根据三角形外角性质求出∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,推出∠A+∠ABC=2∠D+∠ABC,得出∠A=2∠D,即可求出答案.【解答】解:∵BD平分∠ABC,CD平分∠ACE,∴∠ABC=2∠DBC,∠ACE=2∠DCE,∵∠ACE=2∠DCE=∠A+∠ABC,2∠DCE=2(∠D+∠DBC)=2∠D+∠ABC,∴∠A+∠ABC=2∠D+∠ABC,∴∠A=2∠D,∵∠A=45°,∴∠D=22.5°,故答案为:22.5.15.如图,BE平分∠ABD,CF平分∠ACD,BE、CF交于G,若∠BDC=140°,∠BGC=110°,则∠A=80°.【考点】三角形内角和定理.【分析】根据三角形的内角和定理,及角平分线上的性质先计算∠ABC+∠ACB的度数,从而得出∠A的度数.【解答】解:如图,连接BC.∵BE是∠ABD的平分线,CF是∠ACD的平分线,∴∠ABE=∠DBE=∠ABD,∠ACF=∠DCF=∠ACD,又∠BDC=140°,∠BGC=110°,∴∠DBC+∠DCB=40°,∠GBC+∠GCB=70°,∴∠EBD+∠FCD=70°﹣40°=30°,∴∠ABE+∠ACF=30°,∴∠ABE+∠ACF+∠GBC+∠GCB=70°+30°=100°,即∠ABC+∠ACB=100°,∴∠A=80°.故答案为:80°.16.如图,它是由6个面积为1的小正方形组成的长方形,点A,B,C,D,E,F是小正方形的顶点,以这六个点中的任意三点为顶点,可以组成10个面积是1的三角形.【考点】三角形的面积.【分析】根据三角形的面积公式,结合图形,则面积是1的三角形,即构造底1高2的三角形或底2高1的三角形或两条直角边是的等腰直角三角形.【解答】解:根据题意,得面积是1的三角形有:△ABD、△ABE、△ABF、△ACD、△FCD、△AEF、△BEF、△ADE、△BDE、△BCE 共10个.三、解答题(本大题共10小题,102分,写出必要的计算过程、推理步骤或文字说明)17.计算(1)(﹣)﹣1﹣1﹣2×(﹣22)﹣()﹣2(2)(﹣a2)3﹣(﹣a3)2+2a5•(﹣a)(3)(x﹣y)2﹣(x+2y)(x﹣2y)(4)(3﹣2x+y)(3+2x﹣y)【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据负整数指数幂的意义计算;(2)先进行乘方运算,然后合并即可;(3)先利用完全平方公式和平方差公式展开,然后合并即可;(4)先变形得到原式=[3+(2x﹣y)][3﹣(2x﹣y)],然后利用平方差公式和完全平方公式计算.【解答】解:(1)原式=﹣4﹣1×(﹣4)﹣4=﹣4+4﹣4=﹣4;(2)原式=﹣a6﹣a6﹣2a6=﹣4a6;(3)原式=x2﹣xy+y2﹣(x2﹣4y2)=x2﹣xy+y2﹣x2+y2=2y2﹣xy;(4)原式=[3+(2x﹣y)][3﹣(2x﹣y)]=32﹣(2x﹣y)2=9﹣(4x2﹣4xy+y2)=9﹣4x2+4xy﹣y2.18.因式分解(1)16﹣4x2(2)4ab2﹣4a2b﹣b3(3)(x2+4)2﹣16x2(4)49(m﹣n)2﹣9(m+n)2.【考点】提公因式法与公式法的综合运用.【分析】(1)首先提取公因式4,进而利用平方差公式分解因式得出答案;(2)首先提取公因式﹣b,进而利用完全平方公式分解因式得出答案;(3)直接利用平方差公式分解因式,进而利用完全平方公式分解因式得出答案;(4)直接利用平方差公式分解因式得出答案.【解答】解:(1)16﹣4x2=4(4﹣x2)=4(2+x)(2﹣x);(2)4ab2﹣4a2b﹣b3=﹣b(﹣4ab+4a2+b2)=﹣b(2a﹣b)2;(3)(x2+4)2﹣16x2=(x2+4+4x)(x2+4﹣4x)=(x+2)2(x﹣2)2;(4)49(m﹣n)2﹣9(m+n)2.=[7(m﹣n)+3(m+n)][7(m﹣n)﹣3(m+n)]=(10m﹣4n)(4m﹣10n)=4(5m﹣2n)(2m﹣5n).19.先化简再求值(2a+b)2﹣(3a﹣b)2+5a(a﹣b),其中a=,b=.【考点】整式的混合运算—化简求值.【分析】原式前两项利用完全平方公式展开,最后一项利用单项式乘多项式法则计算,去括号合并得到最简结果,将a与b的值代入计算即可求出值.【解答】解:原式=4a2+4ab+b2﹣9a2+6ab﹣b2+5a2﹣5ab=5ab,当a=,b=时,原式=5××=.20.(1)已知2x=8y+2,9y=3x﹣9,求x+2y的值.(2)已知(a+b)2=6,(a﹣b)2=2,试比较a2+b2与ab的大小.【考点】完全平方公式.【分析】(1)根据幂的乘方运算法则将原式变形,进而求出x,y的值,进而代入求出答案;(2)直接利用完全平方公式展开原式,进而计算得出答案.【解答】解:(1)∵2x=8y+2,9y=3x﹣9,∴2x=23y+6,32y=3x﹣9,∴,解得:∴x+2y=×15+2×3=11;(2)∵(a+b)2=6,(a﹣b)2=2,∴a2+2ab+b2=6,a2﹣2ab+b2=2,解得:a2+b2=4,ab=1,∴a2+b2>ab.21.在正方形网格中,每个小正方形的边长均为1个单位长度,△ABC的位置如图所示,将△ABC先向右平移5个单位得△A1B1C1,再向上平移2个单位得△A2B2C2.(1)画出平移后的△A1B1C1及△A2B2C2;(2)平移过程中,线段AC扫过的面积是多少?【考点】作图-平移变换.【分析】(1)根据图形平移的性质画出△A1B1C1及△A2B2C2即可;(2)根据线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2即可得出结论.【解答】解:(1)如图所示;(2)线段AC扫过的面积=S平行四边形ACC1A1+S平行四边形A1C1C2A2=5×4+2×4=20+8=28.答:平移过程中,线段AC扫过的面积是28.22.(1)填空21﹣20=2(),22﹣21=2(),23﹣22=2()…(2)探索(1)中式子的规律,试写出第n个等式,并说明第n个等式成立;(3)运用上述规律计算:20﹣21﹣22﹣…﹣22014+22015.【考点】规律型:数字的变化类.【分析】(1)根据幂的运算方法,可得21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22,据此解答即可.(2)根据(1)中式子的规律,可得2n﹣2n﹣1=2n﹣1;然后根据幂的运算方法,证明第n个等式成立即可.(3)根据2n﹣2n﹣1=2n﹣1,求出算式20﹣21﹣22﹣…﹣22014+22015的值是多少即可.【解答】解:(1)21﹣20=2﹣1=1=20,22﹣21=4﹣2=2=21,23﹣22=8﹣4=4=22.(2)∵21﹣20=20,22﹣21=21,23﹣22=22,∴2n﹣2n﹣1=2n﹣1;证明:∵2n﹣2n﹣1=2×2n﹣1﹣2n﹣1=2n﹣1×(2﹣1)=2n﹣1,∴2n﹣2n﹣1=2n﹣1成立.(3)20﹣21﹣22﹣…﹣22014+22015=22015﹣22014﹣22013﹣…﹣21+20=22014﹣22013﹣…﹣21+20=22013﹣22012﹣…﹣21+20=…=22﹣21+20=21+20=2+1=3故答案为:0、1、2.23.先阅读下面的内容,再解决问题,例题:若m2+2mn+2n2﹣6n+9=0,求m和n的值.解:∵m2+2mn+2n2﹣6n+9=0∴m2+2mn+n2+n2﹣6n+9=0∴(m+n)2+(n﹣3)2=0∴m+n=0,n﹣3=0∴m=﹣3,n=3问题(1)若x2+2y2﹣2xy+4y+4=0,求x y的值.(2)已知a,b,c是△ABC的三边长,满足a2+b2=10a+8b﹣41,且c是△ABC中最长的边,求c的取值范围.【考点】完全平方公式;非负数的性质:偶次方;三角形三边关系.【分析】(1)先利用完全平方公式整理成平方和的形式,然后根据非负数的性质列式求出x、y的值,然后代入代数式计算即可;(2)先利用完全平方公式整理成平方和的形式,再利用非负数的性质求出a、b的值,然后利用三角形的三边关系即可求解.【解答】解:(1)x2+2y2﹣2xy+4y+4=x2﹣2xy+y2+y2+4y+4=(x﹣y)2+(y+2)2=0,∴x﹣y=0,y+2=0,解得x=﹣2,y=﹣2,∴x y=(﹣2)﹣2=;(2)∵a2+b2=10a+8b﹣41,∴a2﹣10a+25+b2﹣8b+16=0,即(a﹣5)2+(b﹣4)2=0,a﹣5=0,b﹣4=0,解得a=5,b=4,∵c是△ABC中最长的边,∴5≤c<9.24.如图,DE⊥AB,垂足为D,EF∥AC,∠A=30°,(1)求∠DEF的度数;(2)连接BE,若BE同时平分∠ABC和∠DEF,问EF与BF垂直吗?为什么?【考点】平行线的性质;垂线.【分析】(1)如图,利用直角三角形的性质求得∠AOD=60°,然后利用对顶角相等、平行线的性质求得∠DEF=120°;(2)EF与BF垂直.理由如下:根据角平分线的性质得到∠BEF=∠BED=DEF=60°.则根据直角三角形的性质易求∠DBE=30°.然后由三角形内角和定理求得∠F=90°,即EF与BF垂直.【解答】解:(1)如图,∵DE⊥AB,∠A=30°,∴∠AOD=60°.∵∠COE=∠AOD=60°,EF∥AC,∴∠DEF+∠COE=180°,∴∠DEF=120°;(2)EF与BF垂直.理由如下:由(1)知,∠DEF=120°.∵BE平分∠DEF,∴∠BEF=∠BED=DEF=60°.又∵DE⊥AB,∴∠DBE=30°.∵AE平分∠ABC,∴∠EBF=30°,∴∠F=180°﹣∠EBF﹣BEF=90°,即EF与BF垂直.25.(1)已知:如图1,BE⊥DE,∠1=∠B,∠2=∠D,试确定AB与CD的位置关系,并说明理由.(2)若图形变化为如图2、图3所示,且满足∠1+∠2=90°,那么AB与CD还满足上述关系吗?若满足,选择一个图形进行证明.【考点】平行线的判定与性质.【分析】(1)过点E作EN∥AB,根据平行线的性质得到∠BEN=∠B,等量代换得到∠BEN=∠1,推出∠D=∠DEN,根据平行线的判定即可得到结论;(2)如答图2,过点E作EN∥AB,根据平行线的性质得到∠B=∠1,量代换得到∠BEN=∠1,推出EN∥CD,于是得到结论.【解答】解:(1)过点E作EN∥AB,则∠BEN=∠B,∵∠1=∠B,∴∠BEN=∠1,∵∠BEN+∠DEN=∠BED=90°,∴∠1+∠2=90°,∴∠2=∠DEN,∵∠2=∠D,∴∠D=∠DEN,∴AB∥CD;(2)如答图2,过点E作EN∥AB,∴∠BEN=∠B,∵∠B=∠1,∴∠BEN=∠1,∵∠BED=90°=∠BEN+∠DEN,∠1+∠2=90°,∴∠DEN=∠2,∵∠2=∠D,∴EN∥CD,∴AB∥CD.26.已知:如图①,直线MN⊥直线PQ,垂足为O,点A在射线OP上,点B在射线OQ 上(A、B不与O点重合),点C在射线ON上且OC=2,过点C作直线l∥PQ,点D在点C的左边且CD=3.(1)直接写出△BCD的面积.(2)如图②,若AC⊥BC,作∠CBA的平分线交OC于E,交AC于F,求证:∠CEF=∠CFE.(3)如图③,若∠ADC=∠DAC,点B在射线OQ上运动,∠ACB的平分线交DA的延长线于点H,在点B运动过程中的值是否变化?若不变,求出其值;若变化,求出变化范围.【考点】坐标与图形性质;垂线;三角形的面积.=CD•OC,【分析】(1)因为△BCD的高为OC,所以S△BCD(2)利用∠CFE+∠CBF=90°,∠OBE+∠OEB=90°,求出∠CEF=∠CFE.(3)由∠ABC+∠ACB=2∠DAC,∠H+∠HCA=∠DAC,∠ACB=2∠HCA,求出∠ABC=2∠H,即可得答案.=CD•OC=×3×2=3.【解答】解:(1)S△BCD(2)如图②,∵AC⊥BC,∴∠BCF=90°,∴∠CFE+∠CBF=90°,∵直线MN⊥直线PQ,∴∠BOC=∠OBE+∠OEB=90°,∵BF是∠CBA的平分线,∴∠CBF=∠OBE,∵∠CEF=∠OBE,∴∠CFE+∠CBF=∠CEF+∠OBE,∴∠CEF=∠CFE.(3)如图③,∵直线l∥PQ,∴∠ADC=∠PAD,∵∠ADC=∠DAC∴∠CAP=2∠DAC,∵∠ABC+∠ACB=∠CAP,∴∠ABC+∠ACB=2∠DAC,∵∠H+∠HCA=∠DAC,∴∠ABC+∠ACB=2∠H+2∠HCA ∵CH是,∠ACB的平分线,∴∠ACB=2∠HCA,∴∠ABC=2∠H,∴=.2016年11月29日。
苏教版数学七年级下学期《期中测试卷》带答案解析

苏 教 版 七 年 级 下 学 期期 中 测 试 卷一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠52. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A.B. C. D. 4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°6. 下列分解因式正确是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 7. 若433339x x x x +++=,则x =( ) A. -2 B. -1 C. 0 D. 148. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.10. 已知25x =,23y =,则22x y +=________.11. 如图,直线//a b ,160∠=︒,则2∠=______.12. 因式分解:x 2﹣49=________.13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____. 14. 若5a b +=,2a b -=,则()()2211+--a b 值为______.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ). 21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC 的外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC与∠A、∠B、∠C之间的关系,并说明理由:(2)如图②,若△ABC中,BO平分∠ABC,CO平分∠ACB,且它们相交于点O,试探究∠BOC与∠A的关系;(3)如图③,若△ABC中,∠ABO=13∠ABC,∠ACO=13∠ACB,且BO、CO相交于点O,请直接写出∠BOC与∠A的关系式为_.参考答案一、选择题1. 如图,直线a ,b 被直线c 所截,那么∠1的同位角是( )A. ∠2B. ∠3C. ∠4D. ∠5【答案】C【解析】 分析:根据同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角解答即可. 详解:由同位角的定义可知,∠1的同位角是∠4.故选C .点睛:本题考查了同位角问题,解答此类题确定三线八角是关键,可直接从截线入手.对平面几何中概念的理解,一定要紧扣概念中的关键词语,要做到对它们正确理解.2. 下列长度的三条线段,能作为三角形三边长的是( )A. 4cm ,5cm ,1cmB. 5cm ,5cm ,11cmC. 6cm ,7cm ,13cmD. 8cm ,8cm ,15cm【答案】D【解析】【分析】判定三条线段能否构成三角形时,只要两条较短的线段长度之和大于第三条线段的长度即可判定这三条线段能构成一个三角形.【详解】解:A .145+=,4cm ∴,5cm ,1cm 不能组成三角形,故A 错误; B .5511+<,5cm ∴,5cm ,11cm 不能组成三角形,故B 错误;C .6713+=,6cm ∴,7cm ,13cm 不能组成三角形,故C 错误;D .8815+>,8cm ∴,8cm ,15cm 能组成三角形,故D 正确;故选:D .【点睛】本题主要考查了三角形三边关系的运用,解题时注意:三角形两边之和大于第三边,三角形的两边差小于第三边.3. 下列图形中,由AB∥CD,能得到∠1=∠2的是 A. B. C. D.【答案】B【解析】【详解】分析:根据平行线的性质应用排除法求解:A 、∵AB ∥CD ,∴∠1+∠2=180°.故本选项错误.B 、如图,∵AB ∥CD ,∴∠1=∠3.∵∠2=∠3,∴∠1=∠2.故本选项正确.C 、∵AB ∥CD ,∴∠BAD=∠CDA ,不能得到∠1=∠2.故本选项错误.D 、当梯形ABDC 是等腰梯形时才有,∠1=∠2.故本选项错误.故选B .4. 下面是一位同学做的四道题:①532a a a ÷=,②()22424a a -=-,③()222a b a b -=-,④3412a a a ⋅=.其中做对的一道题的序号是( )A. ①B. ②C. ③D. ④ 【答案】A【解析】【分析】根据同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,逐项判定即可.【详解】解:532a a a ÷=,∴选项①符合题意; 224(2)4a a -=,∴选项②不符合题意;222(2)a b a ab b --=+,∴选项③不符合题意;347a a a =,∴选项④不符合题意.故选:A .【点睛】此题主要考查了同底数幂的除法法则、积的乘方、完全平方公式以及同底数幂的乘法法则,解答此题的关键是要熟练掌握相关运算法则.5. 如图,直线a ∥b ,直线c 分别交a ,b 于点A ,C ,∠BAC 的平分线交直线b 于点D ,若∠1=50°,则∠2的度数是( )A. 50°B. 70°C. 80°D. 110°【答案】C【解析】【分析】 根据平行线的性质可得∠BAD=∠1,再根据AD 是∠BAC 的平分线,进而可得∠BAC 的度数,再根据补角定义可得答案.【详解】因为a ∥b ,所以∠1=∠BAD=50°,因为AD 是∠BAC 的平分线,所以∠BAC=2∠BAD=100°,所以∠2=180°-∠BAC=180°-100°=80°.故本题正确答案为C.【点睛】本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.6. 下列分解因式正确的是( )A. 24(4)x x x x -+=-+B. 2()x xy x x x y ++=+ C. 2()()()x x y y y x x y -+-=-D. 244(2)(2)x x x x -+=+- 【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ()244x x x x -+=-- ,故A 选项错误; B. ()21x xy x x x y ++=++,故B 选项错误;C. ()()()2x x y y y x x y -+-=- ,故C 选项正确;D. 244x x -+=(x-2)2,故D 选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.7. 若433339x x x x +++=,则x =( ) A. -2B. -1C. 0D. 14【答案】A【解析】【分析】 43333439x x x x x +++=⨯=,由此可知x 的值. 【详解】解:43333439x x x x x +++=⨯=,21339x -==,所以2x =-. 故选A【点睛】本题考查了负指数幂,熟练掌握负指数幂的性质是解题的关键.8. 如图,△ABC 的中线BD 、CE 相交于点O ,OF ⊥BC ,垂足为F ,且AB =6,BC =5,AC =3,OF =2,则四边形ADOE 的面积是( )A. 9B. 6C. 5D. 3【答案】C【解析】【分析】 首先根据三角形的面积=底×高÷2,求出△BOC 的面积是多少;然后根据三角形的中线将三角形分成面积相等的两部分,可得△BCD 、△ACE 的面积均是△ABC 的面积的一半,据此判断出四边形ADOE 的面积等于△BOC 的面积,据此解答即可.【详解】∵BD 、CE 均是△ABC 的中线,∴S △BCD =S △ACE =12S △ABC , ∴S 四边形ADOE +S △COD =S △BOC +S △COD ,∴S 四边形ADOE =S △BOC =5×2÷2=5. 故选C .【点睛】此题主要考查了三角形的面积的求法,以及三角形的中线的性质,要熟练掌握,解答此题的关键要明确:(1)三角形的中线将三角形分成面积相等的两部分;(2)三角形的面积=底×高÷2. 二、填空题9. 目前世界上能制造的芯片最小工艺水平是5纳米,而我国能制造芯片的最小工艺水平是16纳米,已知1纳米=910-米,用科学记数法将16纳米表示为__________________米.【答案】81.610-⨯【解析】【分析】由1纳米=10-9米,可得出16纳米=1.6×10-8米,此题得解. 【详解】∵1纳米=10-9米,∴16纳米=1.6×10-8米. 故答案为1.6×10-8. 【点睛】本题考查了科学计数法中的表示较小的数,掌握科学计数法是解题的关键.10. 已知25x =,23y =,则22x y +=________.【答案】75【解析】【分析】逆用同底数幂乘法法则以及逆用幂的乘方的运算法则即可求得答案.【详解】∵25x =,23y =,∴22x y +=22x ×2y =(2x )2×2y =52×3=75,故答案为75.【点睛】本题考查了同底数幂乘法、幂的乘方,熟练掌握相关运算法则并能逆用进行变形是解题的关键. 11. 如图,直线//a b ,160∠=︒,则2∠=______.【答案】60°【解析】【分析】根据两直线平行,同位角相等即可求解.【详解】解://a b ,21∴∠=∠,160∠=︒,260∴∠=︒.故答案为:60°.【点睛】本题考查了平行线的性质,掌握两直线平行,同位角相等是解题的关键.12. 因式分解:x 2﹣49=________.【答案】(x ﹣7)(x+7)【解析】【分析】因式分解是把一个多项式化为几个因式积的形式.根据因式分解的一般步骤:一提(公因式)、二套(平方差公式()()22a b a b a b -=+-,完全平方公式()2222a ab b a b ±+=±)、三检查(彻底分解) 【详解】解:可以直接用平方差分解为:2x ﹣49=(x ﹣7)(x+7).故答案为:(x ﹣7)(x+7)13. 如图所示,在四边形ABCD 中,AD ⊥AB ,∠C=110°,它的一个外角∠ADE=60°,则∠B 的大小是_____.【答案】40°【解析】【分析】根据外角的概念求出∠ADC 的度数,再根据垂直的定义、四边形的内角和等于360°进行求解即可得.【详解】∵∠ADE=60°, ∴∠ADC=120°, ∵AD ⊥AB ,∴∠DAB=90°, ∴∠B=360°﹣∠C ﹣∠ADC ﹣∠A=40°, 故答案为40°. 【点睛】本题考查了多边形的内角和外角,掌握四边形的内角和等于360°、外角的概念是解题的关键.14. 若5a b +=,2a b -=,则()()2211+--a b 的值为______.【答案】20【解析】【分析】将+a b 、-a b 的值代入原式(11)(11)()(2)a b a b a b a b =++-+-+=+-+计算可得.【详解】解:当5a b +=,2a b -=时,原式(11)(11)a b a b =++-+-+()(2)a b a b =+-+5(22)=⨯+20=, 故答案为:20.【点睛】本题主要考查代数式的求值,解题的关键是灵活运用平方差公式分解因式.15. 如图,在ABC 中,CD 平分ACB ∠交AB 于点D ,过点D 作//DE BC 交AC 于点E .若54A ∠=︒,48B ∠=︒,则CDE ∠=______.【答案】39°.【解析】【分析】利用三角形的内角和定理以及角平分线的定义求出DCB ∠即可解决问题.【详解】解:54A ∠=︒,48B ∠=︒,180544878ACB ∴∠=︒-︒-︒=︒, CD 平分ACB ∠, 1392DCB ACB ∴∠=∠=︒, //DE BC ,39CDE DCB ∴∠=∠=︒,故答案为:39°.【点睛】本题考查平行线的性质,三角形的内角和定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.16. 若()()235x a x ++的结果为2610x bx +-,则b =______.【答案】4【解析】【分析】根据多项式与多项式相乘的法则计算,根据题意列出方程,解方程得到答案.【详解】解:2(2)(35)6(103)5x a x x a x a ++=+++,由题意得,510a =-,103a b +=,解得,2a =-,1031064b a =+=-=,故答案为:4.【点睛】本题考查的是多项式乘多项式,掌握多项式与多项式相乘,先用一个多项式的每一项乘另外一个多项式的每一项,再把所得的积相加.17. 某小区地下停车场入口门栏杆的平面示意图如图所示,BA 垂直地面AE 于点A ,CD 平行于地面AE ,若120BCD ∠=︒ ,则ABC ∠= ________.【答案】150︒【解析】【分析】先过点B 作BF ∥CD ,由CD ∥AE ,可得CD ∥BF ∥AE ,继而证得∠1+∠BCD=180°,∠2+∠BAE=180°,又由BA 垂直于地面AE 于A ,∠BCD=120°,求得答案.【详解】如图,过点B 作BF ∥CD ,∵CD ∥AE ,∴CD ∥BF ∥AE ,∴∠1+∠BCD=180°,∠2+∠BAE=180°,∵∠BCD=120°,∠BAE=90°,∴∠1=60°,∠2=90°,∴∠ABC=∠1+∠2=150°.故答案是:150o .【点睛】考查了平行线的性质.注意掌握辅助线的作法,注意数形结合思想的应用.18. 已知120182019a =+,120192019b =+,120202019c =+,则代数式222a b c ab bc ac ++---的值为______.【答案】3【解析】【分析】把已知式子化成2221[()()()]2a b a c b c -+-+-的形式,然后代入求解. 【详解】解:120182019a =+,120192019b =+,120202019c =+, 1a b ∴-=-,2a c -=-,1b c -=-,则原式2221(222222)2a b c ab ac bc =++--- 2222221[(2)(2)(2)]2a ab b a ac c b bc c =-++-++-+2221[()()()]2a b a c b c =-+-+- 1[141]2=⨯++ 3=,故答案为:3.【点睛】本题考查了代数式的求值,正确利用完全平方公式把所求的式子进行变形是关键.三、解答题19. 计算:(1)223501482π3-⎛⎫÷⨯-+- ⎪⎝⎭ (2)()221222a ab b ab ⎛⎫+-⋅- ⎪⎝⎭【答案】(1)9;(2)322312a b a b ab --+ 【解析】【分析】(1)根据同底数幂的乘除法法则、零指数幂、负整数指数幂的法则计算;(2)根据单项式乘多项式的运算法则解答.【详解】解:(1)235021482()3π-÷⨯-+- 495021222()3π-=÷⨯-+- 119=-+9=;(2)221(22)()2a ab b ab +-- 322312a b a b ab =--+. 【点睛】本题考查的是实数的运算、整式的乘法,掌握同底数幂的乘除法法则、负整数指数幂、单项式乘多项式的运算法则是解题的关键.20. 如图,在每个小正方形边长为1的方格纸中,ABC 的顶点都在方格纸格点上,将ABC 向左平移1格,再向上平移3格.(1)请在图中画出平移后的A B C ''';(2)再在图中画出ABC 的高CD ;(3)在图的方格中能使PBC ABC S S =△△的格点P 的个数有______个(点P 异于点A ).【答案】(1)见解析;(2)见解析;(3)4【解析】【分析】(1)分别将点A 、B 、C 向左平移1格,再向上平移3格,得到点A '、B '、C ',然后顺次连接; (2)过点C 作CD AB ⊥的延长线于点D ;(3)利用平行线的性质过点A 作出BC 的平行线进而得出符合题意的点.【详解】解:(1)如图所示:△A B C '''即为所求;(2)如图所示:CD 即为所求;(3)如图所示:能使PBC ABC S S ∆∆=的格点P 的个数有4个.故答案为:4.【点睛】此题主要考查了平移变换以及平行线的性质和三角形的高,利用平行线的性质得出P 点位置是解题关键.21. 某同学化简a (a+2b )﹣(a+b )(a ﹣b )出现了错误,解答过程如下:原式=a 2+2ab ﹣(a 2﹣b 2) (第一步)=a 2+2ab ﹣a 2﹣b 2(第二步)=2ab ﹣b 2 (第三步)(1)该同学解答过程从第几步开始出错,错误原因是什么;(2)写出此题正确的解答过程.【答案】(1)从第二步开始出错,错误原因是去括号时没有变号;(2)2ab +b 2.【解析】【分析】去括号时,括号外面是正号,则去掉括号后,括号里的各项不改变符号,去括号时,括号外面是负号,则去掉括号后,括号里的各项要改变符号;根据上述法则判断哪一步错误,再正确的去掉括号,合并同类项即可.【详解】解:(1)该同学解答过程从第二步开始出错,错误原因是去括号时没有变号;(2)原式=a 2+2ab-(a 2-b 2)=a 2+2ab-a 2+b 2=2ab +b 2.故答案为(1)第二步,去括号时没有变号;(2)2ab +b 2.【点睛】本题主要考查整式的运算,解题关键要掌握去括号法则; 22. 如图,EG BC ⊥于点G ,BFG DAC ∠=∠,AD 平分BAC ∠,试判断AD 与BC 的位置关系,并说明理由.【答案】AD BC ⊥,理由见解析【解析】【分析】根据角平分线的定义可得BAD DAC ∠=∠,从而可得BFG BAD ∠=∠,再根据同位角相等,两直线平行可得//EG AD ,然后根据EG BC ⊥即可证明AD BC ⊥.【详解】解:AD BC ⊥.理由如下:AD 平分BAC ∠,BAD DAC ∴∠=∠,BFG DAC ∠=∠,BFG BAD ∴∠=∠,//EG AD ∴,EGC ADC ∴∠=∠,又EG BC ⊥,90EGC ∴∠=︒,90ADC ∴∠=︒,AD BC ∴⊥.【点睛】本题考查了平行线的判定与角平分线的定义,找出相等的角是解题的关键.23. 先化简再求值:()()()()224273331a a a a +-+-+-,其中a 是最小的正整数.【答案】1082a +,92【解析】【分析】利用完全平方公式和平方差公式计算,进一步合并同类项,再进一步代入求得数值即可.【详解】解:原式2224(44)7(9)3(21)a a a a a =++--+-+ 22241616763363a a a a a =++-++-+1082a =+,∵a 是最小的正整数,∴1a =,∴原式108292=+=.【点睛】此题考查整式的混合运算,注意先利用公式计算,再进一步代入求得数值即可.24. 如图,在Rt ABC △中,90ACB ∠=︒,34A ∠=︒,ABC外角CBD ∠的平分线BE 交AC 的延长线于点E .(1)求CBE ∠的度数;(2)过点D 作//DF BE ,交AC 的延长线于点F ,求F ∠的度数.【答案】(1)62°;(2)28°【解析】【分析】(1)根据三角形的外角的性质求出CBD ∠,根据角平分线的定义计算,得到答案;(2)根据平行线的性质解答即可.【详解】解:(1)90ACB ∠=︒,34A ∠=︒,124CBD ∴∠=︒, BE 是CBD ∠的平分线,1622CBE CBD ∴∠=∠=︒; (2)90ECB ∠=︒,62CBE ∠=︒,28CEB ∴∠=︒,//DF BE ,28F CEB ∴∠=∠=︒.【点睛】本题考查的是三角形的外角的性质、平行线的性质,掌握三角形的一个外角等于和它不相邻的两个内角的和是解题的关键.25. 已知25a b +=,156ab =,求下列代数式的值:(1)22a b +(2)32232a b a b ab -+【答案】(1)313;(2)156【解析】【分析】(1)将+a b 、ab 的值代入原式2()2a b ab =+-计算可得;(2)将+a b 、ab 的值代入原式22(2)ab a ab b =-+计算可得.【详解】解:(1)当25a b +=,156ab =时,原式2()2a b ab =+-2252156=-⨯625312=-313=; (2)当25a b +=,156ab =时,原式22(2)ab a ab b =-+2156(254156)=⨯-⨯156=.【点睛】本题主要考查代数式的求值,解题的关键是熟练掌握完全平方公式及其灵活变形.26. 将一副三角板按如图所示放置,DEF 的直角边DE 与ABC 的斜边AC 重合在一起,并将DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)DEF 在移动的过程中,FCE ∠与CFE ∠度数之和是否为定值,若是定值,请求出这个值,并说明理由;(2)能否将DEF 移动至某位置,使//FC AB ?请求出CFE ∠的度数.【答案】(1)FCE ∠与CFE ∠度数之和是定值,为45︒;(2)能,15CFE ∠=︒【解析】【分析】(1)FED ∠是EFC ∆的外角,且45FED ∠=︒可得;(2)根据//FC AB ,且90B ∠=︒且60ACB ∠=︒知30FCE ∠=︒,再根据(1)中的结论可得答案.【详解】解:(1)FCE ∠与CFE ∠度数之和是定值,为45︒;FED ∠是EFC ∆的外角,且45FED ∠=︒,45FCE CFE ∴∠+∠=︒;(2)//FC AB ,且90B ∠=︒,90FCB ∠∴=︒,60ACB ∠=︒,30FCE ∴∠=︒,又45FCE CFE ∠+∠=︒,15CFE ∴∠=︒.【点睛】本题主要考查平行线的判定和性质,解题的关键是掌握平行线的判定及三角形外角的性质. 27. 【阅读理解】勾股定理是几何学中一颗光彩夺目的明珠.她反映了直角三角形的三边关系即直角三角形两直角边(即“勾”,“股”)边长的平方和等于斜边(即“弦”)边长的平方.也就是说,设直角三角形两直角边为a 和b ,斜边为c ,那么222+=a b c .迄今为止,全世界发现勾股定理的证明方法约有400种.如:美国第二十任总统伽菲尔德的“总统证法”(如图1),利用三个直角三角形拼成一个直角梯形,于是直角梯形的面积可以表示为()212a b +或者是211222ab c ⨯+,因此得到()221112222a b ab c +=⨯+,运用乘法公式展开整理得到222+=a b c .【尝试探究】(1)其实我国古人早就运用各种方法证明勾股定理,如图2用四个直角三角形拼成正方形,中间也是一个正方形,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你根据古人的拼图完成证明.(2)如图3是2002年在中国北京召开的国际数学家大会会标,利用此图也能证明勾股定理,其中四个直角三角形直角边分别为a 、b ,斜边长为c ,请你帮助完成.【实践应用】(3)已知a 、b 、c 为Rt ABC △的三边()c b a >>,试比较代数式2222a c a b +与44c b -的大小关系.【答案】(1)见解析;(2)见解析;(3)代数式2222a c a b +与44c b -的大小关系是相等.【解析】【分析】[尝试探究](1)根据图形面积的不同求法即可得到结论;(2)根据图形面积的不同求法即可得到结论;[实践应用](3)分解因式,根据勾股定理即可得到结论.【详解】解:[尝试探究](1)图中大正方形的面积可表示为2()a b +,也可表示为214()2c ab +⨯, 即221()4()2a b c ab +=+⨯,222a b c ∴+=;(2)图中大正方形的面积可表示为2c ,也可表示为21()4()2b a ab -+⨯, 即221()4()2b a abc -+⨯=, 222a b c ∴+=;[实践应用](3)2222222()a c a b a c b +=+,442222222()()()c b c b c b c b a -=+-=+,∴代数式2222a c a b +与44c b -的大小关系是相等.【点睛】本题考查了勾股定理的证明,此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键. 28. 学习几何的一个重要方法就是要学会抓住基本图形,让我们来做一次研究性学习.(1)如图①所示的图形,像我们常见的学习用品一圆规,我们常把这样的图形叫做“规形图”.请你观察“规形图”,试探究∠BOC 与∠A 、∠B 、∠C 之间的关系,并说明理由:(2)如图②,若△ABC 中,BO 平分∠ABC ,CO 平分∠ACB ,且它们相交于点O ,试探究∠BOC 与∠A 的关系;(3)如图③,若△ABC 中,∠ABO =13∠ABC ,∠ACO =13∠ACB ,且BO 、CO 相交于点O ,请直接写出∠BOC 与∠A 的关系式为 _.【答案】(1)∠BOC=∠BAC+∠B+∠C .理由见解析;(2)∠BOC=90°+12∠A .理由见解析; (3)∠BOC=60°+23∠A .理由见解析. 【解析】【分析】(1)如图1,连接AO ,延长AO 到H .由三角形外角的性质证明即可得到结论:∠BOC=∠BAC+∠B+∠C ;(2)利用角平分线的定义,三角形的内角和定理证明可得到结论:∠BOC=90°+12∠A;(3)类似(2)可证明结论:∠BOC=60°+23∠A.【详解】解:(1)∠BOC=∠BAC+∠B+∠C.理由:如图1,连接AO,延长AO到H.∵∠BOH=∠B+∠BAH,∠CAH=∠C+∠CAH,∴∠BOC=∠B+∠BAH+∠CAH+∠C=∠BAC+∠B+∠C,∴∠BOC=∠BAC+∠B+∠C;(2)∠BOC=90°+12∠A.理由:如图2,∵OB,OC是△ABC的角平分线,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∴∠BOC=180°-12(∠ABC+∠ACB)=180°-(180°-∠A)=90°+12∠A,∴∠BOC=90°+12∠A;(3)∠BOC=60°+23∠A.理由:∵∠ABO=13∠ABC,∠ACO=13∠ACB,∴∠BOC=180°-23(∠ABC+∠ACB)=180°-23(180°-∠A)=60°+23∠A.故答案为∠BOC=60°+23∠A.【点睛】本题考查三角形的内角和定理,三角形的外角的性质等知识,解题的关键是熟练掌握三角形的角的基本知识.。
初一下册数学期中试卷及答案(苏科版)

初一下册数学期中试卷及答案(苏科版) 一、选择题(本大题共 10 小题,每小题 2 分,共 20 分.每小题只有 一个选项是正确的,把正确选项前的字母填在答题卷相应位置上.) 1.观察下列图案,在 A、B、C、D 四幅图案中,能通过图案(1)平移 得到的是
2.水是生命之源,水是由氢原予和氧原子组成的ห้องสมุดไป่ตู้其中氢原子的直 径为 0.0000000001m, 把这个数值用科学记数法表示为 A.1×109B.1×1010C.1×10-9D.1×10-10 3.已知∠1 与∠2 是同位角,则 A.∠1=∠2B.∠1>∠2C.∠126.(本题满分 8 分)阅读下列材料: “≥0”这个结论在数学中非常有用,有时我们需要将代数式配成完 全平方式.例如:, ∵≥0, ∴≥1, ∴≥1.
(2)如图 2,已知 AB 不平行 CD,AD、BC 分别是∠BAP 和∠ABM 的角 平分线,又 DE、CE 分别是∠ADC 和∠BCD 的角平分线,点 A、B 在运 动的过程中,∠CED 的大小是否会发生变化?若发生变化,请说明理 由;若不发生变化,请直接写出其值.
(3)如图 3,延长 BA 至 G,已知∠BAO、∠OAG 的角平分线与∠BOQ 的角平分线及延长线相交于 E、F,在△AEF 中,如果有一个角是另一 个角的 3 倍,试求∠ABO 的度数.
精心整理 试利用“配方法”解决下列问题: (1)填空:()2+; (2)已知,求的值; (3)比较代数式与的大小. 27.(本题满分 8 分)直线 MN 与直线 PQ 垂直相交于点 O,点 A 在直线 PQ 上运动,点 B 在直线 MN 上运动. (1)如图 1,已知 AE、BE 分别是∠BAO 和∠ABO 角的平分线,点 A、 B 在运动的过程中,∠AEB 的大小是否会发生变化?若发生变化,请 说明变化的情况;若不发生变化,试求出∠AEB 的大小.
苏科版七年级下学期期中数学试卷含答案

七年级(下)期中数学试卷一、选择题(每题3分,共24分;请将答案填在答题卷上)1.下列计算正确的是()A.a3+a3=a6B.(2a)3=2a3C.(a3)2=a5D.a•a5=a62.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)3.如图,不一定能推出a∥b的条件是()A.∥1=∥3B.∥2=∥4C.∥1=∥4D.∥2+∥3=180°4.如图,下列说法正确的是()A.∥1与∥C是同位角B.∥1与∥3是对顶角C.∥3与∥C是内错角D.∥B与∥3是同旁内角5.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1B.2m C.2D.m+26.已知∥ABC中,∥B是∥A的2倍,∥C比∥A大20°,则∥A等于()A.40°B.60°C.80°D.90°7.一个边长为a的正方形,若将其边长增加6cm,则新的正方形的面积增加()A.36cm2B.12acm2C.(36+12a)cm2D.以上都不对8.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到∥DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.42二、填空题(每空2分,共24分;请将答案填在答题卷上)9.计算:(﹣2)0=;=;(﹣0.5)•2=.10.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为平方毫米.11.如果一个多边形的内角和是1440°,那么这个多边形是边形.12.若2m=2,2n=3,则23m+2n=.13.已知在∥ABC中有两个角的大小分别为40°和70°,则这个三角形是;若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是.14.若x2+(m﹣2)x+9是一个完全平方式,则m的值是.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是(用a、b的代数式表示).16.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了米.17.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到∥AME.当AB=1时,∥AME的面积记为S1;当AB=2时,∥AME的面积记为S2;当AB=3时,∥AME的面积记为S3;则S3﹣S2=.三、解答题(本大题共有8小题,共52分,请写出必要的演算或推理过程.)18.计算:(1)(2)(3)a2•a3•a5+(﹣2a5)2﹣a12÷a2(4)(2x+1)(2x﹣1)﹣4(x﹣1)2.19.因式分解(1)a2(x+y)﹣b2(x+y)(2)x4﹣8x2+16.20.对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.21.画图并填空:如图,在方格纸内将∥ABC经过一次平移后得到∥A′B′C′,图中标出了点B的对应点B′.(1)补全∥A′B′C′根据下列条件,利用网格点和三角板画图;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)设格点小正方形边长为1,∥A′B′C′的面积为.22.如图,AD∥BE,AE平分∥BAD,CD与AE相交于F,∥CFE=∥E.求证:AB∥CD.23.如图①,在∥ABC中,CD、CE分别是∥ABC的高和角平分线,∥BAC=α,∥B=β(α>β).(1)若α=70°,β=40°,求∥DCE的度数;(2)试用α、β的代数式表示∥DCE的度数(直接写出结果);(3)如图②,若CE是∥ABC外角∥ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∥DCE的度数.24.我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释(a+b)2=a2+2ab+b2,(1)图(乙)是四张全等的矩形纸片拼成的图形,请利用图中阴影部分面积的不同表示方法,写出一个关于a,b代数恒等式表示;(2)请构图解释:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)请通过构图因式分解:a2+3ab+2b2.25.已知:∥MON=40°,OE平分∥MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∥OAC=x°.(1)如图1,若AB∥ON,则①∥ABO的度数是;②当∥BAD=∥ABD时,x=;当∥BAD=∥BDA时,x=.(2)如图2,若AB∥OM,则是否存在这样的x的值,使得∥ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.-学年江苏省无锡市江阴市长泾片七年级(下)期中数学试卷参考答案与试题解析一、选择题(每题3分,共24分;请将答案填在答题卷上)1.下列计算正确的是()A.a3+a3=a6B.(2a)3=2a3C.(a3)2=a5D.a•a5=a6【考点】幂的乘方与积的乘方;合并同类项;同底数幂的乘法.【分析】直接利用积的乘方运算法则以及同底数幂的乘法运算法则、合并同类项法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(2a)3=8a3,故此选项错误;C、(a3)2=a6,故此选项错误;D、a•a5=a6,故此选项正确;故选:D.2.下列算式能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.C.(3x﹣y)(﹣3x+y)D.(﹣m﹣n)(﹣m+n)【考点】平方差公式.【分析】可以用平方差公式计算的式子的特点是:两个二项式相乘,并且这两个二项式中有一项完全相同,另一项互为相反数.相乘的结果应该是:右边是乘式中两项的平方差(相同项的平方减去相反项的平方).【解答】解:A、(2a+b)(2b﹣a)=ab﹣2a2+2b2不符合平方差公式的形式,故错误;B、原式=﹣(+1)(+1)=(+1)2不符合平方差公式的形式,故错误;C、原式=﹣(3x﹣y)(3x﹣y)=(3x﹣y)2不符合平方差公式的形式,故错误;D、原式=﹣(n+m)(n﹣m)=﹣(n2﹣m2)=﹣n2+m2符合平方差公式的形式,故正确.故选D.3.如图,不一定能推出a∥b的条件是()A.∥1=∥3B.∥2=∥4C.∥1=∥4D.∥2+∥3=180°【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:A、∥∥1和∥3为同位角,∥1=∥3,∥a∥b,故A选项正确;B、∥∥2和∥4为内错角,∥2=∥4,∥a∥b,故B选项正确;C、∥∥1=∥4,∥3+∥4=180°,∥∥3+∥1=180°,不符合同位角相等,两直线平行的条件,故C选项错误;D、∥∥2和∥3为同位角,∥2+∥3=180°,∥a∥b,故D选项正确.故选:C.4.如图,下列说法正确的是()A.∥1与∥C是同位角B.∥1与∥3是对顶角C.∥3与∥C是内错角D.∥B与∥3是同旁内角【考点】同位角、内错角、同旁内角.【分析】同位角就是:两个角都在截线的同旁,又分别处在被截的两条直线同侧的位置的角,内错角位于两直线的中间,截线的两侧;同旁内角位于两直线的中间,截线的同旁,可得答案.【解答】解:A、∥1与∥C不是两直线被截线所解得到的同位角,故A错误;B、∥1的反向延长线∥3的边,故B错误;C、∥3与∥C是内错角,故C正确;D、∥B与∥3不是两直线被截线所解得到的同旁内角,故D错误;故选:C.5.把多项式(m+1)(m﹣1)+(m﹣1)提取公因式(m﹣1)后,余下的部分是()A.m+1B.2m C.2D.m+2【考点】因式分解-提公因式法.【分析】先提取公因式(m﹣1)后,得出余下的部分.【解答】解:(m+1)(m﹣1)+(m﹣1),=(m﹣1)(m+1+1),=(m﹣1)(m+2).故选D.6.已知∥ABC中,∥B是∥A的2倍,∥C比∥A大20°,则∥A等于()A.40°B.60°C.80°D.90°【考点】三角形内角和定理.【分析】设∥A=x,则∥B=2x,∥C=x+20°,再根据三角形内角和定理求出x的值即可.【解答】解:设∥A=x,则∥B=2x,∥C=x+20°,则x+2x+x+20°=180°,解得x=40°,即∥A=40°.故选A.7.一个边长为a的正方形,若将其边长增加6cm,则新的正方形的面积增加()A.36cm2B.12acm2C.(36+12a)cm2D.以上都不对【考点】完全平方公式.【分析】根据面积公式求出正方形的面积,再相减即可得出答案.【解答】解:根据题意得:(a+6)2﹣a2=a2+12a+36﹣a2=12a+36,故选C.8.如图,两个全等的直角三角形重叠在一起,将其中的一个三角形沿着点B到C的方向平移到∥DEF的位置,AB=10,DO=4,平移距离为6,则阴影部分面积为()A.48B.96C.84D.42【考点】平移的性质.【分析】根据平移的性质得出BE=6,DE=AB=10,则OE=6,则阴影部分面积=S四边形ODFC=S梯形ABEO,根据梯形的面积公式即可求解.【解答】解:由平移的性质知,BE=6,DE=AB=10,∥OE=DE﹣DO=10﹣4=6,∥S四边形ODFC =S梯形ABEO=(AB+OE)•BE=(10+6)×6=48.故选:A.二、填空题(每空2分,共24分;请将答案填在答题卷上)9.计算:(﹣2)0=1;=4;(﹣0.5)2016•22015=.【考点】负整数指数幂;幂的乘方与积的乘方;零指数幂.【分析】根据零指数幂:a0=1(a≠0);负整数指数幂:a﹣p=(a≠0,p为正整数),以及积的乘方计算公式:(ab)n=a n b n(n是正整数)进行计算即可.【解答】解:(﹣2)0=1;=22=4;(﹣0.5)2016•22015=()2016•22015=×()2015•22015=×(2)2015=.故答案为:1;4;.10.微电子技术的不断进步,使半导体材料的精细加工尺寸大幅度缩小.某种电子元件的面积大约为0.000 000 7平方毫米,用科学记数法表示为7×10﹣7平方毫米.【考点】科学记数法—表示较小的数.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000 000 7=7×10﹣7.故答案为:7×10﹣7.11.如果一个多边形的内角和是1440°,那么这个多边形是十边形.【考点】多边形内角与外角.【分析】利用多边形的内角和为(n﹣2)•180°即可解决问题.【解答】解:设它的边数为n,根据题意,得(n﹣2)•180°=1440°,所以n=10.所以这是一个十边形.12.若2m=2,2n=3,则23m+2n=72.【考点】幂的乘方与积的乘方;同底数幂的乘法.【分析】直接利用幂的乘方运算法则以及同底数幂的乘法运算法则将原式变形求出答案.【解答】解:∥2m=2,2n=3,∥23m+2n=(2m)3×(2n)2=23×32=72.故答案为:72.13.已知在∥ABC中有两个角的大小分别为40°和70°,则这个三角形是等腰三角形;若三角形的两边长为3和5,第三边长是偶数,则第三边长可以是4或6.【考点】三角形内角和定理;三角形三边关系.【分析】(1)根据三角形的内角和定理,求出第三个角,再判断三角形的形状.(2)能够根据三角形的三边关系“第三边应等于两边之差,而小于两边之和”,求得第三边的取值范围;再根据第三边是偶数这一条件,求得第三边的值即可.【解答】解:(1)第三个角是180°﹣40°﹣70°=70°,则三角形是等腰三角形;故答案为:等腰三角形;(2)由题意,令第三边为x,则5﹣3<x<5+3,即2<x<8,∥第三边长为偶数,∥第三边长是4或6故答案为:4或6.14.若x2+(m﹣2)x+9是一个完全平方式,则m的值是8或﹣4.【考点】完全平方式.【分析】根据完全平方公式得到x2+(m﹣2)x+9=(x±3)2,而(x±3)2∥x2±6x+9,则m ﹣2=±6,然后解两个方程即可得到m的值.【解答】解:∥x2+(m﹣2)x+9是一个完全平方式,∥x2+(m﹣2)x+9=(x±3)2,而(x±3)2∥x2±6x+9,∥m﹣2=±6,∥m=8或m=﹣4.故答案为8或﹣4.15.一个大正方形和四个全等的小正方形按图①、②两种方式摆放,则图②的大正方形中未被小正方形覆盖部分的面积是ab(用a、b的代数式表示).【考点】平方差公式的几何背景.【分析】利用大正方形的面积减去4个小正方形的面积即可求解.【解答】解:设大正方形的边长为x1,小正方形的边长为x2,由图①和②列出方程组得,解得,②的大正方形中未被小正方形覆盖部分的面积=()2﹣4×()2=ab.故答案为:ab.16.如图,小明在操场上从A点出发,沿直线前进10米后向左转40°,再沿直线前进10米后,又向左转40°,照这样走下去,他第一次回到出发地A点时,一共走了90米.【考点】多边形内角与外角.【分析】利用多边形的外角和即可解决问题.【解答】解:由题意可知,小明第一次回到出发地A点时,他一共转了360°,且每次都是向左转40°,所以共转了9次,一次沿直线前进10米,9次就前进90米.17.如图,线段AC=n+1(其中n为正整数),点B在线段AC上,在线段AC同侧作正方形ABMN及正方形BCEF,连接AM、ME、EA得到∥AME.当AB=1时,∥AME的面积记为S1;当AB=2时,∥AME的面积记为S2;当AB=3时,∥AME的面积记为S3;则S3﹣S2=.【考点】整式的混合运算.【分析】根据连接BE,则BE∥AM,利用∥AME的面积=∥AMB的面积即可得出S n=n2,S n=(n﹣1)2=n2﹣n+,再代值计算即可得出答案.﹣1【解答】解:连接BE.∥在线段AC同侧作正方形ABMN及正方形BCEF,∥BE∥AM,∥∥AME与∥AMB同底等高,∥∥AME的面积=∥AMB的面积,∥当AB=n时,∥AME的面积记为S n=n2,S n=(n﹣1)2=n2﹣n+,﹣1∥当n≥2时,S n﹣S n﹣1===.故答案为:.三、解答题(本大题共有8小题,共52分,请写出必要的演算或推理过程.)18.计算:(1)(2)(3)a2•a3•a5+(﹣2a5)2﹣a12÷a2(4)(2x+1)(2x﹣1)﹣4(x﹣1)2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)先算零指数幂,负整数指数幂,平方,再计算加减法即可求解;(2)先算积的乘方,再根据单项式的乘法法则计算即可求解;(3)先算同底数幂的乘除法,积的乘方,再合并同类项即可求解;(4)先根据平方差公式,完全平方公式计算,再合并同类项即可求解.【解答】解:(1)==;(2)==﹣18x8y13;(3)a2•a3•a5+(﹣2a5)2﹣a12÷a2=a10+4a10﹣a10=4a10;(4)(2x+1)(2x﹣1)﹣4(x﹣1)2=4x2﹣1﹣4(x2﹣2x+1)=4x2﹣1﹣4x2+8x﹣4=8x﹣5.19.因式分解(1)a2(x+y)﹣b2(x+y)(2)x4﹣8x2+16.【考点】提公因式法与公式法的综合运用.【分析】(1)原式提取公因式,再利用平方差公式分解即可;(2)原式利用完全平方公式,以及平方差公式分解即可.【解答】解:(1)原式=(a2﹣b2)(x+y)=(a+b)(a﹣b)(x+y);(2)原式=(x2﹣4)2=[(x+2)(x﹣2)]2=(x+2)2(x﹣2)2.20.对于任何实数,我们规定符号=ad﹣bc,例如:=1×4﹣2×3=﹣2(1)按照这个规律请你计算的值;(2)按照这个规定请你计算,当a2﹣3a+1=0时,求的值.【考点】整式的混合运算—化简求值;有理数的混合运算.【分析】(1)根据已知展开,再求出即可;(2)根据已知展开,再算乘法,合并同类项,变形后代入求出即可.【解答】解:(1)原式=﹣2×5﹣3×4=﹣22;(2)原式=(a+1)(a﹣1)﹣3a(a﹣2)=a2﹣1﹣3a2+6a=﹣2a2+6a﹣1,∥a2﹣3a+1=0,∥a2﹣3a=﹣1,∥原式=﹣2(a2﹣3a)﹣1=﹣2×(﹣1)﹣1=1.21.画图并填空:如图,在方格纸内将∥ABC经过一次平移后得到∥A′B′C′,图中标出了点B的对应点B′.(1)补全∥A′B′C′根据下列条件,利用网格点和三角板画图;(2)画出AB边上的中线CD;(3)画出BC边上的高线AE;(4)设格点小正方形边长为1,∥A′B′C′的面积为8.【考点】作图-平移变换;作图—复杂作图.【分析】(1)根据图形平移的性质画出∥A′B′C′即可;(2)连接点C与AB的中点D即可;(3)过点A向线段BC所在的直线作垂线即可;(4)根据三角形的面积公式即可得出结论.【解答】解:(1)如图,∥A′B′C′即为所求;(2)如图,线段CD即为AB边上的中线;(3)如图,线段AE即为BC边上的高线;(4)S∥ABC=×4×4=8.故答案为:8.22.如图,AD∥BE,AE平分∥BAD,CD与AE相交于F,∥CFE=∥E.求证:AB∥CD.【考点】平行线的判定与性质.【分析】由AE为角平分线得到一对角相等,再由AD与BE平行得到一对内错角相等,等量代换得到∥1=∥E,再由已知∥CFE=∥E,等量代换得到一对同位角相等,利用同位角相等两直线平行即可得证.【解答】证明:∥AE平分∥BAD,∥∥1=∥2,∥AD∥BE,∥∥2=∥E,∥∥1=∥E,∥∥CFE=∥E,∥∥1=∥CFE,∥AB∥CD.23.如图①,在∥ABC中,CD、CE分别是∥ABC的高和角平分线,∥BAC=α,∥B=β(α>β).(1)若α=70°,β=40°,求∥DCE的度数;(2)试用α、β的代数式表示∥DCE的度数(直接写出结果);(3)如图②,若CE是∥ABC外角∥ACF的平分线,交BA延长线于点E,且α﹣β=30°,求∥DCE的度数.【考点】三角形的外角性质;三角形内角和定理.【分析】(1)三角形的内角和是180°,已知∥BAC与∥ABC的度数,则可求出∥BAC的度数,然后根据角平分线的性质求出∥BCE,再利用三角形的一个外角等于和它不相邻的两个内角的和求出∥DEC的度数,进而求出∥DCE的度数;(2).(3)作∥ACB的内角平分线CE′,根据角平分线的性质求出∥ECE′=∥ACE+∥ACE′==90°,进而求出∥DCE的度数.【解答】解:(1)因为∥ACB=180°﹣(∥BAC+∥B)=180°﹣(70°+40°)=70°,又因为CE是∥ACB的平分线,所以.因为CD是高线,所以∥ADC=90°,所以∥ACD=90°﹣∥BAC=20°,所以∥DCE=∥ACE﹣∥ACD=35°﹣20°=15°.(2).(3)如图,作∥ACB的内角平分线CE′,则.因为CE是∥ACB的外角平分线,所以∥ECE′=∥ACE+∥ACE′===90°,所以∥DCE=90°﹣∥DCE′=90°﹣15°=75°.即∥DCE的度数为75°.24.我们可以用几何图形来解决一些代数问题,如图(甲)可以来解释(a+b)2=a2+2ab+b2,(1)图(乙)是四张全等的矩形纸片拼成的图形,请利用图中阴影部分面积的不同表示方法,写出一个关于a,b代数恒等式表示(a﹣b)2=(a+b)2﹣4ab;(2)请构图解释:(a+b+c)2=a2+b2+c2+2ab+2bc+2ac;(3)请通过构图因式分解:a2+3ab+2b2.【考点】因式分解的应用;完全平方公式的几何背景.【分析】(1)根据阴影部分的两种面积表示形式可得出恒等式.(2)正方形的面积等于边长的平方可构建一个边长为a+b+c的正方形来验证等式.(3)可通过构建长方形,利用长方形的面积来验证等式.【解答】解:(1)阴影部分的边长为(a﹣b),∥(a﹣b)2=(a+b)2﹣4ab.(2)(a+b+c)2=a(a+b+c)+b(a+b+c)+c(a+b+c)=a2+b2+c2+2ab+2bc+2ac.(3)(a+2b)(a+b)=a(a+b)+2b(a+b),∥可得a2+3ab+2b2=(a+2b)(a+b).25.已知:∥MON=40°,OE平分∥MON,点A、B、C分别是射线OM、OE、ON上的动点(A、B、C不与点O 重合),连接AC交射线OE于点D.设∥OAC=x°.(1)如图1,若AB∥ON,则①∥ABO的度数是20°;②当∥BAD=∥ABD时,x=120°;当∥BAD=∥BDA时,x=60°.(2)如图2,若AB∥OM,则是否存在这样的x的值,使得∥ADB中有两个相等的角?若存在,求出x的值;若不存在,说明理由.【考点】三角形的角平分线、中线和高;平行线的性质;三角形内角和定理.【分析】利用角平分线的性质求出∥ABO的度数是关键,分类讨论的思想.【解答】解:(1)①∥∥MON=40°,OE平分∥MON∥∥AOB=∥BON=20°∥AB∥ON∥∥ABO=20°②∥∥BAD=∥ABD∥∥BAD=20°∥∥AOB+∥ABO+∥OAB=180°∥∥OAC=120°∥∥BAD=∥BDA,∥ABO=20°∥∥BAD=80°∥∥AOB+∥ABO+∥OAB=180°∥∥OAC=60°故答案为:①20 ②120,60(2)①当点D在线段OB上时,若∥BAD=∥ABD,则x=20若∥BAD=∥BDA,则x=35若∥ADB=∥ABD,则x=50②当点D在射线BE上时,因为∥ABE=110°,且三角形的内角和为180°,所以只有∥BAD=∥BDA,此时x=125.综上可知,存在这样的x的值,使得∥ADB中有两个相等的角,且x=20、35、50、125.2016年4月28日。
苏科版七年级下学期期中考试数学试题含答案解析
年级数学期中试卷(考试时间120分钟 ) 年4月一、选择题。
(每小题3分,共24分)1 用下列各组数据作为长度的三条线段能组成三角形的是( )A .4,5,6B .5,6,11C .3,3,8D .2,7,4 2 下列运算正确的是( ).A .623a a a ÷=B .33333a a a a =⋅⋅C .()4312aa = D .()22224a b a b +=+3 如图,下列说法正确的是( ).A .若AB ∥DC ,则∠1=∠2 B .若AD ∥BC ,则∠3=∠4C .若∠1=∠2,则AB ∥DCD .若∠2+∠3+∠A =180°,则AB ∥DC4 下列等式由左边到右边的变形中,属于因式分解的是 ( )A .1)1)(1(2-=-+a a aB .22)3(96-=+-a a aC .1)2(122++=++x x x xD .y x y x y x 222343618•-=-5二元一次方程组的是( )A .B .C .D . 6如果a=(﹣99)0,b=(﹣0.1)﹣1,c=,那么a 、b 、c 三数的大小为( ) A .a >b >c B .c >a >b C .a >c >b D .c >b >a 下列方程组中,是 7 根据图中数据,计算大长方形的面积,通过不同的计算方法,你发现的结论是( )A .(a+b )(a+2b )=a 2+3ab+2b 2B .(3a+b )(a+b )=3a 2+4ab+b 2C .(2a+b )(a+b )=2a 2+3ab+b 2D .(3a+2b )(a+b )=3a 2+5ab+2b 28 如图,△ABC的面积为1.第一次操作:分别延长AB,BC,CA至点A1,B1,C1,使A1B=AB,B1C=BC,C1A=CA,顺次连接A1,B1,C1,得到△A1B1C1.第二次操作:分别延长A1B1,B1C1,C1A1至点A2,B2,C2,使A2B1=A1B1,B2C1=B1C1,C2A1=C1A1,顺次连接A2,B2,C2,得到△A2B2C2,…按此规律,要使得到的三角形的面积超过2016,最少经过次操作( ) A.3 B.4 C.5 D.6二、填空题(每小题3分,共30分).9世界上最小的开花结果植物是澳大利亚的出水浮萍,这种植物的果实像一个微小的无花果,质量只有0.00 000 0076克,用科学记数法表示是__________克10 已知2,3==nm aa,则nma+=___________.11 已知方程5212423=--+nm yx是二元一次方程, 则m =______;n =______.12一个多边形的内角和与外角和的和是1260°,那么这个多边形的边数n=______13已知x+y=4,x﹣y=﹣2,则x2﹣y2= .14如果x2+mx-n=(x+3)(x-2),则m+n的值为______.15若x2+kx+16是完全平方式,则k的值为.16如图,已知矩形纸片的一条边经过直角三角形纸片的直角顶点,若矩形纸片的一组对边与直角三角形的两条直角边相交成∠1、∠2,则∠2-∠1=________17一个正方形和两个等边三角形的位置如图所示,若∠3=50。
苏科版七年级下期中数学试卷含答案解析
七年级(下)期中数学试卷(解析版)一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个 B.2个 C.3个 D.4个2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C. D.3.下列说法中,不正确的是()A.10的立方根是B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.14.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.45.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或29.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣610.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC=°.14.如果=1.732,=5.477,那么0.0003的平方根是.15.把方程x+y=2改写成用x表示y的式子是.17.已知(x﹣1)2=3,则x=.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=,b=.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A的坐标为.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.(6分)计算:(﹣)2﹣﹣+﹣|﹣6|.22.(8分)解方程组:(1)(2).23.(8分)已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.24.(8分)在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.25.(10分)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN∴∠GMN=∠BMN同理∠GNM=∠DNM.∵AB∥CD,∴∠BMN+∠DNM=∴∠GMN+∠GNM=∵∠GMN+∠GNM+∠G=∴∠G=∴MG与NG的位置关系是26.(10分)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.27.(10分)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.-学年江苏省南京市XX中学七年级(下)期中数学试卷参考答案与试题解析一、选择题:本大题共10小题,在每小题给出的四个选项中,只有一项是正确的,请把正确的选项选出来.每小题选对得3分,选错、不选或选出的答案超过一个均记零分.1.下面四个图形中,∠1与∠2是对顶角的图形有()A.1个 B.2个 C.3个 D.4个【考点】对顶角、邻补角.【分析】根据对顶角的定义,两条直线相交后所得的只有一个公共顶点且两边互为反向延长线,这样的两个角叫做对顶角,即可解答.【解答】解:根据对顶角的定义可知:只有第3个图中的是对顶角,其它都不是.故选:A.【点评】本题考查对顶角的定义,解决本题的关键是熟记对顶角的定义.2.下列四组图形中,有一组中的两个图形经过平移其中一个能得到另一个,这组图形是()A.B.C. D.【考点】生活中的平移现象.【分析】找到平移前后形状与大小没有改变,并且对应点的连线平行且相等的图形即可.【解答】解:A、对应点的连线相交,不能通过平移得到,不符合题意;B、形状不同,不能通过平移得到,不符合题意;C、对应点的连线相交,不能通过平移得到,不符合题意;D、能通过平移得到,符合题意;故选D.【点评】用到的知识点为:平移前后对应点的连线平行且相等,并且不改变物体的形状与大小.3.下列说法中,不正确的是()A.10的立方根是B.﹣2是4的一个平方根C.的平方根是D.0.01的算术平方根是0.1【考点】立方根;平方根;算术平方根.【分析】根据立方根,平方根的定义,即可解答.【解答】解:A.10的立方根是,正确;B.﹣2是4的一个平方根,正确;C.的平方根是±,故错误;D.0.01的算术平方根是0.1,正确;故选C.【点评】本题考查了平方根,立方根,解决本题的关键是熟记立方根,平方根的定义.4.如图,下列能判定AB∥CD的条件有()个.(1)∠B+∠BCD=180°;(2)∠1=∠2;(3)∠3=∠4;(4)∠B=∠5.A.1 B.2 C.3 D.4【考点】平行线的判定.【分析】在复杂的图形中具有相等关系或互补关系的两角首先要判断它们是否是同位角、内错角或同旁内角,被判断平行的两直线是否由“三线八角”而产生的被截直线.【解答】解:(1)利用同旁内角互补判定两直线平行,故(1)正确;(2)利用内错角相等判定两直线平行,∵∠1=∠2,∴AD∥BC,而不能判定AB ∥CD,故(2)错误;(3)利用内错角相等判定两直线平行,故(3)正确;(4)利用同位角相等判定两直线平行,故(4)正确.∴正确的为(1)、(3)、(4),共3个;故选:C.【点评】正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键,只有同位角相等、内错角相等、同旁内角互补,才能推出两直线平行.5.点M(a,a﹣1)不可能在()A.第一象限B.第二象限C.第三象限D.第四象限【考点】点的坐标.【分析】分a﹣1>0和a﹣1<0两种情况讨论,即可得到a的取值范围,进而求出M所在的象限.【解答】解:当a﹣1>0时,a>1,点M可能在第一象限;当a﹣1<0时,a<1,点M在第三象限或第四象限;所以点M不可能在第二象限.故选B.【点评】本题考查象限点的坐标的符号特征,根据第三象限为(﹣,﹣)第二象限为(﹣,+),判断点M的符号不可能为(﹣,+).记住横坐标相同的点在一四象限或二三象限是关键.6.编队飞行(即平行飞行)的两架飞机A,B在坐标系中的坐标分别为A(﹣1,2),B(﹣2,3),当飞机A飞到指定位置的坐标是(2,﹣1)时,飞机B的坐标是()A.(1,5)B.(﹣4,5)C.(1,0)D.(﹣5,6)【考点】坐标确定位置.【分析】根据平移规律,由A的坐标变化情况确定B的坐标.【解答】解:当飞机A从A(﹣1,2),飞到指定位置的坐标是(2,﹣1)时,飞机在平面直角坐标系中是向x轴正方向,及y轴的负方向飞行的,飞机的横坐标移动的距离=|2﹣(﹣1)|=3,纵坐标移动的距离=|﹣1﹣2|=3;由于是平行飞行,同理飞机B的坐标也是这样移动的,横坐标向x轴正方向加3,变为﹣2+3=1,纵坐标向y轴负方向减3变为3﹣3=0;∴飞机B的坐标变为(1,0).故选C.【点评】本题考查了一个点在平面直角坐标系中的平移,解题关键要明白是向那个方向移动,及移动多少单位.7.如图,已知棋子“车”的坐标为(﹣2,3),棋子“马”的坐标为(1,3),则棋子“炮”的坐标为()A.(3,2)B.(3,1)C.(2,2)D.(﹣2,2)【考点】坐标确定位置.【分析】根据已知两点的坐标确定符合条件的平面直角坐标系,然后确定其它点的坐标.【解答】解:由棋子“车”的坐标为(﹣2,3)、棋子“马”的坐标为(1,3)可知,平面直角坐标系的原点为底边正中间的点,以底边为x轴,向右为正方向,以左右正中间的线为y轴,向上为正方向;根据得出的坐标系可知,棋子“炮”的坐标为(3,2).故选:A.【点评】此题考查了点的坐标解决实际问题的能力和阅读理解能力,解决此类问题需要先确定原点的位置,再求未知点的位置.或者直接利用坐标系中的移动法则“右加左减,上加下减”来确定坐标.8.若x|2m﹣3|+(m﹣2)y=6是关于x、y的二元一次方程,则m的值是()A.1 B.任何数C.2 D.1或2【考点】二元一次方程的定义.【分析】根据二元一次方程的定义列式进行计算即可得解.【解答】解:根据题意得,|2m﹣3|=1且m﹣2≠0,所以,2m﹣3=1或2m﹣3=﹣1且m≠2,解得m=2或m=1且m≠2,所以m=1.故选A.【点评】本题考查了二元一次方程的形式及其特点:含有2个未知数,未知数的最高次项的次数是1的整式方程,要注意未知项的系数不等于0.9.若方程组中的x是y的2倍,则a等于()A.﹣9 B.8 C.﹣7 D.﹣6【考点】解三元一次方程组.【分析】根据三元一次方程组解的概念,列出三元一次方程组,解出x,y的值代入含有a的式子即求出a的值.【解答】解:由题意可得方程组,把③代入①得,代入②得a=﹣6.故选D.【点评】本题的实质是考查三元一次方程组的解法.需要对三元一次方程组的定义有一个深刻的理解.方程组有三个未知数,每个方程的未知项的次数都是1,并且一共有三个方程,像这样的方程组,叫三元一次方程组.通过解方程组,了解把“三元”转化为“二元”、把“二元”转化为“一元”的消元的思想方法,从而进一步理解把“未知”转化为“已知”和把复杂问题转化为简单问题的思想方法.解三元一次方程组的关键是消元.解题之前先观察方程组中的方程的系数特点,认准易消的未知数,消去未知数,组成元该未知数的二元一次方程组.10.如图,周长为34cm的长方形ABCD被分成7个形状大小完全相同的小长方形,则长方形ABCD的面积为()A.49cm2B.68cm2C.70cm2D.74cm2【考点】二元一次方程组的应用.【分析】根据题意可知,本题中的相等关系是“周长为34cm”和“小长方形的5个宽等于2个长”,列方程组求解即可.【解答】解:设小长方形的长为ycm,宽为xcm,则,解得,所以长方形ABCD的面积为7×10=70cm2.故选:C.【点评】解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.二、填空题:本大题共10小题,共30分,只要求填写最后结果,每小题填对得3分.11.的平方根是±2.【考点】平方根;算术平方根.【分析】根据平方根的定义,求数a的平方根,也就是求一个数x,使得x2=a,则x就是a的平方根,由此即可解决问题.【解答】解:的平方根是±2.故答案为:±2【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.12.若直线AB、CD相交于O,∠AOC与∠BOD的和为200°,则∠AOD的度数为80°.【考点】对顶角、邻补角.【分析】利用对顶角相等和邻补角计算即可.【解答】解:若直线AB,CD相交于O,则∠AOC=∠BOD,∠AOD=BOC,∵∠AOC与∠BOD的和为200°,∴∠AOC=100°,∴∠AOD=180°﹣100°=80°;故答案为:80°.【点评】本题考查了对顶角、邻补角;熟练掌握对顶角相等是解决问题的关键.13.如图,已知AB,CD,EF互相平行,且∠ABE=70°,∠ECD=150°,则∠BEC= 40°.【考点】平行线的性质.【分析】根据平行线的性质,先求出∠BEF和∠CEF的度数,再求出它们的差即可.【解答】解:∵AB∥EF,∴∠BEF=∠ABE=70°;又∵EF∥CD,∴∠CEF=180°﹣∠ECD=180°﹣150°=30°,∴∠BEC=∠BEF﹣∠CEF=40°;故答案为:40.【点评】本题主要利用两直线平行,同旁内角互补以及两直线平行,内错角相等进行解题.14.如果=1.732,=5.477,那么0.0003的平方根是=±0.01732.【考点】算术平方根;平方根.【分析】把0.0003看成,即可求得平方根.【解答】解:∵0.0003=,∴±=±=±=±0.01732.【点评】此题考查了算术平方根的概念,解决本题的关键利用小数点的移动规律解答.15.把方程x+y=2改写成用x表示y的式子是y=.【考点】解二元一次方程.【分析】由已知方程通过移项,系数化为1,把方程改写成用含x的式子表示y 的形式.【解答】解:由方程x+y=2移项得两边乘以∴.【点评】本题考查的是方程的定义和方程移项,合并同类项,系数化为1等基本运算技能.【分析】根据所学基础知识对各小题分析判断后利用排除法求解.【解答】解:①相等的角是对顶角,错误,因为对顶角既要考虑大小,还有考虑位置;②互补的角就是平角,错误,因为互补的角既要考虑大小,还有考虑位置;③互补的两个角一定是一个为锐角,另一个为钝角,错误,两个直角也可以;④在同一平面内,同平行于一条直线的两条直线平行,是平行公理,正确;⑤邻补角的平分线互相垂直,正确.故答案为:④⑤.17.已知(x﹣1)2=3,则x=+1.【考点】平方根.【分析】根据平方根的定义,即可解答.【解答】解:(x﹣1)2=3,x﹣1=x=+1,故答案为: +1.【点评】本题考查了平方根的定义,注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.18.已知和是关于x,y的二元一次方程2ax﹣by=2的两个解,则a=3,b=4.【考点】二元一次方程的解.【分析】知道了方程的解,可以把这对数值代入方程,得到两个含有未知数a,b的二元一次方程,联立方程组求解,从而可以求出a,b的值.【解答】解:把和代入关于x,y的二元一次方程,得,解得.【点评】主要考查了方程的解的意义和二元一次方程组的解法.解题关键是把方程的解代入原方程,使原方程转化为以系数a和b为未知数的方程,再求解.19.如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.【考点】平行线的性质.【分析】先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.【解答】解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.【点评】本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.20.如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向依次平移,每次移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A2016的坐标为(1008,0).【考点】坐标与图形变化-平移.【分析】观察不难发现,每四个点为一个循环组依次循环,前两个点的纵坐标都是1,第二、三个点的横坐标相同,第三、四个点都在x轴上,每一个循环组向右2个单位,用2016除以4,然后根据商和余数的情况确定即可.【解答】解:由图可知,4个点为一个循环组依次循环,∵2016÷4=504,∴点A2016是第504循环组的最后一个点,504×2=1008,∴点A2016的坐标为(1008,0).故答案为:(1008,0).【点评】本题考查了坐标与图形变化﹣平移,仔细观察图形,发现每四个点为一个循环组依次循环是解题的关键,也是本题的难点.三、解答题:本大题共7小题,共60分.解答要写出必要的文字说明、证明过程或演算步骤.21.计算:(﹣)2﹣﹣+﹣|﹣6|.【考点】实数的运算.【分析】原式利用算术平方根、立方根定义,以及绝对值的代数意义计算即可得到结果.【解答】解:原式=3﹣﹣(﹣0.5)+4﹣6=1.【点评】此题考查了实数的运算,熟练掌握运算法则是解本题的关键.22.解方程组:(1)(2).【考点】解二元一次方程组.【分析】利用消元法即可求出答案.【解答】解:(1)将y=1﹣x代入5x+2y=8,∴5x+2(1﹣x)=8,∴5x+2﹣2x=8,∴x=2,将x=2代入y=1﹣x,得:y=﹣1,∴该二元一次方程组的解为:(2)由m﹣=2可得:n=2m﹣4,把n=2m﹣4代入2m+3n=12,∴2m+3(2m﹣4)=12∴m=3,将m=3代入n=2m﹣4,得n=2,∴该二元一次方程组的解为:【点评】本题考查二元一次方程组的解法,涉及代入消元法,属于基础题型.23.已知点P(a﹣2,2a+8),分别根据下列条件求出点P的坐标.(1)点P在x轴上;(2)点P在y轴上;(3)点Q的坐标为(1,5),直线PQ∥y轴;(4)点P到x轴、y轴的距离相等.【考点】点的坐标.【分析】(1)利用x轴上点的坐标性质纵坐标为0,进而得出a的值,即可得出答案;(2)利用y轴上点的坐标性质横坐标为0,进而得出a的值,即可得出答案;(3)利用平行于y轴直线的性质,横坐标相等,进而得出a的值,进而得出答案;(4)利用点P到x轴、y轴的距离相等,得出横纵坐标相等或相反数进而得出答案.【解答】解:(1)∵点P(a﹣2,2a+8),在x轴上,∴2a+8=0,解得:a=﹣4,故a﹣2=﹣4﹣2=﹣6,则P(﹣6,0);(2))∵点P(a﹣2,2a+8),在y轴上,∴a﹣2=0,解得:a=2,故2a+8=2×2+8=12,则P(0,12);(3)∵点Q的坐标为(1,5),直线PQ∥y轴;,∴a﹣2=1,解得:a=3,故2a+8=14,则P(1,14);(4)∵点P到x轴、y轴的距离相等,∴a﹣2=2a+8或a﹣2+2a+8=0,解得:a1=﹣10,a2=﹣2,故当a=﹣10则:a﹣2=﹣12,2a+8=﹣12,则P(﹣12,﹣12);故当a=﹣2则:a﹣2=﹣4,2a+8=4,则P(﹣4,4).综上所述:P(﹣12,﹣12),(﹣4,4).【点评】此题主要考查了点的坐标性质,用到的知识点为:点到坐标轴的距离相等,那么点的横纵坐标相等或互为相反数以及在坐标轴上的点的性质.24.在平面直角坐标系中,四边形ABCD的顶点坐标分别为A(1,0),B(5,0),C(3,3),D(2,4),求四边形ABCD的面积.【考点】坐标与图形性质.【分析】本题应分别过C、D向x轴作垂线,四边形ABCD的面积分割为过D、C 两点的直角三角形和直角梯形.【解答】解:作CE⊥x轴于点E,DF⊥x轴于点F.则四边形ABCD的面积=S△ADF +S△BCE+S梯形CDFE=×(2﹣1)×4+×(5﹣3)×3+×(3+4)×(3﹣2)=8.5.【点评】当告诉一些具体点时,应把所求四边形的面积分为容易算面积的直角梯形和直角三角形.25.(10分)(2015春•宿州期末)如图,AB∥CD,∠BMN与∠DNM的平分线相交于点G.(1)完成下面的证明:∵MG平分∠BMN已知∴∠GMN=∠BMN角平分线的定义同理∠GNM=∠DNM.∵AB∥CD已知,∴∠BMN+∠DNM=180°∴∠GMN+∠GNM=90°∵∠GMN+∠GNM+∠G=180°∴∠G=90°∴MG与NG的位置关系是MG⊥NG【分析】(1)根据平行线的性质进行填空即可;(2)根据MG、NG的特点作出结论.【解答】解:∵MG平分∠BMN(已知)∴∠GMN=∠BMN(角平分线的定义),同理∠GNM=∠DNM.∵AB∥CD(已知),∴∠BMN+∠DNM=180°,∴∠GMN+∠GNM=90°,∵∠GMN+∠GNM+∠G=180°,∴∠G=90°,∴MG与NG的位置关系是MG⊥NG;故答案为:已知;角平分线的定义;已知;180°;90°;180°;90°;MG⊥NG;(2)两平行直线被第三条直线所截,同旁内角的角平分线互相垂直.【点评】本题考查了平行线的性质,角平分线的定义,三角形内角和定理,熟记性质并准确识图是解题的关键.26.(10分)(2015秋•太康县期末)如图,∠AGF=∠ABC,∠1+∠2=180°.(1)试判断BF与DE的位置关系,并说明理由;(2)若BF⊥AC,∠2=150°,求∠AFG的度数.【考点】垂线;余角和补角.【分析】(1)由于∠AGF=∠ABC,可判断GF∥BC,则∠1=∠3,由∠1+∠2=180°得出∠3+∠2=180°判断出BF∥DE;(2)由BF∥DE,BF⊥AC得到DE⊥AC,由∠2=150°得出∠1=30°,得出∠AFG的度数【解答】解:(1)BF∥DE,理由如下:∵∠AGF=∠ABC,∴GF∥BC,∴∠1=∠3,∵∠1+∠2=180°,∴∠3+∠2=180°,∴BF∥DE;(2)∵BF∥DE,BF⊥AC,∴DE⊥AC,∵∠1+∠2=180°,∠2=150°,∴∠1=30°,∴∠AFG=90°﹣30°=60°.【点评】本题考查了平行线的判定与性质:内错角相等,两直线平行;两直线平行,同位角相等,同旁内角互补.27.(10分)(2016春•六合区校级期中)“重百”、“沃尔玛”两家超市出售同样的保温壶和水杯,保温壶和水杯在两家超市的售价分别一样.已知买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元.(1)请问:一个保温壶与一个水杯售价各是多少元?(列方程组求解)(2)为了迎接“五一劳动节”,两家超市都在搞促销活动,“重百”超市规定:这两种商品都打九折;“沃尔玛”超市规定:买一个保温壶赠送一个水杯.若某单位想要买4个保温壶和15个水杯,如果只能在一家超市购买,请问选择哪家超市购买更合算?请说明理由.【考点】二元一次方程组的应用.【分析】(1)设一个保温壶售价为x元,一个水杯售价为y元,根据买1个保温壶和1个水杯要花费60元,买2个保温壶和3个水杯要花费130元,列出方程组,求解即可.(2)根据题意先分别计算出在“重百”超市购买所需费用和在“沃尔玛”超市购买所需费用,然后进行比较即可得出答案.【解答】解:(1)设一个保温壶售价为x元,一个水杯售价为y元.由题意,得:.解得:.答:一个保温壶售价为50元,一个水杯售价为10元.(2)选择在“沃尔玛”超市购买更合算.理由:在“重百”超市购买所需费用为:0.9(50×4+15×10)=315(元),在“沃尔玛”超市购买所需费用为:50×4+(15﹣4)×10=310(元),∵310<315,∴选择在“沃尔玛”超市购买更合算.【点评】此题考查了二元一次方程组的应用,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程组,再求解.利用二元一次方程组求解的应用题一般情况下题中要给出2个等量关系,准确的找到等量关系并用方程组表示出来是解题的关键.。
苏科版七年级下册期中试卷含答案解析
七年级(下)期中数学试卷一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x52.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 4.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.75.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∠DC的条件为()A.①④B.②③C.①③D.①③④6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定∠ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个9.计算10﹣(0.5)×(﹣2)的结果是()A.﹣2B.﹣1C.2D.310.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1B.2C.3D.4二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=.12.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为.13.等腰三角形的两边长为4,9.则它的周长为.14.计算:2一×=.15.如图,在∠ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为.18.如图,在∠ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且=cm2.S∠ABC=4cm2,则S阴影三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.20.如图,∠ABC的顶点都在方格纸的格点上.将∠ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的∠A′B′C′;(2)在∠ABC中画出中线BD;(3)在∠ABC中画出AB边上高(图中标上字母).21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.23.如图,在∠ABC中,BD∠AC,EF∠AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.25.如图,已知∠ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=.(用α、β的代数式表示)26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求∠BDF的面积.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×2=;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.29.Rt∠ABC中,∠C=90°,点D、E分别是∠ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到∠ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:.-学年江苏省苏州市昆山市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分.请将下列各小题唯一正确的选项代号填涂在答题卡相应的位置上)1.计算2x2•x3的结果是()A.2x5B.2x C.2x6D.x5【考点】单项式乘单项式.【分析】据同底数幂相乘,底数不变指数相加进行计算即可得解.【解答】解:2x2•x3=2x2+3=2x5.故选A.2.甲型H1N1流感病毒的直径大约是0.000000081米,用科学记数法可表示为()A.8.1×10﹣9米B.8.1×10﹣8米C.81×10﹣9米D.0.81×10﹣7米【考点】科学记数法—表示较小的数.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.【解答】解:0.000 000 081=8.1×10﹣8米.故选B.3.以下列各组线段为边,能组成三角形的是()A.2cm、2cm、4cm B.8cm、6cm、3cm C.2cm、6cm、3cm D.11cm、4cm、6cm 【考点】三角形三边关系.【分析】根据已知三角形的两边,则第三边的范围是:大于已知的两边的差,而小于两边的和,分别判断即可.【解答】解:根据三角形的三边关系,知A、2+2=4,不能组成三角形,故此选项错误;B、3+6>8,能够组成三角形,故此选项正确;C、2+3<6,不能组成三角形,故此选项错误;D、4+6<11,不能组成三角形,故此选项错误.故选B.4.一个多边形的内角和是720°,这个多边形的边数是()A.4B.5C.6D.7【考点】多边形内角与外角.【分析】根据内角和定理180°•(n﹣2)即可求得.【解答】解:∠多边形的内角和公式为(n﹣2)•180°,∠(n﹣2)×180°=720°,解得n=6,∠这个多边形的边数是6.故选C.5.如图,给出下列条件:①∠1=∠2;②∠3=∠4;③∠A=∠CDE;④∠A+∠ADC=180°.其中,能推出AB∠DC的条件为()A.①④B.②③C.①③D.①③④【考点】平行线的判定.【分析】直接根据平行线的判定定理对各小题进行逐一分析即可.【解答】解:①∠∠1=∠2,∠AB∠CD,故本选项正确;②∠∠3=∠4,∠BC∠AD,故本选项错误;③∠∠A=∠CDE,∠AB∠CD,故本选项正确;④∠∠A+∠ADC=180°,∠AB∠CD,故本选项正确.故选D.6.如图,将三角尺的直角顶点放在直尺的一边上,∠1=30°,∠3=20°,则∠2的度数等于()A.40°B.45°C.50°D.60°【考点】平行线的性质.【分析】根据三角形外角性质求出∠4,根据平行线性质得出∠2=∠4,代入求出即可.【解答】解:如图所示,∠∠4=∠1+∠3,∠∠4=30°+20°=50°,∠AB∠CD,∠∠2=∠4=50°,故选C.7.如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是()A.(a+b)(a﹣b)=a2﹣b2B.(a﹣b)2=a2﹣2ab+b2C.(a+b)2=a2+2ab+b2D.a2+ab=a(a+b)【考点】平方差公式的几何背景.【分析】由大正方形的面积﹣小正方形的面积=矩形的面积,进而可以证明平方差公式.【解答】解:大正方形的面积﹣小正方形的面积=a2﹣b2,矩形的面积=(a+b)(a﹣b),故a2﹣b2=(a+b)(a﹣b).故选A.8.在下列条件中,①∠A+∠B=∠C;②∠A:∠B:∠C=1:2:3;③∠A=∠B=∠C;④∠A=∠B=2∠C;⑤∠A=2∠B=3∠C,能确定∠ABC为直角三角形的条件有()A.2个B.3个C.4个D.5个【考点】三角形内角和定理.【分析】根据直角三角形的判定对各个条件进行分析,从而得到答案.【解答】解:①、∠∠A+∠B=∠C=90°,∠∠ABC是直角三角形,故小题正确;②、∠∠A:∠B:∠C=1:2:3,∠∠A=30°,∠B=60°,∠C=90°,∠ABC是直角三角形,故本小题正确;③、设∠A=x,∠B=2x,∠C=3x,则x+2x+3x=180°,解得x=30°,故3x=90°,∠ABC是直角三角形,故本小题正确;④∠设∠C=x,则∠A=∠B=2x,∠2x+2x+x=180°,解得x=36°,∠2x=72°,故本小题错误;⑤∠A=2∠B=3∠C,∠∠A+∠B+∠C=∠A+∠A+A=180°,∠∠A=°,故本小题错误.综上所述,是直角三角形的是①②③共3个.故选B.9.计算10﹣(0.5)2015×(﹣2)2016的结果是()A.﹣2B.﹣1C.2D.3【考点】幂的乘方与积的乘方;零指数幂.【分析】直接利用零指数幂的性质结合积的乘方运算法则将原式变形求出答案.【解答】解:10﹣(0.5)2015×(﹣2)2016=1﹣[0.5×(﹣2)]2015×(﹣2)=1﹣2=﹣1.故选:B.10.如果等式(2x﹣3)x+3=1,则等式成立的x的值的个数为()A.1B.2C.3D.4【考点】零指数幂;有理数的乘方.【分析】由于任何非0数的0次幂等于1和1的任何指数为1,所以分两种情况讨论.【解答】解:当x+3=0时,x=﹣3;当2x﹣3=1时,x=2.∠x的值为2,﹣3,当x=1时,等式(2x﹣3)x+3=1,故选C二、填空题(本大题共8小题,每小题3分,共24分)11.若x m=3,x n=5,则x m+n=15.【考点】同底数幂的乘法.【分析】由x m=3,x n=5,又由x m+n=x m•x n,即可求得答案.【解答】解:∠x m=3,x n=5,∠x m+n=x m•x n=3×5=15.故答案为:1512.若a+b=1,ab=﹣2,则(a+1)(b+1)的值为0.【考点】整式的混合运算—化简求值.【分析】原式利用多项式乘以多项式法则计算,整理后把a+b与ab的值代入计算即可求出值.【解答】解:原式=ab+a+b+1=ab+(a+b)+1,当a+b=1,ab=﹣2时,原式=1﹣2+1=0,故答案为:013.等腰三角形的两边长为4,9.则它的周长为22.【考点】等腰三角形的性质;三角形三边关系.【分析】由于题目没有说明4和9,哪个是底哪个是腰,所以要分类讨论.【解答】解:当腰长为4,底长为9时;4+4<9,不能构成三角形;当腰长为9,底长为4时;9﹣4<9<9+4,能构成三角形;故等腰三角形的周长为:9+9+4=22.故填22.14.计算:20152一2014×2016=1.【考点】平方差公式.【分析】把2014×2016写成×,然后利用平方差公式计算即可得解.【解答】解:20152﹣2014×2016=20152﹣×=20152﹣=20152﹣20152+1=1.故答案是:1.15.如图,在∠ABC中,∠A=50°,∠ABC、∠ACB的角平分线相交于点P,则∠BPC的度数为115°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形的内角和等于180°求出∠ABC+∠ACB,再根据角平分线的定义求出∠PBC+∠PCB,然后利用三角形的内角和等于180°列式计算即可得解.【解答】解:∠∠A=50°,∠∠ABC+∠ACB=180°﹣50°=130°,∠∠ABC与∠ACB的角平分线相交于P,∠∠PBC+∠PCB=(∠ABC+∠ACB)=×130°=65°,在∠PBC中,∠BPC=180°﹣(∠PBC+∠PCB)=180°﹣65°=115°.故答案为:115°.16.如果(x+1)(x+m)的乘积中不含x的一次项,则m的值为﹣1.【考点】多项式乘多项式.【分析】把式子展开,找到所有x项的所有系数,令其和为0,可求出m的值.【解答】解:(x+1)(x+m)=x2+(1+m)x+m,∠结果不含x的一次项,∠1+m=0,解得:m=﹣1.故答案为:﹣1.17.如图,将正方形纸片ABCD沿BE翻折,使点C落在点F处,若∠DEF=40°,则∠ABF 的度数为50°.【考点】翻折变换(折叠问题).【分析】根据翻折的性质可得∠BEF=∠BEC,∠EBF=∠EBC,然后求出∠BEC,再根据直角三角形两锐角互余求出∠EBC,然后根据∠ABF=90°﹣∠EBF﹣∠EBC代入数据进行计算即可得解.【解答】解:补全正方形如图,由翻折的性质得,∠BEF=∠BEC,∠EBF=∠EBC,∠∠DEF=30°,∠∠BEC===70°,∠∠EBC=90°﹣∠BEC=90°﹣70°=20°,∠∠ABF=90°﹣∠EBF﹣∠EBC=90°﹣20°﹣20°=50°.故答案为:50°.18.如图,在∠ABC中,已知点D,E,F分别为边BC,AD,CE的中点,且S∠ABC=4cm2,则S=1cm2.阴影【考点】三角形的面积.【分析】根据三角形的面积公式,知∠BCE的面积是∠ABC的面积的一半,进一步求得阴影部分的面积是∠BEC的面积的一半.【解答】解:∠点E是AD的中点,∠∠BDE的面积是∠ABD的面积的一半,∠CDE的面积是∠ACD的面积的一半.则∠BCE的面积是∠ABC的面积的一半,即为2cm2.∠点F是CE的中点,∠阴影部分的面积是∠BCE的面积的一半,即为1cm2.三、解答题(本大题共11小题,共76分,应写出必要的计算过程、推理步骤或文字说明)19.计算:(1)|﹣2|﹣(2﹣π)0+(﹣)﹣1(2)﹣2xy•3x2y﹣x2y(﹣3xy+xy2)(3)(2a+b)(b﹣2a)﹣(a﹣3b)2.【考点】整式的混合运算;零指数幂;负整数指数幂.【分析】(1)根据绝对值、零指数幂、负指数幂计算即可;(2)根据同底数幂的乘法、单项式乘以多项式进行计算即可;(3)根据平方差公式和完全平方公式进行计算即可.【解答】解:(1)原式=2﹣1﹣3=﹣2;(2)原式=﹣6x3y2+3x3y2﹣x3y3=﹣3x3y2﹣x3y3;(3)原式=b2﹣4a2﹣a2+6ab﹣9b2=﹣5a2+6ab﹣8b2.20.如图,∠ABC的顶点都在方格纸的格点上.将∠ABC向左平移2格,再向上平移3格.(1)请在图中画出平移后的∠A′B′C′;(2)在∠ABC中画出中线BD;(3)在∠ABC中画出AB边上高(图中标上字母).【考点】作图-平移变换.【分析】(1)分别作出点A、B、C向左平移2格,再向上平移3格的点,然后顺次连接;(2)作出AC的中点D,然后连接BD;(3)过点C作CD∠AB延长线于点E,然后连接CE.【解答】解:(1)所作图形如图所示:(2)如图所示,BD即为所作中线;(3)如图所示,CE即为AB的高.21.已知n为正整数,且x2n=4,求(x3n)2﹣2(x2)2n的值.【考点】整式的混合运算—化简求值.【分析】原式利用幂的乘方运算法则变形,将已知等式代入计算即可求出值.【解答】解:∠n为正整数,且x2n=4,∠原式=(x2n)3﹣2(x2n)2=43﹣2×42=64﹣32=32.22.先化简再求值:(a﹣2b)2+(a﹣b)(a+b)﹣2(a﹣3b)(a﹣b),其中a=,b=﹣3.【考点】整式的混合运算—化简求值.【分析】原式第一项利用完全平方公式展开,第二项利用平方差公式计算,最后一项利用多项式乘多项式法则计算,去括号合并得到最简结果,把a与b的值代入计算即可求出值.【解答】解:原式=a2﹣4ab+4b2+a2﹣b2﹣2a2+8ab﹣6b2=4ab﹣3b2,当a=,b=﹣3时,原式=﹣6﹣27=﹣33.23.如图,在∠ABC中,BD∠AC,EF∠AC,垂足分别为D、F,且∠1=∠2,试判断DE与BC的位置关系,并说明理由.【考点】平行线的判定与性质.【分析】根据平行线的判定求出EF∠BD,根据平行线的性质得出∠1=∠BDE,求出∠2=∠BDE,根据平行线的判定得出即可.【解答】解:DE∠BC,理由是:∠BD∠AC,EF∠AC,∠∠EAF=∠BDF=90°,∠EF∠BD,∠∠1=∠BDE,又∠∠1=∠2,∠∠2=∠BDE,∠DE∠BC.24.已知:x+y=6,xy=4,求下列各式的值(1)x2+y2(2)(x﹣y)2.【考点】完全平方公式.【分析】(1)根据完全平方公式可得x2+y2=(x+y)2﹣2xy,然后把x+y=6,xy=4整体代入进行计算即可;(2)根据完全平方公式可得(x﹣y)2=(x+y)2﹣4xy,然后把x+y=6,xy=4整体代入进行计算即可.【解答】解:(1)∠x2+y2=(x+y)2﹣2xy,∠当x+y=6,xy=4,x2+y2=(x+y)2﹣2xy=62﹣2×4=28;(2)∠(x﹣y)2=(x+y)2﹣4xy,∠当x+y=6,xy=4,(x﹣y)2=(x+y)2﹣4xy=62﹣4×4=20.25.如图,已知∠ABC中,AD是高,AE是角平分线.(1)若∠B=20°,∠C=60°,求∠EAD度数;(2)若∠B=α,∠C=β(β>a),则∠EAD=(β﹣α).(用α、β的代数式表示)【考点】三角形内角和定理;三角形的角平分线、中线和高.【分析】(1))根据∠B=20°,∠C=60°,得出∠BAC的度数,再根据AE是角平分线,AD是高,分别得出∠EAC和∠DAC的度数,从而求出答案;(2)证明过程同(1),只不过把∠B和∠C的度数用字母代替,从而用字母表示出各个角的度数.【解答】解:(1)∠∠B=20°,∠C=60°,∠∠BAC=180°﹣20°﹣60°=100°,∠AE是角平分线,∠∠EAC=50°,∠AD是高,∠∠ADC=90°,∠∠DAC=30°,∠∠EAD=∠EAC﹣∠DAC=50°﹣30°=20°;(2))∠∠B=α,∠C=β,∠∠BAC=180°﹣α﹣β,∠AE是角平分线,∠∠EAC=90°﹣α﹣β,∠AD是高,∠∠ADC=90°,∠∠DAC=90°﹣β,∠∠EAD=∠EAC﹣∠DAC=(90°﹣α﹣β)﹣(90°﹣β)=(β﹣α).26.图①是一个长为2m、宽为2n的长方形,沿图中虚线用剪刀平均分成四块小长方形,然后按图②的形状拼成一个正方形.(1)将图②中的阴影部分面积用2种方法表示可得一个等式,这个等式为(m+n)2﹣4mn=(m﹣n)2.(2)若m+2n=7,mn=3,利用(1)的结论求m﹣2n的值.【考点】完全平方公式的几何背景.【分析】(1)大正方形的面积减去矩形的面积即可得出阴影部分的面积,也可得出三个代数式(m+n)2、(m﹣n)2、mn之间的等量关系;(2)根据(1)所得出的关系式,可求出(m﹣2n)2,继而可得出m﹣2n的值.【解答】解:(1)(m+n)2﹣4mn=(m﹣n)2;故答案为:(m+n)2﹣4mn=(m﹣n)2(2)(m﹣2n)2=(m+2n)2﹣8mn=25,则m﹣2n=±5.27.如图,正方形ABCD的边长为a,面积为6;长方形CEFG的长、宽分别为a,b,长方形的面积为2,其中点B、C、E在同一直线上,连接DF.求∠BDF的面积.【考点】整式的混合运算.【分析】由图形得三角形BDF的面积=正方形ABCD的面积+梯形DCEF﹣三角形ABD的面积﹣三角形BEF,再计算即可.【解答】解:S∠BDF=S正方形ABCD+S梯形DCEF﹣S∠ABD﹣S∠BEF=a2+(a+b)•a﹣a2﹣•2a•b=a2﹣ab;由题意得:a2=6,ab=2,则S∠BDF=6﹣×2=5.28.观察下列关于自然数的等式:32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…根据上述规律解决下列问题:(1)完成第四个等式:92﹣4×42=17;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】规律型:数字的变化类;完全平方公式.【分析】由①②③三个等式可得,被减数是从3开始连续奇数的平方,减数是从1开始连续自然数的平方的4倍,计算的结果是被减数的底数的2倍减1,由此规律得出答案即可.【解答】解:(1)32﹣4×12=5 ①52﹣4×22=9 ②72﹣4×32=13 ③…所以第四个等式:92﹣4×42=17;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,左边=(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1,右边=4n+1.左边=右边∠(2n+1)2﹣4n2=4n+1.29.Rt∠ABC中,∠C=90°,点D、E分别是∠ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=140°;(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:∠1+∠2=90°+α;(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.(4)若点P运动到∠ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:∠2=90°+∠1﹣α.【考点】三角形内角和定理;三角形的外角性质.【分析】(1)根据四边形内角和定理以及邻补角的定义得出∠1+∠2=∠C+∠α,进而得出即可;(2)利用(1)中所求得出答案即可;(3)利用三角外角的性质得出∠1=∠C+∠2+α=90°+∠2+α;(4)利用三角形内角和定理以及邻补角的性质可得出.【解答】解:(1)∠∠1+∠2+∠CDP+∠CEP=360°,∠C+∠α+∠CDP+∠CEP=360°,∠∠1+∠2=∠C+∠α,∠∠C=90°,∠α=50°,∠∠1+∠2=140°;故答案为:140°;(2)由(1)得出:∠α+∠C=∠1+∠2,∠∠1+∠2=90°+α故答案为:∠1+∠2=90°+α;(3)∠1=90°+∠2+α,理由:∠∠2+∠α=∠DME,∠DME+∠C=∠1,∠∠1=∠C+∠2+α=90°+∠2+α.(4)∠∠PFD=∠EFC,∠180°﹣∠PFD=180°﹣∠EFC,∠∠α+180°﹣∠1=∠C+180°﹣∠2,∠∠2=90°+∠1﹣α.故答案为:∠2=90°+∠1﹣α.2016年4月30日。
七年级下册期中考试数学试题有答案苏科版
七年级第二学期期中测试数学试卷满分:100分 考试时间:100分钟一.选择题(本大题共8小题,每小题3分,共24分.)1.图中的小船通过平移后可得到的图案是....................................( )A. B. C. D.2.每到四月,许多地方杨絮、柳絮如雪花般漫天飞舞,人们不堪其忧. 据测定,杨絮纤维的直径约为0.0000105m ,该数值用科学记数法表示为........................( ) A .5101.05⨯ B .-4100.105⨯ C .-5101.05⨯ D .-710105⨯3.下列等式从左到右的变形,属于因式分解的是 ...........................( ) A .2(1)(1)1x x x +-=- B .224(4)(4)x y x y x y -=+- C .221(1)1x x x x -+=-+ D .22816(4)x x x -+=-4.一个多边形的边数每增加一条,这个多边形的 ........................ ( ) A .内角和增加360° B .外角和增加360° C .对角线增加一条 D .内角和增加180°5.下面是一位同学所做的5道练习题:①532)(a a =,②632a a a =⋅,③22414m m =-,④325)()(a a a -=-÷-,⑤339)3(a a -=-,他做对题的个数是.......... ( )A .1道B .2道C .3道D .4道 6.如图,∠1=∠2,∠DAB =∠BCD .给出下列结论:①AB//DC ;②AD //BC ;③∠B =∠D ;④∠D =2∠DAB .其中,正确的结论有 ......................................( ) A .1个 B .2个 C .3个 D .4个7.已知a ,b ,c 是三角形的三边,那么代数式22()a b c --的值..............( ) A .大于零 B .小于零 C .等于零 D .不能确定8.如图,ABC ∆的面积为1.分别倍长(延长一倍)AB ,BC ,CA 得到111C B A ∆.再分别倍长11B A ,22C B ,22A C 得到222C B A ∆.…… 按此规律,倍长2018次后得到的201820182018C B A ∆的面积为 .............................................( ) A .20176 B .20186 C .20187 D .20188二.填空题:(本大题共8小题,每空2分,共16分.)9. 已知,,28==nma a 则=+nm a. 10. 一个多边形的内角和比它的外角和的2倍还大180°,这个多边形的边数为 .11.计算:()()870.1258⨯-= .12.若91-2++x m x )(是一个完全平方式,则m = . 13. 如果)5)(1(2a ax x x +-+的乘积中不含2x 项,则a 为 .14. 如图,AD 、AE 分别是△ABC 的角平分线和高,∠B=60°,∠C=70°,则∠EAD= . (第6题)(第8题)原图 D'A CD E 115.如图,将一张长方形纸片沿EF 折叠后,点D 、C 分别落在点D '、C '的位置,D E '的延长线与BC 相交于点G ,若∠EFG =50°,则∠1= . 16. 已知m x =时,多项式222n x x ++的值为-1,则m x -=时,则多项式的值为 .三.解答题:(本大题共9小题,共60分.) 17.(本题满分12分,每小题3分)计算:(1)()()320131132π-⎛⎫-⨯--- ⎪⎝⎭(2)()392332)2(a a a a a a -÷--+⋅⋅(3))2)(3()7(+--+x x x x (4)()()()2322b a a b b a ---+18.(本题满分6分,每小题3分)因式分解:b a b a ab 322375303+- (2) ()()x y b y x a -+-2219.(本题满分4分)设22113-=a ,22235-=a ,22357-=a ……,(1)写出n a (n 为大于0的自然数)的表达式; (2)探究n a 是否为8的倍数.20.(本题满分4分) 如图,每个小正方形的边长为1,在方格纸内将ABC ∆经过一次平移后得到'''C B A ∆,图中标出了点B 的对应点'B .(1)补全'''C B A ∆;根据下列条件,利用网格点和直尺画图:(2)作出中线CP ; (3)画出BC 边上的高线AE ;(4)在平移过程中,线段BC 扫过的面积为 .21.(本题满分5分)如图所示,已知AB //DC ,AE 平分∠BAD ,CD 与AE 相交于点F ,∠CFE=∠E . 试说明AD //BC .22.(本题满分6分)如图,AD 平分BAC ∠,EAD EDA =∠∠.(1)EAC ∠与B ∠相等吗?为什么?(2)若50B =︒∠,:13CAD E =∠∠:,则E ∠= .23.(本题满分5分)已知常数a 、b 满足23327ab⨯=,且()()()22235551ba b a ⨯÷=,求224b a +的值.E C B A D图1ab ab图2a b cabc图3bbaa24.(本题满分8分)【知识生成】我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到222()2a b a ab b+=++,基于此,请解答下列问题:(1)根据图2,写出一个代数恒等式:.(2)利用(1)中得到的结论,解决下面的问题:若10a b c++=,35ab ac bc++=,则222a b c++=.(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为()()baba22++长方形,则x y z++=.【知识迁移】(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据乙图中图形的变化关系,写出一个代数恒等式:.25.(本题满分10分)已知在四边形ABCD中,︒=∠=∠90CA.(1)如图1,若BE平分ABC∠,DF平分ADC∠的邻补角,请写出BE与DF的位置关系,并证明.(2)如图2,若BF、DE分别平分ABC∠、ADC∠的邻补角,判断DE与BF位置关系并证明.图4图1图2(3)如图3,若BE 、DE 分别五等分ABC ∠、ADC ∠的邻补角(即CDN CDE ∠=∠51,CBM CBE ∠=∠51),则E ∠= .图3初一数学参考答案与评分标准一、选择题(本大题共8小题,每题3分,共24分)二、填空题 (本大题共8小题,每题2分,共16分)9. 16; 10. 7; 11. -0.125 ; 12. 7或-5;13. ; 14. ; 15. ; 16. 3.三、解答题(本大题共9小题,共60分)17. 计算(每小题3分,共12分)(1)(2)=.....1分 =....................1分=-1+8.................2分 =......................2分=7.................3分 =....................................3分(3)(4)=...........1分 =.....1分=........2分 =.........2分=.....................3分 =.............3分18.因式分解:(每题3分,共6分)(1)(2)=........1分=........................1分=.........................3分=..................................2分= (3)分19.(1) ..................................................2分(2)题号1 2 3 4 5 6 7 8答案B C D D A C B C是8的倍数..........4分20.(1)如图所示,即为所求.............1分(2)如图所示,中线即为所求.............2分(3)如图所示,高线即为所求.............3分(4)线段扫过的面积为 16 ............4分21. ..............................1分..............................2分.........................3分............................................4分............................................5分22. ()是的角平分线;..........1分是的外角;.......2分又,..........3分........................................4分(2)..................................................6分23. ,............................1分,.......................2分...................................................3分..........................4分.........................................5分24.(1)..............2分(2) 30.............................................4分(3) 9..................................................6分(4) ..................................8分25.(1)..................................................1分...........4分(2)...........................................5分................................................................. .................................. .........................................8分(3) ..................10分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中小学教育资源站
初一数学期中考试
考试时间:90分钟 卷面总分:100分
一、你一定能选对!(每小题2分,共18分) 1.若∠1与∠2是内错角,∠1=。
40,则( )
A ∠2=。
40
B ∠2=。
140
C ∠2=。
40或∠2=。
140
D ∠2的大小不确定
2.若多边形的边数由3增加到n (n 为大于3的整数)则其外角和的度数( )
A . 增加
B 减少
C 不变
D 不能确定 3.下列计算中正确的是( )
A .5322a a a =+
B 532a a a =∙
C 632a a a =∙
D 532a a a =+
4.315x x ÷等于( )
A 5x
B 45x
C 12x
D 18x
5.如果1593)(b a b b a m n =∙∙,那么( )
A m=9 , n=4
B m=9 , n=-4
C m=3 , n=4
D m=4 , n=3
6.下列各式中与2
22n m nm --相等的是( )
A 2
)(n m -
B 2
)(n m --
C 2
)(n m +-
D 2
)(n m +
7.小兵计算一个二项整式的平方式时,得到正确结果++xy x 2042
,但最后一项不慎被污染了,这一项应是( )
A 2
5y
B 2
10y
C 2
25y
D 2
100y
8.下列各多项式中,能用平方差公式分解因式的是( )
A 2
2b a +
B 92
+y
C 2
16a +-
D 22y x --
9.若一个三角形的3个外角的度数之比为2:3:4,则与之相应的3个内角的度数之比为( )
A 4:3:2
B 3:2:4
C 5:3:1
D 3:1:5
二、你能填得又快又准吗?(每小题2分,共14分) 1.如果q a p a n m ==,(m.n 是正整数),那么_____________,233==+n m m
a a。
2.若67950000=6.975m
10⨯,则m=__________,若0.0000102=1.02n
10⨯,则n=_______。
3.若2a+3b=3,则b a 279∙的值为_________。
4.二元一次方程10=+y x 的解有________个,二元一次方程52=+y x 的正整数解),(y x 的值均为正整数且适合已知方程的有______个。
5.如果一个多边形的内角和是
1440,那么这个多边形的边数是________。
6.已知竖直方向的线段AB 长6cm ,如果AB 沿水平方向平移8cm ,那么线段AB 扫过的区域图形是_________,它的面积是__________2
cm 。
7.将∠ABC 向上平移10cm 得到∠EFG,若∠ABC=
52,则∠EFG=_______, BF=___________ cm 。
三.算一算!千万别出错!(每小题2分,共12分)
32)().1(t t t --- 23)3()()2().2(a a a ∙---
)4()()3().3(322xy xy xy -∙-+ )1)(1().4(2++-x x x
2)2()2)(2().5(y x y x y x ---+ )2)(2().6(c b a c b a +++-
四、因式分解!(每小题3分,共9分)
1.44y x - 2.2
2216)4(x x -+
3.a a a 3632
3
+-
五、解方程组!(每小题3分,共9分)
中小学教育资源站
1.⎩⎨⎧=+=+10432029y x y x
2.⎩
⎨⎧=-=+228
3y x y x
3.⎩⎨⎧+=-+=-)
5(3)1(55)1(3x y y x
六、画一画,你一定能成功!(3分)
在如图所示的方格纸中,平移所给的火炬图案,使点1A 移到点2A 的位置。
七、做一做,你能行!
1.在y=kx+b 中,当x=1时y=4,当x=2时y=10。
求k,b 的值。
(4分)
2.买5本笔记本和6枝圆珠笔共用去15元,买同样的笔记本4本和圆珠笔3枝共用去9.3元,每本笔记本和每枝圆珠笔各多少元?(5分)
3.如图,四边形ABCD 是校园内一块边长为a+b 的正方形土地(其中a>b )示意图,现准备在这块正方形土地的正中修建一个边长为a-b 的小正方形花坛,其余的部分为空地留作道路。
(6分)
(1) 画出花坛的示意图,并写出图中各部分面积的表达式 (2)用等式表示大,小正方形及空地的面积关系,___________)(2
=-b a .
4.阅读下面的材料并完成填空。
(6分) 你能比较2006
2005
与2005
2006
的大小吗?为了解决这个问题,先把问题一般化.即比较1
+n n
与
n n )1(+的大小(整数n≥1)。
然后,从分析n=1,n=2, n=3,…这些简单情形入手,从中发现规律,
经过归纳、猜想,得出结论.
⑴ 通过计算,比较下列①到⑦各组中2个数的大小
① 122_____1 ② 233______2 ③344_______3; ⑤455______4
⑥ 566______5
⑦ 6
77_______6
⑵从第⑴小题的结果归纳,可以猜想1
+n n
与n n )1(+的大小关系是________。
⑶根据上面归纳猜想的到的一般结论,可以得到2006
2005_______ 2005
2006
(填“>”、“=”或“<”)。
5.如图:点P 是△ABC 内部的一点。
(7分)
⑴度量线段AB,AC,PB,PC 的长度,根据度量结果比较AB+AC 与PB+PC 的大小。
⑵改变点P 的位置,上述结论还成立吗? ⑶你能说明上述结论为什么正确吗?
6.如图:∠1=∠2.能判断AB∥DF 吗?为什么?(5分)
若不能判断AB∥DF ,你认为还需要再添加一个什么样的条件?并请说明理由.
7.如图:AB∥CD,∠B=61°,∠C =35°。
求∠1和∠A 的度数。
(4分)
A
B C P
C
A
B D E F
1 2
E
2
A 1A
中小学教育资源站
初一数学期中考试答案
一 1。
D 2。
C 3。
B 4。
C 5。
D 6。
B 7。
C 8。
C 9。
C
二 1。
3p 23q p 2。
7 -5 3。
27 4。
无数 2 5。
8 6。
长方形 48 7。
520 10 三 1。
-2t 3 2. a 3 3. 13x 2y 4 4. x 3-1 5. 4xy-2y 2 6. a 2+2ac+c 2-4b 2 四 1. (x 2+y 2)(x+y)(x-y) 2. (x+2)2(x-2)2 3. 3a(a-1)2 五 1. x=2 2. x=2 3. x=5 y=1 y=2 y=7 六 略
七 1. k=6 b=-2 2. 1.2 1.5 3. (1) 略 (2) (a+b)2-4ab 4. (1)< < > > > > (2 ) n n n n n n n n n n )1(,3,)1(,211+>≥+<≤++ (3)> 5. AB+AC >PB+PC 6. 不能 BC ∥DE 或 ∠CBD=∠BDF 7。
∠1=610 ∠A=1450。