椭圆测试题
高中数学解析几何测试题

高中数学解析几何测试题一、在平面直角坐标系中,若直线l过点A(2,3)且与x轴平行,则直线l的方程为?A. x = 2B. y = 2C. x = 3D. y = 3(答案)D解析:直线与x轴平行意味着直线的斜率不存在,且直线上所有点的y坐标都相等。
因为直线l过点A(2,3),所以直线l上所有点的y坐标都是3,即直线l的方程为y = 3。
二、已知圆C的圆心为C(1,2),半径为3,则圆C的方程为?A. (x - 1)2 + (y - 2)2 = 9B. (x + 1)2 + (y + 2)2 = 9C. (x - 1)2 + (y - 2)2 = 6D. (x + 1)2 + (y - 2)2 = 9(答案)A解析:根据圆的标准方程(x - a)2 + (y - b)2 = r2,其中(a,b)为圆心坐标,r为半径。
将圆心C(1,2)和半径3代入公式,得到圆C的方程为(x - 1)2 + (y - 2)2 = 9。
三、若直线l1的方程为y = 2x + 1,直线l2与l1垂直且过点(3,4),则直线l2的方程为?A. y = -1/2x + 5B. y = -2x + 10C. y = 1/2x + 1D. y = 2x - 2(答案)B解析:两直线垂直,它们的斜率之积为-1。
直线l1的斜率为2,所以直线l2的斜率为-1/2。
又因为直线l2过点(3,4),所以直线l2的方程为y - 4 = -1/2(x - 3),化简得y = -1/2x + 5/2 + 4 - 3/2 = -1/2x + 10 - 3 = -2x + 10的简化形式不符合选项,直接代入点斜式得B选项正确。
四、已知椭圆C的中心在原点,长轴在x轴上,且过点(3,2)和(-3,2),则椭圆C的方程可能为?A. x2/9 + y2/4 = 1B. x2/4 + y2/9 = 1C. x2/25 + y2/16 = 1D. x2/16 + y2/25 = 1(答案)A解析:椭圆过点(3,2)和(-3,2),说明这两点关于y轴对称,且都在椭圆上。
圆锥曲线测试题及答案

圆锥曲线测试题及答案一、选择题(每题3分,共15分)1. 椭圆的离心率定义为:A. 长轴与短轴的比值B. 长轴的一半与焦距的比值C. 焦距与长轴的比值D. 焦距与长轴的一半的比值2. 抛物线的标准方程是:A. \( x^2 = 4py \)B. \( y^2 = 4px \)C. \( x^2 = 2py \)D. \( y^2 = 2px \)3. 双曲线的渐近线方程是:A. \( y = \pm \frac{b}{a}x \)B. \( y = \pm \frac{a}{b}x \)C. \( x = \pm \frac{a}{b}y \)D. \( x = \pm \frac{b}{a}y \)4. 椭圆上任意一点到两个焦点的距离之和是:A. 长轴的长度B. 短轴的长度C. 焦距的两倍D. 不确定5. 对于双曲线,如果 \( a > b \),则它是:A. 垂直轴双曲线B. 水平轴双曲线C. 焦点在x轴上D. 焦点在y轴上二、填空题(每题2分,共10分)6. 椭圆的方程 \( \frac{x^2}{a^2} + \frac{y^2}{b^2} = 1 \) 中,\( a \) 和 \( b \) 分别代表______和______。
7. 抛物线 \( y^2 = 4px \) 的焦点坐标是______。
8. 双曲线 \( \frac{x^2}{a^2} - \frac{y^2}{b^2} = 1 \) 的焦距是______。
9. 椭圆 \( \frac{x^2}{4} + \frac{y^2}{3} = 1 \) 的离心率是______。
10. 如果一个点 \( P(x, y) \) 在双曲线 \( \frac{x^2}{a^2} -\frac{y^2}{b^2} = 1 \) 上,那么 \( x \) 和 \( y \) 满足的关系是______。
三、简答题(每题5分,共20分)11. 描述椭圆的基本性质。
圆锥曲线测试题及答案

圆锥曲线测试题及答案### 圆锥曲线测试题及答案#### 一、选择题1. 以下哪个方程表示椭圆?A. \(x^2 + y^2 = 1\)B. \(x^2/4 + y^2/9 = 1\)C. \(x^2 - y^2 = 1\)D. \(x^2 + y^2 = 4\)答案:B2. 双曲线的标准方程是?A. \(x^2/a^2 - y^2/b^2 = 1\)B. \(x^2/a^2 + y^2/b^2 = 1\)C. \(y^2/a^2 - x^2/b^2 = 1\)D. \(y^2/a^2 + x^2/b^2 = 1\)答案:A#### 二、填空题1. 抛物线 \(y^2 = 4px\) 的焦点坐标是 \(\boxed{(p, 0)}\)。
2. 椭圆 \(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\) 的离心率\(e\) 计算公式为 \(\boxed{e = \sqrt{1 - \frac{b^2}{a^2}}}\)。
#### 三、解答题1. 已知椭圆 \(\frac{x^2}{25} + \frac{y^2}{9} = 1\),求其长轴和短轴的长度。
解答:椭圆的长轴长度为 \(2a\),短轴长度为 \(2b\)。
根据椭圆方程,\(a^2 = 25\) 和 \(b^2 = 9\),所以 \(a = 5\) 和 \(b = 3\)。
因此,长轴长度为 \(2 \times 5 = 10\),短轴长度为 \(2 \times 3 = 6\)。
2. 求双曲线 \(\frac{x^2}{16} - \frac{y^2}{9} = 1\) 的渐近线方程。
解答:双曲线的渐近线方程可以通过将双曲线的标准方程中的等号替换为等号来得到。
对于给定的双曲线方程,渐近线方程为\(\frac{x^2}{16} - \frac{y^2}{9} = 0\),即 \(y = \pm\frac{3}{4}x\)。
圆锥曲线大题综合测试(含详细答案)

圆锥曲线1.设椭圆222:12x y M a +=(a >的右焦点为1F ,直线2:22-=a a x l 与x 轴交于点A ,若112OF F A =u u u r u u u r(其中O为坐标原点).(1)求椭圆M 的方程;(2)设P 是椭圆M 上的任意一点,EF 为圆()12:22=-+y x N 的任意一条直径(E 、F 为直径的两个端点),求⋅的最大值.2 . 已知椭圆E :()222210x y a b a b +=>>的一个焦点为()1F ,而且过点12H ⎫⎪⎭.(Ⅰ)求椭圆E 的方程;(Ⅱ)设椭圆E 的上下顶点分别为12,A A ,P 是椭圆上异于12,A A 的任一点,直线12,PA PA 分别交x 轴于点,N M ,若直线OT 与过点,M N 的圆G 相切,切点为T .证明:线段OT 的长为定值,并求出该定值.3、已知圆O:222=+y x 交x 轴于A,B 两点,曲线C 是以AB 为长轴,离心率为22的椭圆,其左焦点为F,若P 是圆O 上一点,连结PF,过原点O 作直线PF 的垂线交直线x=-2于点Q.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)若点P 的坐标为(1,1),求证:直线PQ 与圆O 相切; (Ⅲ)试探究:当点P 在圆O 上运动时(不与A 、B 重合),直线PQ 与圆O 是否保持相切的位置关系若是,请证明;若不是,请说明理由.4设)0(1),(),,(22222211>>=+b a b x x y y x B y x A 是椭圆上的两点,满足0),(),(2211=⋅a y b x a y b x ,椭圆的离心率,23=e 短轴长为2,0为坐标原点.(1)求椭圆的方程; (2)若直线AB 过椭圆的焦点F (0,c ),(c 为半焦距),求直线AB 的斜率k 的值;(3)试问:△AOB 的面积是否为定值如果是,请给予证明;如果不是,请说明理由.5 、直线l :y = mx + 1,双曲线C :3x 2 y 2 = 1,问是否存在m 的值,使l 与C 相交于A , B 两点,且以AB 为直径的圆过原点6 已知双曲线C :22221(0,0)x y a b a b-=>>的两个焦点为F 1(-2,0),F 2(2,0),点P 在曲线C 上。
新高考数学一轮复习考点知识专题讲解与练习 41 椭圆

新高考数学一轮复习考点知识专题讲解与练习考点知识总结41 椭圆高考 概览本考点是高考必考知识点,常考题型为选择题、填空题、解答题,分值为5分或12分,中、高等难度 考纲 研读1.掌握椭圆的定义、几何图形、标准方程及简单几何性质(范围、对称性、顶点、离心率) 2.了解椭圆的简单应用 3.理解数形结合的思想一、基础小题1.已知中心在原点的椭圆C 的右焦点为F (1,0),离心率等于12,则C 的方程是( ) A.x 23+y 24=1 B .x 24+y 23=1C.x 24+y 23=1 D .x 24+y 2=1 答案 C解析 依题意,所求椭圆的焦点位于x 轴上,且c =1,e =c a =12,所以a =2,b 2=a 2-c 2=3,因此其方程是x 24+y 23=1.故选C.2.椭圆x 2+my 2=1的焦点在y 轴上,长轴长是短轴长的2倍,则m 等于( ) A.12 B .2 C.4 D .14 答案 D解析 由x 2+y 21m=1及题意知,21m =2×2×1,得m =14.故选D.3.已知动点M (x ,y )满足(x +2)2+y 2+(x -2)2+y 2=4,则动点M 的轨迹是( )A .椭圆B .直线 C.圆 D .线段 答案 D解析 设点F 1(-2,0),F 2(2,0),由题意知动点M 满足|MF 1|+|MF 2|=4=|F 1F 2|,故动点M 的轨迹是线段F 1F 2.故选D.4.设F 1,F 2为椭圆x 29+y 25=1的两个焦点,点P 在椭圆上,若线段PF 1的中点在y轴上,则|PF 2||PF 1|的值为( )A.514 B .513 C.49 D .59 答案 B解析 由题意知a =3,b = 5.由椭圆定义知|PF 1|+|PF 2|=6.在△PF 1F 2中,因为PF 1的中点在y 轴上,O 为F 1F 2的中点,由三角形中位线的性质可推得PF 2⊥x 轴,所以由x =c 时可得|PF 2|=b 2a =53,所以|PF 1|=6-|PF 2|=133,所以|PF 2||PF 1|=513.故选B.5.已知圆(x +2)2+y 2=36的圆心为M ,设A 为圆上任一点,且点N (2,0),线段AN 的垂直平分线交MA 于点P ,则动点P 的轨迹是( )A.圆B.椭圆 C.双曲线D.抛物线答案B解析点P在线段AN的垂直平分线上,故|P A|=|PN|,又AM是圆的半径,所以|PM|+|PN|=|PM|+|P A|=|AM|=6>|MN|,由椭圆定义知,动点P的轨迹是椭圆.故选B.6.(多选)已知P是椭圆C:x26+y2=1上的动点,Q是圆D:(x+1)2+y2=15上的动点,则()A.C的焦距为5B.C的离心率为30 6C.圆D在C的内部D.|PQ|的最小值为25 5答案BC解析∵x26+y2=1,∴a=6,b=1,∴c=a2-b2=6-1=5,则C的焦距为25,离心率e=ca=56=306.设P(x,y)()-6≤x≤6,则|PD|2=(x+1)2+y2=(x+1)2+1-x26=56⎝⎛⎭⎪⎫x+652+45≥45>15,∴圆D在C的内部,且|PQ|的最小值为45-15=55.故选BC.7.(多选)椭圆C:x24+y2=1的左、右焦点分别为F1,F2,O为坐标原点,以下说法正确的是()A .过点F 2的直线与椭圆C 交于A ,B 两点,则△ABF 1的周长为8 B .椭圆C 上存在点P ,使得PF 1→·PF 2→=0 C .椭圆C 的离心率为12D .P 为椭圆x 24+y 2=1上一点,Q 为圆x 2+y 2=1上一点,则点P ,Q 间的最大距离为3答案 ABD解析 对于A ,因为F 1,F 2分别为椭圆C :x 24+y 2=1的左、右焦点,过点F 2的直线与椭圆C 交于A ,B 两点,由椭圆定义可得,|AF 1|+|AF 2|=|BF 1|+|BF 2|=2a =4,因此△ABF 1的周长为|AF 1|+|BF 1|+|AB |=|AF 1|+|BF 1|+|AF 2|+|BF 2|=4a =8,故A 正确;对于B ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,则点P 坐标满足x 24+y 2=1,且-2≤x ≤2,又F 1(-3,0),F 2(3,0),所以PF 1→=(-3-x ,-y ),PF 2→=(3-x ,-y ),因此PF 1→·PF 2→=(-3-x )(3-x )+y 2=x 2-3+1-x 24=3x 24-2,由PF 1→·PF 2→=3x 24-2=0,可得x =±263∈[-2,2],故B 正确;对于C ,因为a 2=4,b 2=1,所以c 2=4-1=3,即c =3,所以离心率为e =c a =32,故C 错误;对于D ,设点P (x ,y )为椭圆C :x 24+y 2=1上任意一点,由题意可得,点P (x ,y )到圆x 2+y 2=1的圆心的距离为|PO |=x 2+y 2=4-4y 2+y 2=4-3y 2,因为-1≤y ≤1,所以|PQ |max =|PO |max +1=4-0+1=3,故D 正确.故选ABD.8.已知A (3,0),B (-2,1)是椭圆x 225+y 216=1内的点,M 是椭圆上的一动点,则|MA |+|MB |的最大值为________,最小值为________.答案 10+2 10-2解析 由题意知A 为椭圆的右焦点,设左焦点为F 1,由椭圆的定义知|MF 1|+|MA |=10,所以|MA |+|MB |=10+|MB |-|MF 1|.又||MB |-|MF 1||≤|BF 1|,所以-|BF 1|≤|MB |-|MF 1|≤|BF 1|,如图,设直线BF 1交椭圆于M 1,M 2两点.当M 为点M 1时,|MB |-|MF 1|最小,当M 为点M 2时,|MB |-|MF 1|最大.所以|MA |+|MB |的最大值为10+2,最小值为10- 2.二、高考小题9.(2022·新高考Ⅰ卷)已知F 1,F 2是椭圆C :x 29+y 24=1的两个焦点,点M 在C 上,则|MF 1|·|MF 2|的最大值为( )A .13B .12 C.9 D .6 答案C 解析由椭圆的定义可知,|MF 1|+|MF 2|=2a =6.由基本不等式可得|MF 1|·|MF 2|≤⎝⎛⎭⎪⎫|MF 1|+|MF 2|22=⎝ ⎛⎭⎪⎫622=9,当且仅当 |MF 1|=|MF 2|=3时等号成立.故选C.10.(2022·全国乙卷)设B 是椭圆C :x 2a 2+y 2b 2=1(a >b >0)的上顶点,若C 上的任意一点P 都满足|PB |≤2b ,则C 的离心率的取值范围是( )A.⎣⎢⎡⎭⎪⎫22,1 B .⎣⎢⎡⎭⎪⎫12,1 C.⎝ ⎛⎦⎥⎤0,22 D .⎝ ⎛⎦⎥⎤0,12答案 C解析 依题意,B (0,b ),设椭圆上一点P (x 0,y 0),则|y 0|≤b ,x 20a 2+y 20b 2=1,可得x 20=a 2-a 2b 2y 20,则|PB |2=x 20+(y 0-b )2=x 20+y 20-2by 0+b 2=-c 2b 2y 20-2by 0+a 2+b 2≤4b 2.因为当y 0=-b 时,|PB |2=4b 2,所以-b 3c 2≤-b ,得2c 2≤a 2,所以离心率e =c a ∈⎝⎛⎦⎥⎤0,22.故选C.11.(2022·全国Ⅰ卷)已知椭圆C 的焦点为F 1(-1,0),F 2(1,0),过F 2的直线与C 交于A ,B 两点.若|AF 2|=2|F 2B |,|AB |=|BF 1|,则C 的方程为( )A.x 22+y 2=1 B .x 23+y 22=1 C.x 24+y 23=1 D .x 25+y 24=1 答案 B解析 设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0).由椭圆的定义可得|AF 1|+|AB |+|BF 1|=4a .∵|AB |=|BF 1|,|AF 2|=2|F 2B |,∴|AB |=|BF 1|=32|AF 2|,∴|AF 1|+3|AF 2|=4a .又|AF 1|+|AF 2|=2a ,∴|AF 1|=|AF 2|=a ,∴点A 是椭圆的短轴端点,如图.不妨设A (0,-b ),由F 2(1,0),AF 2→=2F 2B →,得B ⎝ ⎛⎭⎪⎫32,b 2.由点B 在椭圆上,得94a 2+b 24b 2=1,得a 2=3,b 2=a 2-c 2=2.∴椭圆C 的方程为x 23+y 22=1.故选B.12.(2022·浙江高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0),焦点F 1(-c,0),F 2(c,0)(c >0).若过F 1的直线和圆⎝ ⎛⎭⎪⎫x -12c 2+y 2=c 2相切,与椭圆在第一象限交于点P ,且PF 2⊥x 轴,则该直线的斜率是________,椭圆的离心率是________.答案25555解析 设过F 1的直线与圆的切点为M ,圆心A ⎝ ⎛⎭⎪⎫12c ,0,则|AM |=c ,|AF 1|=32c ,所以|MF 1|=52c ,所以该直线的斜率k =|AM ||MF 1|=c 52c =255.因为PF 2⊥x 轴,所以|PF 2|=b 2a ,又|F 1F 2|=2c ,所以k =255=b 2a 2c =a 2-c 22ac =1-e 22e ,解得e =55(负值舍去).13.(2022·全国甲卷)已知F 1,F 2为椭圆C :x 216+y 24=1的两个焦点,P ,Q 为C 上关于坐标原点对称的两点,且|PQ |=|F 1F 2|,则四边形PF 1QF 2的面积为________.答案 8解析 解法一:由|PQ |=|F 1F 2|,得|OP |=12|F 1F 2|(O 为坐标原点),所以PF 1⊥PF 2,又由椭圆的对称性,知四边形PF 1QF 2为平行四边形,所以四边形PF 1QF 2为矩形.设|PF 1|=m ,则|PF 2|=2a -|PF 1|=8-m ,则|PF 1|2+|PF 2|2=m 2+(8-m )2=2m 2+64-16m =|F 1F 2|2=4c 2=4(a 2-b 2)=48,得m (8-m )=8,所以四边形PF 1QF 2的面积为|PF 1|·|PF 2|=m (8-m )=8.解法二:由椭圆C :x 216+y 24=1可知|F 1F 2|=4 3.由P ,Q 为C 上关于坐标原点对称的两个点,且|PQ |=|F 1F 2|,得|PO |=|QO |=23(O 为坐标原点),所以P ,Q 既在椭圆x 216+y 24=1上,又在圆x 2+y 2=12上.不妨设点P 在第一象限,则由⎩⎪⎨⎪⎧x 216+y 24=1,x 2+y 2=12,可得P ⎝ ⎛⎭⎪⎫463,233,所以由对称性,可得四边形PF 1QF 2的面积S 四边形PF 1QF 2=2S △PF 1F 2=2×12×|F 1F 2|×y P =2×12×43×233=8.解法三:由椭圆方程知,a =4,b =2,则c =a 2-b 2=2 3.由点P 在椭圆上,得|PF 1|+|PF 2|=8,所以|PF 1|2+|PF 2|2+2|PF 1|·|PF 2|=64 ①.由椭圆的对称性及|PQ |=|F 1F 2|知,四边形PF 1QF 2是矩形,在Rt △PF 1F 2中,由勾股定理得|PF 1|2+|PF 2|2=|F 1F 2|2,所以|PF 1|2+|PF 2|2=48 ②.由①-②得|PF 1|·|PF 2|=8,所以S 四边形PF 1QF 2=|PF 1|·|PF 2|=8.14.(2022·全国Ⅲ卷)设F 1,F 2为椭圆C :x 236+y 220=1的两个焦点,M 为C 上一点且在第一象限.若△MF 1F 2为等腰三角形,则M 的坐标为________.答案 (3,15)解析 设F 1为椭圆的左焦点,则|MF 1|>|MF 2|,|F 1F 2|=2c =236-20=8,因为△MF 1F 2为等腰三角形,|MF 1|>|MF 2|,且|MF 1|+|MF 2|=2a =12,所以|MF 1|>6,|MF 2|<6,所以|MF 1|=|F 1F 2|=8,设M (x ,y ),x >0,y >0,则⎩⎪⎨⎪⎧(x +4)2+y 2=64,x 236+y 220=1,解得⎩⎨⎧x =3,y =15.所以点M 的坐标为(3,15).15.(2022·浙江高考)已知椭圆x 29+y 25=1的左焦点为F ,点P 在椭圆上且在x 轴的上方.若线段PF 的中点在以原点O 为圆心,|OF |为半径的圆上,则直线PF 的斜率是________.答案15解析 如图,左焦点F (-2,0),右焦点F ′(2,0).线段PF 的中点M 在以O (0,0)为圆心,2为半径的圆上,因此|OM |=2.在△FF ′P 中,OM 綊12PF ′,所以|PF ′|=4.根据椭圆的定义,得|PF |+|PF ′|=6,所以|PF |=2.所以|MF |=1.又因为|FF ′|=4,所以在Rt △MFF ′中,tan ∠PFF ′=|MF ′||MF |=|FF ′|2-|MF |2|MF |=15,即直线PF 的斜率是15.三、模拟小题16.(2022·广东珠海高三摸底)已知点A (1,1),且F 是椭圆x 24+y 23=1的左焦点,P 是椭圆上任意一点,则|PF |+|P A |的最小值是( )A.6 B.5 C.4 D.3答案D解析a=2,c=a2-b2=1,设椭圆的右焦点为F1(1,0),|AF1|=1,|PF|+|P A|=2a -|PF1|+|P A|=4+|P A|-|PF1|≥4-|AF1|=4-1=3,当P在F1的正上方时,等号成立.故选D.17.(2022·新高考八省联考)椭圆x2m2+1+y2m2=1(m>0)的焦点为F1,F2,上顶点为A,若∠F1AF2=π3,则m=()A.1 B. 2 C.3D.2 答案C解析在椭圆x2m2+1+y2m2=1(m>0)中,a=m2+1,b=m,c=a2-b2=1,如图所示,因为椭圆x2m2+1+y2m2=1(m>0)的上顶点为点A,焦点为F1,F2,所以|AF1|=|AF2|=a,因为∠F1AF2=π3,所以△F1AF2为等边三角形,则|AF1|=|F1F2|,即m2+1=a=2c=2,因此,m= 3.故选C.18.(2022·湖南长沙长郡中学高三上开学考试)已知椭圆C:x2a2+y2b2=1(a>b>0)的右焦点F ,点P 在椭圆C 上,点Q 在圆E :(x +3)2+(y -4)2=4上,且圆E 上的所有点均在椭圆C 外,若|PQ |-|PF |的最小值为25-6,且椭圆C 的长轴长恰与圆E 的直径长相等,则椭圆C 的标准方程为( )A.x 22+y 2=1 B .x 24+y 2=1 C.x 24+y 23=1 D .x 24+y 22=1 答案 C解析 因为圆E :(x +3)2+(y -4)2=4的半径为2,所以a =2,设椭圆的左焦点为F 1(-c,0),由椭圆的定义可得|PF 1|+|PF |=2a =4,所以|PF |=4-|PF 1|,所以|PQ |-|PF |=|PQ |+|PF 1|-4≥|QF 1|-4=|QF 1|+|EQ |-6≥|EF 1|-6,当且仅当P ,Q 位于线段EF 1上时,等号成立,又|PQ |-|PF |的最小值为25-6,所以|EF 1|-6=25-6,即|EF 1|=25,所以(-3+c )2+(4-0)2=25,解得c =1或c =5>a =2(舍).所以b 2=a 2-c 2=4-1=3,所以椭圆C 的标准方程为x 24+y 23=1.故选C.19.(多选)(2022·广东韶关第一次综合测试)设P 是椭圆x 2a 2+y 2b 2=1(a >b >0)上一点,F 1,F 2是椭圆的左、右焦点,焦距为2c (c >0),若∠F 1PF 2是直角,则( )A .|OP |=c (O 为原点)B .S △F 1PF 2=b 2C .△F 1PF 2的内切圆半径r =a -cD .|PF 1|max =a +c 答案 ABC解析 在Rt △F 1PF 2中,O 为斜边F 1F 2的中点,所以|OP |=12|F 1F 2|=c ,故A 正确;设|PF 1|=m ,|PF 2|=n ,则有m 2+n 2=(2c )2,m +n =2a ,所以mn =12[(m +n )2-(m 2+n 2)]=2b 2,所以S △F 1PF 2=12mn =b 2,故B 正确;因为S △F 1PF 2=12(m +n +2c )·r =b 2,所以r =2S △F 1PF 2m +n +2c =2b 22a +2c =2(a 2-c 2)2(a +c )=a -c ,故C 正确;|PF 1|=a +c ,当且仅当P 为椭圆右顶点,此时P ,F 1,F 2不构成三角形,故D 错误.20.(多选)(2022·山东潍坊6月模拟)已知椭圆C :x 2a +y 2b =1(a >b >0)的左、右焦点分别为F 1,F 2,且|F 1F 2|=2,点P (1,1)在椭圆的内部,点Q 在椭圆上,则以下说法正确的是( )A .|QF 1|+|QP |的最小值为2a -1B .椭圆C 的短轴长可能为2C .椭圆C 的离心率的取值范围为⎝ ⎛⎭⎪⎫0,5-12 D .若PF 1→=F 1Q →,则椭圆C 的长轴长为5+17 答案 ACD解析 因为|F 1F 2|=2,所以F 2(1,0),|PF 2|=1,所以|QF 1|+|QP |=2a -|QF 2|+|QP |≥2a -|PF 2|=2a -1,当Q ,F 2,P 三点共线且点Q 在第一象限时,取等号,故A 正确;若椭圆C 的短轴长为2,则b =1,a =2,所以椭圆C 的方程为x 22+y 21=1,又12+11>1,则点P 在椭圆外,故B 错误;因为点P (1,1)在椭圆内部,所以1a +1b <1,又a -b =1,所以b =a -1,所以1a +1a -1<1,即a 2-3a +1>0,解得a >3+52=6+254=(1+5)24,所以a >1+52,所以e =1a <5-12,所以椭圆C 的离心率的取值范围为⎝⎛⎭⎪⎫0,5-12,故C 正确;若PF 1→=F 1Q →,则F 1为线段PQ 的中点,所以Q (-3,-1),所以2a =|QF 1|+|QF 2|=5+17,故D 正确.故选ACD.21.(2022·广东广州荔湾区高三上调研考试)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的左焦点为F ,过点F 且倾斜角为45°的直线l 与椭圆交于A ,B 两点(点B 在x 轴上方),且FB →=2AF →,则椭圆的离心率为________.答案23解析 设F (-c,0),c >0,由题意知,l 的斜率为tan45°=1,则直线方程为y =x +c ,设A (x 1,y 1),B (x 2,y 2)联立直线和椭圆的方程得⎩⎪⎨⎪⎧y =x +c ,x 2a 2+y 2b 2=1,整理得(a 2+b 2)y 2-2cb 2y +c 2b 2-a 2b 2=0,则y 1+y 2=2cb 2a 2+b 2,y 1y 2=c 2b 2-a 2b 2a 2+b 2,且F 1B →=2AF 1→,可得y 2=-2y 1,则-y 1=2cb 2a 2+b 2,-2y 21=c 2b 2-a 2b 2a 2+b 2,所以-2⎝ ⎛⎭⎪⎫2cb 2a 2+b 22=c 2b 2-a 2b 2a 2+b 2,可得9c 2=2a 2,所以e =c a =23.22.(2022·湖北恩施州高三上第一次教学质量监测)设点P 是椭圆x 29+y 25=1上的点,F 1,F 2是该椭圆的两个焦点,若△PF 1F 2的面积为52,则sin ∠F 1PF 2________.答案 45解析 在椭圆x 29+y 25=1中,长半轴长a =3,半焦距c =2,由椭圆定义得|PF 1|+|PF 2|=2a =6,在△PF 1F 2中,由余弦定理得|F 1F 2|2=|PF 1|2+|PF 2|2-2|PF 1|·|PF 2|·cos ∠F 1PF 2,即(2c )2=(2a )2-2|PF 1|·|PF 2|·(1+cos ∠F 1PF 2),则|PF 1|·|PF 2|·(1+cos ∠F 1PF 2)=10,又△PF 1F 2的面积为52,则12|PF 1|·|PF 2|sin ∠F 1PF 2=52,即|PF 1|·|PF 2|sin ∠F 1PF 2=5,于是得2sin ∠F 1PF 2=1+cos ∠F 1PF 2,两边平方得(1+cos ∠F 1PF 2)2=4sin 2∠F 1PF 2=4(1-cos ∠F 1PF 2)(1+cos ∠F 1PF 2),解得cos ∠F 1PF 2=35,则sin ∠F 1PF 2=45,所以sin ∠F 1PF 2=45.一、高考大题1.(2022·北京高考)已知椭圆E:x2a2+y2b2=1(a>b>0)过点A(0,-2),以四个顶点围成的四边形面积为4 5.(1)求椭圆E的标准方程;(2)过点P(0,-3)的直线l斜率为k,交椭圆E于不同的两点B,C,直线AB,AC 分别交直线y=-3于点M,N,若|PM|+|PN|≤15,求k的取值范围.解(1)因为椭圆过A(0,-2),所以b=2,因为四个顶点围成的四边形的面积为45,所以12×2a×2b=45,即a=5,故椭圆E的标准方程为x25+y24=1.(2)设B(x1,y1),C(x2,y2),因为直线BC的斜率存在,所以x1x2≠0,故直线AB的方程为y=y1+2x1x-2,令y=-3,则x M=-x1y1+2,同理x N=-x2y2+2.设直线BC 的方程为y =kx -3, 由⎩⎨⎧y =kx -3,4x 2+5y 2=20, 可得(4+5k 2)x 2-30kx +25=0,故Δ=900k 2-100(4+5k 2)>0,解得k <-1或k >1. 又x 1+x 2=30k 4+5k 2,x 1x 2=254+5k 2, 故x 1x 2>0, 所以x M x N >0.又|PM |+|PN |=|x M +x N | =⎪⎪⎪⎪⎪⎪x 1y 1+2+x 2y 2+2 =⎪⎪⎪⎪⎪⎪x 1kx 1-1+x 2kx 2-1=⎪⎪⎪⎪⎪⎪2kx 1x 2-(x 1+x 2)k 2x 1x 2-k (x 1+x 2)+1 =⎪⎪⎪⎪⎪⎪⎪⎪50k 4+5k 2-30k 4+5k 225k 24+5k 2-30k 24+5k 2+1=5|k |, 故5|k |≤15,即|k |≤3,综上,k 的取值范围是[-3,-1)∪(1,3].2.(2022·天津高考)已知椭圆x 2a 2+y 2b 2=1(a >b >0)的右焦点为F ,上顶点为B ,离心率为255,且|BF |= 5.(1)求椭圆的方程;(2)直线l 与椭圆有唯一的公共点M ,与y 轴的正半轴交于点N ,过N 与BF 垂直的直线交x 轴于点P .若MP ∥BF ,求直线l 的方程.解 (1)易知点F (c,0),B (0,b ), 故|BF |=c 2+b 2=a =5, 因为椭圆的离心率为e =c a =255, 故c =2,b =a 2-c 2=1, 因此,椭圆的方程为x 25+y 2=1.(2)设点M (x 0,y 0)(y 0>0)为椭圆x 25+y 2=1上一点, 先证明直线MN 的方程为x 0x5+y 0y =1, 联立⎩⎪⎨⎪⎧x 0x 5+y 0y =1,x 25+y 2=1,消去y 并整理得x 2-2x 0x +x 20=0,Δ=4x 20-4x 20=0,因此,椭圆x 25+y 2=1在点M (x 0,y 0)处的切线方程为x 0x5+y 0y =1.在直线MN 的方程中,令x =0,可得y =1y 0,由题意可知y 0>0,即点N ⎝ ⎛⎭⎪⎫0,1y 0, 直线BF 的斜率为k BF =-b c =-12, 所以直线PN 的方程为y =2x +1y 0,在直线PN 的方程中,令y =0,可得x =-12y 0,即点P ⎝ ⎛⎭⎪⎫-12y 0,0,因为MP ∥BF ,所以k MP =k BF , 即y 0x 0+12y=2y 202x 0y 0+1=-12, 整理可得(x 0+5y 0)2=0,所以x 0=-5y 0,所以x 205+y 20=6y 20=1, 又y 0>0,故y 0=66,x 0=-566,所以直线l 的方程为-66x +66y =1,即x -y +6=0.3.(2022·新高考Ⅱ卷)已知椭圆C 的方程为x 2a 2+y 2b 2=1(a >b >0),右焦点为F (2,0),且离心率为63.(1)求椭圆C 的方程;(2)设M ,N 是椭圆C 上的两点,直线MN 与曲线x 2+y 2=b 2(x >0)相切.证明:M ,N ,F 三点共线的充要条件是|MN |= 3.解 (1)由题意,知椭圆的半焦距c =2且e =c a =63,所以a =3, 又b 2=a 2-c 2=1,所以椭圆C 的方程为x 23+y 2=1.(2)证明:由(1)得,曲线为x 2+y 2=1(x >0),当直线MN 的斜率不存在时,直线MN :x =1,不符合题意; 当直线MN 的斜率存在时, 设M (x 1,y 1),N (x 2,y 2). 必要性:若M ,N ,F 三点共线, 可设直线MN :y =k (x -2), 即kx -y -2k =0,由直线MN 与曲线x 2+y 2=1(x >0)相切可得|-2k |k 2+1=1,解得k =±1,联立⎩⎨⎧y =±(x -2),x 23+y 2=1,可得4x 2-62x +3=0,所以x 1+x 2=322,x 1x 2=34,所以|MN |=1+1·(x 1+x 2)2-4x 1x 2=3,所以必要性成立; 充分性:设直线MN :y =kx +m (km <0),即kx -y +m =0, 由直线MN 与曲线x 2+y 2=1(x >0)相切可得|m |k 2+1=1,所以m 2=k 2+1,联立⎩⎪⎨⎪⎧y =kx +m ,x 23+y 2=1,可得(1+3k 2)x 2+6kmx +3m 2-3=0, 所以x 1+x 2=-6km1+3k 2,x 1x 2=3m 2-31+3k 2,所以|MN |=1+k 2·(x 1+x 2)2-4x 1x 2 =1+k 2·⎝ ⎛⎭⎪⎫-6km 1+3k 22-4·3m 2-31+3k 2=1+k 2·24k 21+3k 2=3,化简得3(k 2-1)2=0,所以k =±1, 所以⎩⎨⎧ k =1,m =-2或⎩⎨⎧k =-1,m =2,所以直线MN :y =x -2或y =-x +2,所以直线MN 过点F (2,0),即M ,N ,F 三点共线,充分性成立. 所以M ,N ,F 三点共线的充要条件是|MN |= 3. 二、模拟大题4.(2022·广东高三综合能力测试)已知椭圆C 的中心为坐标原点,焦点在x 轴上,焦距为2,椭圆C 上的点到焦点的距离的最大值为3.(1)求椭圆C 的标准方程;(2)设点A ,F 分别为椭圆C 的左顶点、右焦点,过点F 的直线交椭圆C 于P ,Q 两点,直线AP ,AQ 分别与直线l :x =3交于点M ,N ,求证:直线FM 和直线FN 的斜率之积为定值.解 (1)设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),焦距为2c ,依题意,可得⎩⎨⎧ 2c =2,a +c =3,解得a =2,c =1, 又a 2=b 2+c 2,则b =3,所以椭圆C 的标准方程为x 24+y 23=1.(2)证明:由(1)得A (-2,0),F (1,0),设直线PQ :x =my +1,P (x 1,y 1),Q (x 2,y 2),联立⎩⎪⎨⎪⎧ x =my +1,x 24+y 23=1,消去x ,整理,得(3m 2+4)y 2+6my -9=0,则y 1+y 2=-6m 3m 2+4,y 1y 2=-93m 2+4, 依题意,可设M (3,y M ),N (3,y N ),则由y M 3+2=y 1x 1+2,可得y M =5y 1x 1+2=5y 1my 1+3, 同理,可得y N =5y 2my 2+3, 所以直线FM 和直线FN 的斜率之积k FM ·k FN =y M -03-1·y N -03-1=14·25y 1y 2(my 1+3)(my 2+3)=14·25y 1y 2m 2y 1y 2+3m (y 1+y 2)+9=14·25⎝ ⎛⎭⎪⎫-93m 2+4m 2⎝ ⎛⎭⎪⎫-93m 2+4+3m ⎝ ⎛⎭⎪⎫-6m 3m 2+4+9 =14·-25×9-9m 2-18m 2+27m 2+36=-25×94×36=-2516.所以直线FM 和直线FN 的斜率之积为定值-2516.5.(2022·长春四校联考)已知平面上一动点P 到定点F (3,0)的距离与它到直线x =433的距离之比为32,记动点P 的轨迹为曲线C .(1)求曲线C 的方程;(2)设直线l :y =kx +m 与曲线C 交于M ,N 两点,O 为坐标原点,若k OM ·k ON =54,求△MON 面积的最大值.解 (1)设P (x ,y ),则(x -3)2+y 2⎪⎪⎪⎪⎪⎪x -433=32, 化简,得x 24+y 2=1.即曲线C 的方程为x 24+y 2=1.(2)设M (x 1,y 1),N (x 2,y 2),联立⎩⎪⎨⎪⎧ y =kx +m ,x 24+y 2=1,得(4k 2+1)x 2+8kmx +4m 2-4=0,依题意,得Δ=(8km )2-4(4k 2+1)·(4m 2-4)>0, 化简,得m 2<4k 2+1,①x 1+x 2=-8km 4k 2+1,x 1x 2=4m 2-44k 2+1, y 1y 2=(kx 1+m )(kx 2+m )=k 2x 1x 2+km (x 1+x 2)+m 2,若k OM ·k ON =54,则y 1y 2x 1x 2=54,即4y 1y 2=5x 1x 2, ∴4k 2x 1x 2+4km (x 1+x 2)+4m 2=5x 1x 2,∴(4k 2-5)·4(m 2-1)4k 2+1+4km ⎝ ⎛⎭⎪⎫-8km 4k 2+1+4m 2=0, 即(4k 2-5)(m 2-1)-8k 2m 2+m 2(4k 2+1)=0,化简,得m 2+k 2=54,②|MN |=1+k 2|x 1-x 2| =1+k 2·64k 2m 2(4k 2+1)2-4·4m 2-44k 2+1=1+k 2·-16m 2+64k 2+16(4k 2+1)2 =1+k 2·4(20k 2-1)(4k 2+1)2,∵原点O 到直线l 的距离d =|m |1+k 2, ∴S △MON =12|MN |·d =12(5-4k 2)(20k 2-1)(4k 2+1)2. 设4k 2+1=t ,由①②得0≤m 2<65,120<k 2≤54,∴65<t ≤6,16≤1t <56,S △MON =12(6-t )(5t -6)t 2 =12-36+36t -5t 2t 2 =3 -⎝ ⎛⎭⎪⎫1t -122+19, ∴当1t =12,即k =±12时,△MON 的面积取得最大值,为1.6.(2022·江苏省南通市高三月考)已知椭圆O :x 2a 2+y 2b 2=1(a >b >0)的左、右顶点分别为A ,B ,点P 在椭圆O 上运动,若△P AB 面积的最大值为23,椭圆O 的离心率为12.(1)求椭圆O 的标准方程;(2)过B 点作圆E :x 2+(y -2)2=r 2(0<r <2)的两条切线,分别与椭圆O 交于C ,D 两点(异于点B ),当r 变化时,直线CD 是否恒过某定点?若是,求出该定点坐标;若不是,请说明理由.解 (1)由题可知当点P 在椭圆O 的上顶点(或下顶点)时,S △P AB 最大,此时S △P AB=12×2ab =ab =23,∴⎩⎪⎨⎪⎧ ab =23,c a =12,a 2-b 2=c 2,∴⎩⎪⎨⎪⎧ a =2,b =3,c =1,∴椭圆O 的标准方程为x 24+y 23=1.(2)设过点B (2,0)与圆E 相切的直线方程为y =k (x -2),即kx -y -2k =0, ∵直线与圆E :x 2+(y -2)2=r 2相切,∴d =|-2-2k |k 2+1=r ,即(4-r 2)k 2+8k +4-r 2=0.设两切线的斜率分别为k 1,k 2(k 1≠k 2), 则k 1k 2=1,设C (x 1,y 1),D (x 2,y 2),由⎩⎪⎨⎪⎧ y =k 1(x -2),x 24+y 23=1⇒(3+4k 21)x 2-16k 21x +16k 21-12=0, ∴2x 1=16k 21-123+4k 21,即x 1=8k 21-63+4k 21, ∴y 1=-12k 13+4k 21; 同理,x 2=8k 22-63+4k 22=8-6k 214+3k 21,y 2=-12k 23+4k 22=-12k 14+3k 21;∴k CD =y 2-y 1x 2-x 1=-12k 14+3k 21--12k 13+4k 218-6k 214+3k 21-8k 21-63+4k 21=k 14(k 21+1). ∴直线CD 的方程为y +12k 13+4k 21=k 14(k 21+1)⎝ ⎛⎭⎪⎫x -8k 21-63+4k 21, 整理得y =k 14(k 21+1)x -7k 12(k 21+1)=k 14(k 21+1)·(x -14). ∴直线CD 恒过定点(14,0).。
中职数学直线 圆 圆锥曲线练习测试题(含答案)

解析几何测试题3时间:120分钟 满分120分一、选择题(本题共15小题,每题3分,共45分).1.直线2x -y +2=0和x +3y +1=0的位置关系是( ).A .x -3y +5=0 В.x -3y +6-0C .3x -y -1=0D .3x -y +5=02.方程222460x y x y ++--=表示的图形是( ).A .以(1.-2)为半径的圆B .以(1.2)为半径的圆C .以(-1.-2)为半径的圆D .以(-1.2)为半径的圆3. 直线y -2x +5=0与圆224220x x y y +-++=的图形之间的关系是( ).A .相离B .相切C .相交但不过圆心D .相交且过圆心4. 若220)12x y x y λλλ++-++=(表示圆,则λ的取值范围是( ).A . 0λ>B .115λ C . 1λ>或15λ< D . R λ∈ 5. 若直线3x +4y +k =0与圆22650x y x +-+=相切,则k 的值等于( ).A .1或-19B .10或-10C .-1或-19D . -1或196.已知椭圆221169+=x y 上一点到椭圆的一个焦点的距离为3,则P 到另一个焦点的距离为( ).A .3B .4C .5D .67.焦点在x 轴上,长轴长为8.离心率为12,那么椭圆的标准方程为( ). A . 2211612+=x y B . 2211612-=x yC . 2211216+=x y D . 2211216-=x y 8. 顶点在坐标原点,焦点是(0,-1)的抛物线的标准方程是( ).A . 24=xy B . 24=-x y C . 24=-y x D . 24=y x 9. 若直线3x -2y +c =0与坐标轴围成的三角形的面积为3,则c 为( ).A .6B .-6C .-6或6D .3或-310. 经过圆x 2+y 2=4上一点M的切线方程为( ).A .x -y-0 B .x +y -C .x + y +0 D .x +2y -4=011.如图所示,直线1l : 0ax y b -+=与直线0bx y a +-=在同一坐标系中只可能是( ).A .B .C .D .12. 若方程x 2cosα-y 2sinα=1表示的曲线是双曲线,则角α的终边在( ).A .第一、二象限B .第二、三象限C .第二、四象限D .第一、三象限13. 等轴双曲线的渐近线方程为( ).A .y =±xB .y =±2xC .y =±12xD .y =±23x14. 若ab >0,则方程ax 2-by 2=ab 表示的曲线是( ).A .双曲线B .椭圆C .椭圆或双曲线D .圆或椭圆15. 椭圆22259x y +=1与双曲线22259x y k k ---=1(9<k <25)始终有( ). A .相同的离心率 B .相同的顶点C .相同的焦点D .以上结论均错误二、填空题(本题共15道小题每题2分,共30分)16.已知直线3x +(1-a )y +5=0与直线x -y =0平行,则 a =________.17.两平行线3x +4y -10-0与6x +8y -7=0之间的距离是________.18. 抛物线的准线方程为12x =,则抛物线的标准方程为________. 19. 已知直线l 经过点P 0(1,2),倾斜角为135°,则直线l 的方程为________.20. 以点(-2,3)为圆心,且经过点(2,5)的圆的标准方程为__________.21. 若A (-2,3),B (-1,7),C (2,a )三点共线,实数a 的值为________.22.若方程x 2+y 2+(1-m )x +1=0表示圆,则m 的取值范围是___________.23. 椭圆的长轴长为18,离心率为13,则椭圆的标准方程为________. 24.若221213x y m m+=--表示椭圆,则m 的取值范围为________. 25. 双曲线222516400-=xy 的两条渐近线方程是___________. 26. 若抛物线22=y px (0p >)上到焦点距离为3的点的横坐标为2.则p =___________.27. 经过P (-1,1),Q (0,2)两点,且圆心在x 轴上的圆的标准方程是_______.28. 圆(x -2)2+(y +2)2=2截直线x -y -5=0所得的弦长为_______.28. 与圆x 2+y 2+6x -2y -15=0有相同的圆心,且过点(-2,3)的圆的半径为______.29. 若圆x+y 2+y 2=2与直线y =x +b 相交,则b 的取值范围是________.30. 若经过双曲线22x -y 2=1的右焦点F 2的直线交双曲线的右支于A ,B 两点,|AB |=5,F 1是左焦点,则△F 1BA 的周长为___________.三、解答题(本题共7小题,共45分)31. (6分)若抛物线y 2=2px 与直线ax +y -4=0的一个交点坐标是(1,2),求抛物线的焦点到直线的距离.32. (6分)一直线经过点(-2,4),它的倾斜角是直线y +3的倾斜角的2倍,求它的方程.33. (6分)已知圆过点A (-1,1),B (1,3),且圆心在x 轴上,求圆的方程.34. (6分)求经过点A (3, 2),圆心在直线y =2x 上,且与直线2x -y +5=0相切的圆的标准方程.35. (7分)已知点A (3,4),F 是抛物线y 2=8x 的焦点,M 是抛物线上的动点,求|MA |+|MF |的最小值,并求出此时点M 的坐标.36. (7分)求以椭圆2285x y +=1的顶点为焦点、焦点为顶点的双曲线方程. 37. (7分)已知经过点(0,-2),且倾斜角为π4的直线与抛物线y 2=4x 相交于A ,B 两点.(1)求线段AB 的中点M 的坐标;(2)若某椭圆中心在坐标原点,一个焦点是抛物线的焦点,且长轴长等于 |AB |,求椭圆的标准方程.解析几何测试题3答案一、选择题(本题共15小题,每题3分,共45分)1—5 A D D C A 6—10 C A B C B 11—15 B D A A C二、填空题(本题共15小题,每题2分,共30分)16. 4 17. 131018. 22y x =- 19. x +y -3=020. (x +2)2+(y -3)2=20 21. 1922. m <-1或m >3 23. 2218172x y +=或2217281x y += 24. 144,,3233⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭25. 54y x =± 26. 2 27. (x -1)2+y 2=528.29. (-2,2)30. 10三、解答题(本题共7小题,共45分)31. 解:将点 (1,2)分别代入抛物线方程y2=2px与直线方程ax+y-4=0,得p=2,a=2,∴抛物线方程y2=4x,∴焦点F(1,0),∴抛物线的焦点到直线2x+y-4=0的距离为d=32.解:由直线33y x=+可知3k=_,所以tanθ=3k=,所以θ=30︒. 所以所求方程的倾斜角为60︒.故tan60k=︒=.所以所求直线方程为y-4x+2)-y+4+33. 解:设所求圆的圆心为()0a,=解得a=2.所以圆心为()3,0,半径r=所以所求圆的方程为()22310x y-+=34. 解:圆心在直线y=2x上,设圆心坐标为(a,2a),半径为r,则222(3)(22),a a rr⎧-+-=⎪⎨==⎪⎩整理得5a2-14a+8=0,解得a=2或a=45∴圆的标准方程为(x-2)2+(y-4)2=5或224855x y⎛⎫⎛⎫-+-⎪ ⎪⎝⎭⎝⎭=5.35. 解:抛物线y2=8x的焦点F的坐标为(2,0),准线l的方程为x=-2,过点M作MN⊥l,垂足为N.根据抛物线的定义知|MF |=|MN |,∴|MA |+|MF |=|MA |+|MN |, 当点M 的纵坐标与点A 的纵坐标都是4时,|MA |+|MF |的最小值为 |3-(-2)|=5.此时,点M 的坐标是(2,4).36. 解:椭圆2285x y +=1的顶点坐标为(-20),(0),焦点坐标为(0),0),∴双曲线的顶点坐标为(0),0),焦点坐标为(-0),(20),即双曲线中a c =∴b 2=c 2-a 2=8-3=5.∵双曲线的焦点在x 轴上, ∴双曲线方程为2235x y -=1. 37. 解:(1) 直线经过点(0,-2),且斜率为k =tanπ4=1, 所以直线方程为y -(-2)=x ,即y =x -2.由22,4,y x y x =-⎧⎨=⎩得x 2-8x +4=0.设A (x 1,y 1),B (x 2,y 2),线段AB 的中点M (x 0,y 0),则x 1+x 2=8,x 1x 2=4,∴x 0=12822x x +==4,y 0=x 0-2=4-2=2, ∴点M 的坐标为(4,2).(2)∵椭圆的焦点是抛物线y 2=4x 的焦点(1,0),椭圆的长轴长2a =|AB |∴a =c =1,∴b 2=a 2-c 2=2-1=23.∵焦点在x 轴上, ∴椭圆的标准方程为222423x y +=1.。
椭圆及其标准方程(作业)
该椭圆上,且M→F1·M→F2=0,则点 M 到 x 轴的距离为( )
A.2 3 3 B.23 6
C.
3 3
D. 3
二、填空题 6.已知 F1,F2 为椭圆2x52 +y92=1 的两个焦点,过 F1 的直线交椭圆于 A,B 两点,若|F2A|+|F2B|=12,则|AB|=________.
7.椭圆xm2+y42=1 的焦距是 2,则 m=________.
8.过点(-3,2)且与x92+y42=1 有相同焦点的椭圆的方程是________.
三、解答题 9.设 F1,F2 分别是椭圆 C:xa22+yb22=1(a>b>0)的左右焦点.设椭圆 C 上 一点( 3, 23)到两焦点 F1,F2 的距离和等于 4,写出椭圆 C 的方程和焦点坐标.
10.已知圆 B:(x+1)2+y2=16 及点 A(1,0),C 为圆 B 上任意一点,求 AC 的垂直平分线 l 与线段 CB 的交点 P 的轨迹方程.
A.2y52 +x2=1 B.2x52 +y2=1 或 x2+2y52 =1 C.2x52 +y2=1 D.以上都不对
3.(2013·西安高二检测)椭圆2x52 +y92=1 上的点 M 到焦点 F1 的距离为 2,N
是 MF1 的中点,则|ON|(O 为坐标原点)的值为( ) A.4 B.2
C.8
3 D.2
4.已知 A(0,-1)、B(0,1)两点,△ABC 的周长为 6,则△ABC 的顶点 C 的
轨迹方程是( )
A.x42+y32=1(x≠±2)
B.y42+x32=1(y≠±2)
C.x42+y32=1(x≠0)
D.y42+x32=1(y≠0)
5.(2013·吉林松原高二期末)已知椭圆x42+y2=1 的焦点为 F1、F2,点 M 在
(北师大版)宁波市高中数学选修2-1第三章《圆锥曲线与方程》测试题(有答案解析)
一、选择题1.已知椭圆2222:1(0)x y C a b a b +=>>l 与椭圆C 交于,A B 两点,且线段AB 的中点为()2,1M -,则直线l 的斜率为( ) A .13B .32C .12D .12.已知定圆222212:(3)1,:(3)49C x y C x y ++=-+=,定点(2,1)M ,动圆C 满足与1C 外切且与2C 内切,则1||CM CC +的最大值为( )A .8+B .8C .16D .163.椭圆()2222:10x y C a b a b+=>>的左、右焦点分别是1F 、2F ,斜率为1的直线l 过左焦点1F 且交C 于A ,B 两点,且2ABF 的内切圆的面积是π,若椭圆C 离心率的取值范围为[42,,则线段AB 的长度的取值范围是( )A .B .[1 , 2]C .[4 8],D .4.直线l 与抛物线22(0)y px p =>相交于A ,B 两点,线段AB 的中点为M ,点P 是y 轴左侧一点,若线段PA ,PB 的中点都在抛物线上,则( ) A .PM 与y 轴垂直 B .PM 的中点在抛物线上 C .PM 必过原点D .PA 与PB 垂直5.圆22: ()4M x m y -+=与双曲线2222:1(0,0 ) y x C a b a b-=>>的两条渐近线相切于AB 、两点,若||1AB =,则C 的离心率为( )A B C .14D .46.已知双曲线()2222:10,0x y C a b a b-=>>的左、右焦点分别为()1,0F c -,()2,0F c ,P 是双曲线C 右支上一点,且212PF F F =.若直线1PF与圆222x y a +=相切,则双曲线的离心率为( ) A .43B .53C .2D .37.已知1F 、2F 是椭圆()222210x y a b a b+=>>的左、右焦点,过2F 的直线与椭圆交于P 、Q 两点,1PQ PF ⊥,且112QF PF =,则12PFF △与12QF F 的面积之比为( )A .23-B .21-C .21+D .23+8.已知1F 、2F 是双曲线C :2214y x -=的左、右两个焦点,若双曲线在第一象限上存在一点P ,使得22()0OP OF F P +⋅=,O 为坐标原点,且12||||PF PF λ=,则λ的值为( ). A .13B .12C .2D .39.如图,已知点()00,P x y 是双曲线221:143x y C -=上的点,过点P 作椭圆222:143x y C +=的两条切线,切点为A 、B ,直线AB 交1C 的两渐近线于点E 、F ,O是坐标原点,则OE OF ⋅的值为( )A .34B .1C .43D .91610.椭圆22221x y a b+=(0a b >>)上一点M 关于原点的对称点为N ,F 为椭圆的一个焦点,若0MF NF ⋅=,且3MNF π∠=,则该椭圆的离心率为( ) A .21B 2C 3D 3111.已知椭圆22221(0)x y a b a b+=>>的右焦点为F ,过F 点作x 轴的垂线交椭圆于A ,B 两点,若0OA OB ⋅=,则椭圆的离心率等于( )A 15-+B 13-+ C .12D 3- 12.已知抛物线2:4C y x =的焦点为F ,过点F 的直线与抛物线交于A ,B 两点,满足6AB =,则线段AB 的中点的横坐标为( )A .2B .4C .5D .6二、填空题13.已知双曲线22143x y -=的左、右焦点分别为1F ,2F ,过1F 的直线与双曲线的左支交于A ,B 两点,若∠260AF B =︒,则2AF B 的内切圆半径为______.14.如图,过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),分别过,A B 作抛物线的切线,设两切线的交点为M ,则M 的坐标为__________.15.已知抛物线24y x = 上一点的距离到焦点的距离为5,则这点的坐标为_______.16.双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,1F 、2F 为左、右焦点,若直线2x =与双曲线C 交于点P ,则12PF F △的周长为____________.17.过抛物线2:4C y x =的焦点F 的弦AB 满足3AF FB =(点A 在x 轴上方),则以AB 为直径的圆与该抛物线准线的公共点的坐标为____________.18.如图,已知椭圆C 的中心为原点O ,(25,0)F -为椭圆C 的左焦点,P 为椭圆C 上一点,满足||||OP OF =且||4PF =,则椭圆C 的标准方程为__________.19.过抛物线2:4C y x =的焦点F 的直线l 交C 于,A B 两点,设,A B 在y 轴上的投影分别为,A B '',若()32AB AA BB ''=+,则直线l 的斜率为______. 20.已知1F 、2F 是椭圆22143x y +=的两个焦点,M 为椭圆上一点,若12MF F ∆为直角三角形,则12MF F S ∆=________.三、解答题21.已知椭圆2222:1(0)x y C a b a b+=>>的离心率12e =,且经过点31,2⎛⎫ ⎪⎝⎭,点12,F F 为椭圆C 的左、右焦点.(1)求椭圆C 的方程.(2)过点1F 分别作两条互相垂直的直线12,l l ,且1l 与椭圆交于不同两点2,,A B l 与直线1x =交于点P .若11AF FB λ=,且点Q 满足QA QB λ=,求1PQF △面积的最小值. 22.已知抛物线2:2(0)C x py p =>上一点(,9)M m 到其焦点的距离为10. (Ⅰ)求抛物线C 的方程;(Ⅱ)设过焦点F 的直线l 与抛物线C 交于A ,B 两点,且抛物线在A ,B 两点处的切线分别交x 轴于P ,Q 两点,①设()11,A x y ,求点P 的横坐标; ②求||||AP BQ ⋅的取值范围.23.已知两点(2,0),(2,0)A B -,过动点P 作x 轴的垂线,垂足为H ,且满足2||PA PB PH λ⋅=⋅,其中0λ≥.(1)求动点(,)P x y 的轨迹C 的方程,并讨论C 的轨迹形状;(2)过点(2,0)A -且斜率为1的直线交曲线C 于,M N 两点,若MN 中点横坐标为23-,求实数λ的值. 24.已知抛物线E 的顶点为原点O ,焦点F 在x 轴正半轴,点()2,Q m 在抛物线E 上,且3QF =.(1)求抛物线E 的方程;(2)过点()2,0P 且斜率为()0k k >的直线l 与抛物线E 交于A ,B 两点,且线段AB 的中点横坐标为4,求ABO 的面积.25.已知抛物线2:2(0)C y px p =>的焦点F 到准线的距离为2,且过点F 的直线l 被抛物线C 所截得的弦长MN 为8. (1)求直线l 的方程;(2)当直线l 的斜率大于零时,求过点,M N 且与抛物线C 的准线相切的圆的方程.26.已知:椭圆221164x y +=,求:(1)以()2,1P -为中点的弦所在直线的方程; (2)斜率为2的平行弦中点的轨迹方程.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】由椭圆的离心率可得a ,b 的关系,得到椭圆方程为22244x y b +=,设出A ,B 的坐标并代入椭圆方程,利用点差法求得直线l 的斜率. 【详解】解:由2c e a ==,得2222234c a b a a -==, 224a b ∴=,则椭圆方程为22244x y b +=,设1(A x ,1)y ,2(B x ,2)y , 则124x x +=-,122y y +=,把A ,B 的坐标代入椭圆方程得:22211222224444x y b x y b ⎧+=⎨+=⎩①②, ①-②得:12121212()()4()()x x x x y y y y -+=--+, ∴12121212414()422y y x x x x y y -+-=-=-=-+⨯. ∴直线l 的斜率为12. 故选:C . 【点睛】本题考查椭圆的简单性质,训练了利用“点差法”求中点弦的斜率,属于中档题.2.A解析:A将动圆C 的轨迹方程表示出来:221167x y +=,利用椭圆的性质将距离转化,最后利用距离关系得到最值. 【详解】定圆()221:31C x y ++=, 圆心()13,0C -,半径为1()222349C x y -+=:,圆心()23,0C ,半径为7.动圆C 满足与1C 外切且与2C 内切,设动圆半径为r ,则1212121,786CC r CC r CC CC C C =+=-⇒+=>= 所以动点C 的轨迹是以1C ,2C 为焦点,8为长轴的椭圆,设其方程为22221(0)x y a b a b+=>> 所以4a = ,2229c a b =-= ,则其方程为:221167x y +=由椭圆的定义可得12228CC CC CC a =-=- 所以128CM CC CM CC =+-+当2,,C C M 三点不共线时,有1228882CM CC CM CC MC +-+=+<=+ 当2,,C C M 三点共线时,有1228882CM CC CM CC MC +-+=+≤=+ 综上有182CM CC +≤+(当2,,C C M 三点共线且2CM CC >时取等号) 故选:A【点睛】关键点睛:本题考查了轨迹方程,椭圆的性质,解答本题的关键是利用椭圆性质变换长度关系,即12228CC CC CC a =-=-,将所求问题转化为128CM CC CM CC =+-+,再分2,,C C M三点是否共线讨论,属于中档题.3.C解析:C由题可求得2121222ABF AF F BF F cSSSAB =+=,2222ABF EABEBF EAF S SSSa =++=,即可得出22aAB c=⋅,再根据离心率范围即可求出. 【详解】设2ABF 的内切圆的圆心为E ,半径为r ,则2r ππ=,解得1r =,21212112121121211sin sin 22ABF AF F BF F SSSAF F F AF F BF F F BF F =+=⋅⋅⋅∠+⋅⋅⋅∠ 111122sin 452sin135222cAF c BF c AB =⋅⋅⋅+⋅⋅⋅=, 又22222111222ABF EAB EBF EAF S S S S AB r BF r AF r =++=⋅⋅+⋅⋅+⋅⋅()22114222AB BF AF a a =++=⨯=, 222c AB a∴=,22a AB c ∴=⋅, 2242c e a ⎡⎤=∈⎢⎥⎣⎦,,2,22a c ⎡⎤∴∈⎣⎦,则[]224,8ac⋅∈,即线段AB 的长度的取值范围是[]4,8. 故选:C.【点睛】本题考查根据离心率范围求弦长范围,解题的关键是通过两种不同方式求出2ABF 的面积,得出2aAB c=可求解. 4.A解析:A 【分析】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,得出线段PA ,PB 的中点坐标,代入抛物线方程,得到1202y y y +=,从而得到答案. 【详解】设()22120012,,,,,22y y P x y A y B y p p ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭则线段PA ,PB 的中点坐标分别为221200010222,,,2222y y x x y y y y p p ⎛⎫⎛⎫++ ⎪ ⎪++⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭线段PA ,PB 的中点都在抛物线22(0)y px p =>上.则21200122200222222222y x y y p p y x y y pp ⎧+⎪+⎛⎫⎪=⨯ ⎪⎪⎝⎭⎨⎪+⎪+⎛⎫=⨯⎪ ⎪⎝⎭⎩,即22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩ 所以12,y y 是方程22000240y y y px y -+-=的两个实数根 所以1202y y y +=,所以0M y y =,即PM 与y 轴垂直 故选:A 【点睛】关键点睛:本题考查抛物线的简单性质,考查直线与抛物线,解答本题的关键是由线段PA ,PB 的中点都在抛物线22(0)y px p =>上得到22101002220200240240y y y px y y y y px y ⎧-+-=⎨-+-=⎩,所以12,y y 是方程22000240y y y px y -+-=的两个实数根,即1202y y y +=,属于中档题. 5.B解析:B 【分析】由曲线的对称性,以及数形结合分析得b a =. 【详解】如图所示,1AB =,2MA MB ==,根据对称性可知,A B 关于x 轴对称,所以112sin 24AMO ∠==,因为OA AM ⊥,所以1cos 4AOM ∠=,渐近线OA 的斜率tan 15ak AOM b =∠==,所以115b a =,所以22411515c b e a a ==+=, 故选:B .【点睛】方法点睛:本题考查双曲线离心率,求双曲线离心率是常考题型,涉及的方法包含: 1.根据,,a b c 直接求.2.根据条件建立关于,a c 的齐次方程求解.3.根据几何关系找到,,a b c 的等量关系求解.6.B解析:B 【分析】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,根据三角形中位线性质可求得2AF ;结合双曲线定义可求得1AF ,在12Rt AF F △中利用勾股定理可构造关于,a c 的齐次方程,进而得到关于离心率的方程,解方程求得结果. 【详解】设圆222x y a +=与1PF 相切于点B ,取1PF 中点A ,连接2,OB AF ,212PF FF =,A 为1PF中点,21AF PF ∴⊥,圆222x y a +=与1PF 相切于点B ,1OB PF ∴⊥且OB a =,2//OB AF ∴,又O 为12F F 中点,222AF OB a ∴==;由双曲线定义知:122PF PF a -=,即112122PFF F PF c a -=-=, 1112AF PF a c ∴==+,又122F F c =,21AF PF ⊥, 2222112AF AF F F ∴+=,即()22244a a c c ++=,整理可得:223250c ac a --=,即23250e e --=,解得:53e =或1e =-(舍去), ∴双曲线的离心率为53.故选:B. 【点睛】关键点点睛:本题考查双曲线离心率的求解问题,解题关键是能够在直角三角形中,利用勾股定理构造出关于,a c 的齐次方程,进而配凑出关于离心率的方程.7.D解析:D 【分析】设1PF t =,则1122QF PF t ==,由已知条件得出130PQF ∠=,利用椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-,利用勾股定理可求得433t a =+,进而可得出121222222PF F QF F S PF a t S QF a t -==-△△,代入433t a =+计算即可得解. 【详解】可设1PF t =,则1122QF PF t ==,1PQ PF ⊥,则130PQF ∠=,由椭圆的定义可得22PF a t =-,222QF a t =-,则43PQ a t =-, 则22211PQ PF QF +=,即()222434a t t t -+=,即有433a t t -=,解得33t =+,则12PF F △与12QF F的面积之比为1212222122222PF F QF F S PF a t S QF a t a -=====+--△△.故选:D. 【点睛】方法点睛:椭圆上一点与两个焦点构成的三角形,称为椭圆的“焦点三角形”,与焦点三角形有关的计算或证明常利用正弦定理、余弦定理以及椭圆的定义来解决.8.C解析:C 【分析】设点)P m ,将22()0OP OF F P+⋅=坐标化运算,可求出m =,再分别计算12||,||PF PF 的值,即可得答案; 【详解】1a =,2b=,∴c =1(F ,2F ,设点)P m ,∴2222()(1))1504m OPOF F P m m m +⋅=⋅=+-+=, ∴2165m =,5m =±,则(55P ±,14PF ===, ∴2122PF PF a =-=,∴12422PF PF λ===, 故选:C. 【点睛】利用坐标运算将数量积运算坐标化,再利用两点间距离公式分别求出焦半径是求解的关键.9.B解析:B 【分析】设点()00,P x y ,求出直线AB 的方程为003412x x y y +=,联立直线AB 与双曲线两渐近线方程,求出点E 、F 的坐标,由此可计算得出OE OF ⋅的值.【详解】先证明结论:椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.由于点()00,M x y 在椭圆2C 上,则22003412x y +=,联立002234123412x x y y x y +=⎧⎨+=⎩,消去y 得()()22220000342448160x y x x x y +-+-=, 即22001224120x x x x -+=,即()200x x -=, 所以,直线003412x x y y +=与椭圆2C 相切.所以,椭圆222:143x y C +=在其上一点()00,M x y 的切线方程为003412x x y y +=.本题中,设点()00,P x y ,设点()11,A x y 、()22,B x y ,直线PA 的方程为113412x x y y +=,直线PB 的方程为223412x x y y +=, 由于点()00,P x y 在直线PA 、PB 上,可得1010202034123412x x y y x x y y +=⎧⎨+=⎩,所以点()11,A x y 、()22,B x y 满足方程003412x x y y +=, 所以,直线AB 的方程为003412x x y y +=.联立003412x x y y y x +=⎧⎪⎨=⎪⎩,得点E ⎫,同理F ⎫.因此,()()()()2222220000048361213422OE OF x y y y ⋅=-==---. 故选:B. 【点睛】结论点睛:在利用椭圆的切线方程时,一般利用以下方法进行直线: (1)设切线方程为y kx m =+与椭圆方程联立,由0∆=进行求解;(2)椭圆22221x y a b +=在其上一点()00,x y 的切线方程为00221x x y y a b +=,在应用此方程时,首先应证明直线00221x x y y a b +=与椭圆22221x y a b+=相切.10.D解析:D 【分析】E 是另一个焦点,由对称性知MENF 是平行四边形,从而得MENF 是矩形.3MEF MNF π∠=∠=,在直角三角形MEF 中用c 表示出两直角边,再上椭圆定义得,a c 的等式,求得离心率. 【详解】如图,E 是另一个焦点,由对称性知MENF 是平行四边形, ∵0MF NF ⋅=,∴MF NF ⊥,∴MENF 是矩形.3MNF π∠=,∴3MEF π∠=,∴1cos232ME EF c c π==⨯=,2sin33MF c c π==,∴(31)2MF ME c a +=+=, ∴23131c e a ===-+. 故选:D .【点睛】关键点点睛:本题考查求椭圆的离心率,解题关键是找到,a c 的关系,本题利用椭圆的对称性,引入另一焦点E 后形成一个平行四边形MENF ,再根据向量数量积得垂直,从而得到矩形,在矩形中利用椭圆的定义构造出,a c 的关系.求出离心率.11.A解析:A 【分析】由0OA OB ⋅=可得OAB 是等腰直角三角形,结合椭圆的几何性质列出方程,可求解椭圆的离心率. 【详解】椭圆2222:1(0)x y C a b a b+=>>的右焦点为F ,过F 作x 轴的垂线交椭圆C 于A ,B 两点,由2b xc y a=⇒=±,若0OA OB ⋅=,则OAB 是等腰直角三角形(O 为坐标原点),可得2b c a =,即22a c ac -=,可得210e e +-=且(0,1)e ∈,解得12e =. 故选:A . 【点睛】本题考查椭圆离心率的求解,考查了椭圆的几何性质,同时考查了垂直关系的向量表示,是基本知识的考查.12.A解析:A 【分析】根据抛物线的定义和抛物线的方程可以直接求出点的坐标. 【详解】由抛物线方程可知(1,0)F ,假设,A B 横坐标分别为12,x x ,由抛物线的准线的性质可知1212||264AB x x x x =++=⇒+=,AB 中点的横坐标为121()22x x +=.故选;A 【点睛】本题考查了抛物线的定义,考查了数学运算能力.属于基础题.二、填空题13.【分析】设内切圆的圆心设三边与内切圆的切点连接切点与圆心的线段由内切圆的性质可得再由双曲线定义可知:可得重合再由可得内切圆的半径的值【详解】设内切圆的圆心为设圆与三角形的边分别切于如图所示连接由内切【分析】设内切圆的圆心M ,设2AF B 三边与内切圆的切点,连接切点与圆心M 的线段,由内切圆的性质可得22AF AQ BF BQ -=-,再由双曲线定义可知:21212AF AF BF BF a -=-=,可得Q ,1F 重合,再由260AF B ∠=︒可得内切圆的半径的值. 【详解】设内切圆的圆心为(),M x y ,设圆M 与三角形的边分别切于T ,Q ,S ,如图所示连接MS ,MT ,MQ ,由内切圆的性质可得:22F T F S =,AT AQ =,BS BQ =,所以222AF AQ AF AT F T -=-=,222BF BQ BF BS F S -=-=, 所以22AF AQ BF BQ -=-,由双曲线的定义可知:21212AF AF BF BF a -=-=,所以可得Q ,1F 重合, 所以224TF a ==,所以圆的半径为2243tan 23AF B r MT TF ∠===. 故答案为:433.【点睛】本题主要考查双曲线定义的应用,熟记双曲线的定义即可,属于常考题型.14.【分析】由已知求得抛物线焦点坐标及准线方程由求得所在直线倾斜角得到斜率写出所在直线方程联立准线方程与抛物线方程求得的坐标可求利用导数求斜率写出直线的方程再求两直线的交点则的坐标可求【详解】解:由抛物解析:23⎛- ⎝⎭【分析】由已知求得抛物线焦点坐标及准线方程,由3AF FB =求得AB 所在直线倾斜角,得到斜率,写出AB 所在直线方程,联立准线方程与抛物线方程,求得A 、B 的坐标可求,利用导数求斜率,写出直线AM 、BM 的方程,再求两直线的交点,则M 的坐标可求. 【详解】解:由抛物线2:4C y x =,得焦点(1,0)F ,准线方程为1x =-. 由题意设AB 所在直线的倾斜角为θ,由3AF FB =,得2231cos 1cos θθ=-+,即1cos 2θ=.tan 3θ∴=.则AB 所在直线方程为3(1)y x =-.联立23(1)4y x y x⎧=-⎪⎨=⎪⎩,得231030x x -+=.解得:13x =或3x =, 因为点A 在x 轴上方所以(3,23)A ,123,33B ⎛⎫- ⎪ ⎪⎝⎭由2y x =,得1y x'=, 2y x=-得1y x'=-∴313|33x y ='==,131|313x y ='=-=-, 即AM 、BM 所在直线的斜率分别为33、3-. 3:23(3)3AM y x ∴-=-,231:3()33BM y x +=-- 所以323(3)32313()33y x y x ⎧-=-⎪⎪⎨⎪+=--⎪⎩解得1233x y =-⎧⎪⎨=⎪⎩M ∴的坐标为23(1,)3-. 故答案为:23(1,)3-.【点睛】本题考查抛物线的简单性质,考查直线与抛物线位置关系的应用,考查计算能力,属于中档题.15.【解析】由抛物线定义得即这点的坐标为 解析:(4,4)±【解析】由抛物线定义得215,4444x x y y +=∴=∴=⨯⇒=± ,即这点的坐标为()4,4±16.【分析】根据题意求得的值假设点为第一象限内的点求出点的坐标求得以及进而可求得的周长【详解】由于双曲线的一条渐近线的倾斜角为则可得所以双曲线的焦距为设点为第一象限内的点联立解得易知因此的周长为故答案为 解析:12【分析】根据题意求得a 的值,假设点P 为第一象限内的点,求出点P 的坐标,求得1PF 、2PF 以及12F F ,进而可求得12PF F △的周长. 【详解】由于双曲线()222:103x y C a a -=>的一条渐近线的倾斜角为60,则tan 603a== 可得1a =,所以,双曲线C的焦距为124F F ==,设点P 为第一象限内的点,联立22213x y x =⎧⎪⎨-=⎪⎩,0y >,解得23x y =⎧⎨=⎩,易知()12,0F -、()22,0F ,15PF ∴==,23PF ==,因此,12PF F △的周长为121253412PF PF F F ++=++=. 故答案为:12. 【点睛】本题考查双曲线焦点三角形周长的计算,同时也考查了利用双曲线渐近线的倾斜角求参数,考查计算能力,属于中等题.17.【分析】如图先利用辅助线确定公共点位置再联立方程得到其坐标即可【详解】如图所示取AB 中点M 分别过ABM 作准线的垂线垂足依次为CDN 则AC//MN//CDMN 是梯形ABDC 中位线根据抛物线定义得即N 在解析:⎛- ⎝⎭【分析】如图先利用辅助线确定公共点位置,再联立方程得到其坐标即可. 【详解】如图所示,取AB 中点M ,分别过A ,B ,M 作准线的垂线,垂足依次为C ,D ,N , 则AC //MN //CD ,MN 是梯形ABDC 中位线,根据抛物线定义得,2AB AF BF AC BD MN =+=+=,即N 在以AB 为直径的圆上, 即N 即是以AB 为直径的圆与该抛物线准线的公共点,易见直线AB 不平行x 轴,方程可设为1x my =+,设()()1122,,,A x y B x y 联立方程214x my y x=+⎧⎨=⎩得2440y my --=, 则12124,4y y m y y +==-, 又依题意3AF FB =(点A 在x 轴上方),故1120,3y y y >=-,解得122323,y y ==,故3m =易见N 点坐标为121,2y y +⎛⎫- ⎪⎝⎭,即()1,2m -,即公共点的坐标为31,3⎛- ⎝⎭. 故答案为:23⎛- ⎝⎭.【点睛】本题考查了抛物线的定义及直线与抛物线的综合应用,属于中档题.18.【分析】由已知可得而由可求出点的坐标再将点的坐标代入椭圆方程中再结合可求出的值【详解】解:由题意设椭圆的标准方程为因为为椭圆的左焦点所以因为所以设点的坐标为则解得则所以点的坐标为因为为椭圆上一点所以解析:2213616x y +=【分析】由已知可得 25c =||||25OP OF ==,||4PF =,可求出点P 的坐标,再将点P 的坐标代入椭圆方程中,再结合222a b c =+,可求出22a b ,的值.【详解】解:由题意设椭圆的标准方程为22221(0)x y a b a b+=>>,因为(F -为椭圆C 的左焦点,所以c =,因为||||OP OF =,所以||||OP OF ==,设点P 的坐标为(,)P m n ,则11422OF n ⋅=⨯解得n =m =, 所以点P 的坐标为⎛ ⎝, 因为P 为椭圆C 上一点, 所以223664155a b += 因为22220a b c -==,所以解得2236,16a b ==,所以椭圆的标准方程为2213616x y +=,故答案为:2213616x y +=【点睛】此题考查的是椭圆的简单的几何性质,考查了运算能力,属于中档题.19.【分析】根据抛物线的定义可构造方程求得设直线的倾斜角为根据焦点弦长公式可构造方程求得进而得到的值即为结果【详解】由抛物线的定义可知:设直线的倾斜角为则即直线的斜率为故答案为:【点睛】本题考查抛物线焦解析:【分析】根据抛物线的定义可构造方程求得AB ,设直线l 的倾斜角为α,根据焦点弦长公式可构造方程求得2sin α,进而得到tan α的值即为结果. 【详解】由抛物线的定义可知:()31122AB AF BF AA BB AA BB AA BB ''''''=+=+++=++=+, 4AA BB ''∴+=,6AB ∴=.设直线l 的倾斜角为α,则246sin AB α==,22sin 3α∴=,tan α∴=即直线l 的斜率为故答案为: 【点睛】本题考查抛物线焦点弦相关问题的求解,关键是熟练掌握抛物线的焦点弦长公式:1222sin pAB x x p α=++=. 20.【分析】对各内角为直角进行分类讨论利用勾股定理和椭圆的定义建立方程组求得和利用三角形的面积公式可得出结果【详解】在椭圆中则(1)若为直角则该方程组无解不合乎题意;(2)若为直角则解得;(3)若为直角解析:32【分析】对12MF F ∆各内角为直角进行分类讨论,利用勾股定理和椭圆的定义建立方程组,求得1MF 和2MF ,利用三角形的面积公式可得出结果.【详解】在椭圆22143x y +=中,2a =,b =1c =,则122FF =.(1)若12F MF ∠为直角,则()12222122424MF MF a MF MF c ⎧+==⎪⎨+==⎪⎩,该方程组无解,不合乎题意; (2)若12MF F ∠为直角,则()12222212424MF MF a MF MF c ⎧+==⎪⎨-==⎪⎩,解得123252MF MF ⎧=⎪⎪⎨⎪=⎪⎩, 12121113322222MF F S F F MF ∆∴=⋅=⨯⨯=; (3)若12MF F ∠为直角,同理可求得1232MF F S ∆=. 综上所述,1232MF F S ∆=. 故答案为:32. 【点睛】本题考查椭圆中焦点三角形面积的计算,涉及椭圆定义的应用,考查计算能力,属于中等题.三、解答题21.(1)22143x y +=;(2)6.【分析】(1)根据椭圆的离心率为12e =,可得2234b a =,再将点31,2⎛⎫ ⎪⎝⎭代入椭圆方程可得221914a b+=,解出22,a b 可得答案. (2)设直线1:1l x my =-,与椭圆方程联立得出韦达定理,由条件求出Q 点坐标,求出1QF 的长度,得出直线2l 的方程为:11x y m=--与直线1x =求出点P 坐标,得出1PF 长度,从而表示三角形面积,得出最值. 【详解】(1)由题意,得222221149141b e a a b ⎧=-=⎪⎪⎨⎪+=⎪⎩,解得:224,3a b ==,所以椭圆的方程为22143x y +=. (2)由(1)可得()11,0F -,若直线1l 的斜率为0,则2l 的方程为:1x =-与直线1x =无交点,不满足条件.设直线1:1l x my =-,若0m =,则1λ=则不满足QA QB λ=,所以0m ≠ 设()()()112200,,,,,A x y B x y Q x y ,由2234121x y x my ⎧+=⎨=-⎩,得:()2234690m y my +--=, 12122269,3434my y y y m m +==-++,因为11AF F B QA QBλλ⎧=⎨=⎩,即()()()()1122101020201,1,,,x y x y x x y y x x y y λλ⎧---=+⎪⎨--=--⎪⎩ 则12y y λ-=,()1020y y y y λ-=- 所以101220y y y y y y λ-=-=-,解得1201223y y y y y m==-+.于是1FQ =. 直线2l 的方程为:11x y m=-- 联立111x y mx ⎧=--⎪⎨⎪=⎩,解得(12)P m -,,所以1PF =. 所以()12113111362PQF m SFQ F P m m m +⎛⎫=⋅==+≥ ⎪ ⎪⎝⎭,当且仅当1m =±时,()1min6PQF S =.【点睛】关键点睛:本题考查求椭圆的方程和椭圆中三角形面积的最值问题,解答本题的关键是根据向量条件得出1201223y y y y y m==-+,进而求出点的坐标,得到1QF 的长度,从而表示出三角形的面积,属于中档题. 22.(1)24x y =;(2)①112x ;②[2,)+∞. 【分析】(1)可得抛物线的准线为2py =-,∴9102p +=,解得2p =,即可得抛物线的方程; (2)①设:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,可得21111:()42x PA y x x x -=-,令0y =即得解;②||AP =||BQ =||||AP BQ ⋅的取值范围.【详解】(1)已知(9,)M m 到焦点F 的距离为10,则点M 到其准线的距离为10. 抛物线的准线为2py =-,∴9102p +=, 解得2p =,∴抛物线的方程为24x y =.(2)①由已知可判断直线l 的斜率存在,设斜率为k ,因为(0,1)F ,则:1l y kx =+.设211(,)4x A x ,2(B x ,22)4x ,由214y kx x y =+⎧⎨=⎩消去y 得,2440x kx --=, 124x x k ∴+=,124x x =-.由于抛物线C 也是函数214y x =的图象,且12y x '=,则21111:()42x PA y x x x -=-.令0y =,解得112x x =,11(,0)2P x ∴,②||AP.同理可得,||BQ∴||||AP BQ ⋅=20k ,||||AP BQ ∴⋅的取值范围为[2,)+∞.【点睛】方法点睛:解析几何里的最值范围问题常用的方法有:(1)函数法;(2)数形结合法;(3)导数法;(4)基本不等式法. 要根据已知条件灵活选择方法求解.23.(1)答案见解析;(2)12λ=. 【分析】(1)由向量坐标公式化简可得轨迹方程,并讨论即可;(2)将直线与曲线联立结合韦达定理求得中点横坐标,再用判别式判断即可. 【详解】解:(1)()2,PA x y =---,()2,PB x y =--又22PHy =所以由2||PA PB PH λ⋅=⋅得()()22,2,x y x y y λ---⋅--= 则22(1)4x y λ+-=当1λ=时,C 是两条平行直线; 当0λ=时,C 是圆;当01λ<<时,C 是椭圆; 当1λ>时,C 是双曲线 . (2)2222(2)4(1)40(1)4y x x x x y λλλλ=+⎧⇒-+--=⎨+-=⎩ 设1122(,),(,)M x y N x y ,则122004(1)41(0)232x x λλλλ⎧⎪-≠⎪∆>⎨⎪-⎪+==-⇒=∆>-⎩【点睛】(1)解答直线与圆锥曲线的题目时,时常把两个曲线的方程联立,消去x (或y )建立一元二次方程,然后借助根与系数的关系,并结合题设条件建立有关参变量的等量关系. (2)涉及到直线方程的设法时,务必考虑全面,不要忽略直线斜率为0或不存在等特殊情形.24.(1)24y x =;(2) 【分析】(1)设出抛物线方程,根据抛物线定义可列式求出;(2)设直线l 的方程为2x ty =+,联立直线与抛物线,根据中点横坐标求出t ,再求出底和高即可得出面积. 【详解】解:(1)依题意设抛物线E 的方程为()220y px p =>,则准线方程为2px =-, 由3QF =,依定义得232p+=,解得2p =, ∴抛物线E 的方程为24y x =.(2)设直线l 的方程为2x ty =+,()11,A x y ,()22,B x y ,由224x ty y x=+⎧⎨=⎩消x 得2480y ty --=, 则124y y t +=,128y y =-, ∵线段AB 的中点横坐标为4,∴1242x x +=, 即128x x +=,∴12228ty ty +++=,即()124t y y +=, 可得244t =,∴21t =,12y y -===故ABO 的面积为1211222OP y y -=⨯⨯=. 【点睛】方法点睛:解决直线与圆锥曲线相交问题的常用步骤: (1)得出直线方程,设交点为()11A x y ,,()22B x y ,; (2)联立直线与曲线方程,得到关于x (或y )的一元二次方程; (3)写出韦达定理;(4)将所求问题或题中关系转化为1212,x x x x +形式; (5)代入韦达定理求解.25.(1)1y x =-或1y x =-+;(2)22(3)(2)16x y -+-=或22(11)(6)144x y -++=.【分析】(1)由题意得2,p =(1,0)F ,24y x =,当直线l 的斜率不存在时,不合题意;当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠,与抛物线方程联立,利用韦达定理和抛物线的定义求出弦长,结合已知弦长可求得结果;(2)设所求圆的圆心坐标为00(,)x y ,根据几何方法求出圆的半径,根据直线与圆相切列式解得圆心坐标和半径,可得圆的方程. 【详解】(1)由题意得2,p =(1,0)F ,24y x =当直线l 的斜率不存在时,其方程为1x =,此时248MN p ==≠,不满足,舍去; 当直线l 的斜率存在时,设方程为(1)(0)y k x k =-≠ 由2(1)4y k x y x=-⎧⎨=⎩得2222(24)0k x k x k -++= 设1122(,),(,)M x y N x y ,则216160k ∆=+>,且212224k x x k ++=由抛物线定义得122222122444||||||(1)(1)22x k k MN MF NF x x x k k++=+=+++=++=+= 即22448k k+=,解得1k =± 因此l 的方程为1y x =-或1y x =-+.(2)由(1)取1,k =直线l 的方程为1y x =-,所以线段MN 的中点坐标为(3,2), 所以MN 的垂直平分线方程为2(3)y x -=--,即5y x =-+ 设所求圆的圆心坐标为00(,)x y ,该圆的圆心到直线l 的距离为d,则d ===因为该圆与准线1x =-相切,所以()()0022000511162y x y x x =-+⎧⎪⎨-++=+⎪⎩, 解得0032x y =⎧⎨=⎩或00116x y =⎧⎨=-⎩, 当圆心为(3,2)时,半径为4,当圆心为(11,6)-时,半径为12, 因此所求圆的方程为22(3)(2)16x y -+-=或22(11)(6)144x y -++=. 【点睛】关键点点睛:第(1)问,利用韦达定理和抛物线的定义求出抛物线的弦长是关键;第(2)问,根据几何方法求出圆的半径,利用直线与圆相切列式是解题关键.26.(1)240x y --=;(2)18y x x ⎛=-<< ⎝⎭. 【分析】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=,22221164x y +=,相减化简再利用中点坐标公式、斜率计算公式即可得出;(2)设直线方程为:2y x m =+,弦的端点坐标及中点(),M x y ,与椭圆方程联立化为:2217164160x mx m ++-=,由0>,化为:268m <,再利用根与系数的关系、中点坐标公式即可得出. 【详解】(1)设弦的端点()11,A x y ,()22,B x y ,可得:22111164x y +=, 22221164x y +=,相减可得:12121212()()()()0164x x x x y y y y +-+-+=,把1222x x +=,1212y y +=-, 1212y y k x x -=-代入可得: 12k =.∴以()2,1P -为中点的弦所在直线的方程为:()1122y x +=-,化为: 240x y --=. (2)设直线方程为:2y x m =+,弦的端点()11,A x y , ()22,B x y ,中点(),M x y .联立2221164y x m x y =+⎧⎪⎨+=⎪⎩,化为 2217164160x mx m ++-=,()22256684160m m =-->,化为: 268m <,∴1216227m x x x +=-=,化为: 882171717m m m x y m ⎛⎫=-=⨯-+= ⎪⎝⎭,.得x <<,∴181717y x x ⎛⎫=--<< ⎪ ⎪⎝⎭【点睛】 关键点点睛:(1)涉及直线与圆锥曲线相交中点弦问题时,利用点差法; (2)由直线与椭圆的位置关系得出m 的范围.。
椭圆的定义和标准方程
高二理科测试题9 一、选择题:本大题共12小题,共50分.1.若随机变量ξ的分布如下表所示,则p等于()A.0B.215 C.115D.12.某同学通过计算机测试的概率为13,他连续测试3次,其中恰有1次通过的概率为() A.49 B.29 C.427 D.2273.某次市教学质量检测,甲、乙、丙三科考试成绩的直方图如图所示(由于人数众多,成绩分布的直方图可视为正态分布),则由图中曲线可得下列说法中正确的一个是()A.甲科总体的标准差最小B.乙科总体的标准差及平均数都居中C.丙科总体的平均数最小D.甲、乙、丙的总体的平均数不相同4.甲、乙、丙三人参加某项测试,他们能达到标准的概率分别是0.8,0.6,0.5,则三人中至少有一人达标的概率是()A.0.16 B.0.24 C.0.96 D.0.045.小王乘车到学校,途中有3个交通岗,假设在各交通岗遇到红灯的事件是相互独立的,且概率都是0.5,则他上班途中遇见红灯次数的数学期望是() A.0.4 B.1.5 C.0.43D.0.66.甲、乙两人独立地对同一目标各射击一次,其命中率分别为0.6,0.5,现已知目标被击中,则它是被甲击中的概率是()A.0.45 B.0.6 C.0.65 D.0.757.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A.13 B.12 C.23 D.348.甲、乙两个工人在同样的条件下生产,日产量相等,每天出废品的情况如下表所列,则有结论()B.乙的产品质量比甲的质量好一些C.两人的产品质量一样好D.无法判断谁的质量好一些9.已知一次考试共有60名同学参加,考生成绩X~N(110,52),据此估计,大约有57人的分数所在的区间为()A.(90,100]B.(95,125]C.(100,120]D.(105,115]10.已知随机变量X~B(6,0.4),则当η=-2X+1时,D(η)=()A.-1.88B.-2.88C.5.76D.6.7611.三个元件T1,T2,T3正常工作的概率分别为12,34,34,且是互相独立的.将它们中某两个元件并联后再和第三元件串联接入电路,在如图的电路中,电路不发生故障的概率是()A.1532B.932C.732D.173212.节日期间,某种鲜花的进价是每束2.5元,售价是每束5元,节后对没有卖出的鲜花以每束1.6元处理.根据前5年节日期间对这种鲜花销售情况需求量X (束)的统计(如下表),若进这种鲜花500束在今年节日期间销售,则期望利润是( )A.706元 B .二、填空题:本大题共6小题,共30分13.已知正态总体的数据落在区间(-3,-1)内的概率和落在区间(3,5)内的概率相等,那么这个正态总体的数学期望为14.袋中有4只红球3只黑球,从袋中任取4只球,取到1只红球得1分,取到1只黑球得3分,设得分为随机变量X ,则P (X ≤6)=__________.15.已知随机变量ξ服从正态分布N (0,σ2),若P (ξ>2)=0.023,则P (-2≤ξ≤2)=__________.16.一牧场的10头牛,因误食含疯牛病毒的饲料被感染,已知该病的发病率为0.02,设发病的牛的头数为ξ,则D (ξ)=__________.17.某次知识竞赛规则如下:在主办方预设的5个问题中,选手若能连续正确回答出两个问题,即停止答题,晋级下一轮.假设某选手正确回答每个问题的概率都是0.8,且每个问题的回答结果相互独立,则该选手恰好回答了4个问题就晋级下一轮的概率等于__________.18.甲罐中有5个红球,2个白球和3个黑球,乙罐中有4个红球,3个白球和3个黑球.先从甲罐中随机取出一球放入乙罐,分别以A 1,A 2和A 3表示由甲罐取出的球是红球,白球和黑球的事件;再从乙罐中随机取出一球,以B 表示由乙罐取出的球是红球的事件.则下列结论中正确的是__________(写出所有正确结论的编号).①P(B)=25;②P(B|A1)=511;③事件B与事件A1相互独立;④A1,A2,A3是两两互斥的事件;⑤P(B)的值不能确定,因为它与A1,A2,A3中究竟哪一个发生有关三、解答题:本大题共4小题,共60分.19设进入某商场的每一位顾客购买甲种商品的概率为0.5,购买乙种商品的概率为0.6,且购买甲种商品与购买乙种商品相互独立,各顾客之间购买商品也是相互独立的.(1)求进入商场的1位顾客至少购买甲、乙两种商品中的一种的概率;(2)记ξ表示进入商场的3位顾客中至少购买甲、乙两种商品中的一种的人数,求ξ的分布列及期望.20已知,且(1-2x)n=a0+a1x+a2x2+a3x3+……+a n x n(Ⅰ)求n的值;(Ⅱ)求a1+a2+a3+……+a n的值21.(12分)在1,2,3,…,9这9个自然数中,任取3个数,(1)求这3个数恰有1个偶数的概率;(2)记X为3个数中两数相邻的组数,例如取出的数为1,2,3,则有两组相邻的数1,2和2,3,此时X的值为2,求随机变量X的分布列及其数学期望E(X).22.(14分)某花店每天以每枝5元的价格从农场购进若干枝玫瑰花,然后以每枝10元的价格出售,如果当天卖不完,剩下的玫瑰花作垃圾处理.(1)若花店一天购进16枝玫瑰花,求当天的利润y(单位:元)关于当天需求量n(单位:枝,n∈N)的函数解析式;(2)花店记录了100天玫瑰花的日需求量(单位:枝),整理得下表:以①若花店一天购进16枝玫瑰花,X表示当天的利润(单位:元),求X的分布列、数学期望及方差;②若花店计划一天购进16枝或17枝玫瑰花,你认为应购进16枝还是17枝?请说明理由.。
椭圆双曲线抛物线复习学案(知识点+题组练习+测试)
椭圆、双曲线、抛物线复习学案(知识点+题组练习+测试)椭圆、双曲线、抛物线综合习题专题学案一、知识点总结: 1、三种圆锥曲线的定义:椭圆、双曲线、抛物线三种圆锥曲线都是动点运动形成的轨迹。
动点在运动变化过程中,保持某种“距离”不变。
椭圆:平面内与两个定点F1,F2的距离_____等于常数(___于F1F2)的点的轨迹叫做椭圆。
即:PF1?PF2?2a?2c?F1F2(a?0,c?0,a,c为常数),则P点的轨迹为以_______为焦点的椭圆。
注意:若2a?F1F2时,点P的轨迹为________。
若0?2a?F1F2时,点P的轨迹________。
双曲线:在平面内到两个定点F1,F2距离___________等于常数(___于F1F2)的点的轨迹叫做双曲线。
即:PF1?PF2?2a?2c?F1F2(a?0,c?0,a,c为常数),则P点的轨迹为以________为焦点的双曲线.注意:若2a?F1F2时,点P的轨迹为_______________。
若2a?F1F2时,点P的轨迹________。
若2a?0时,点P的轨迹是_________________.另外,定义中的_________必不可少.抛物线:平面内到定点F与到定直线l距离_______的点的轨迹。
(其中F?l)注意:若F?l,则P点的轨迹为______________________________。
2、三种圆锥曲线的标准方程:x2y2椭圆:2?2?1(a?b?0),焦点在x轴上;aby2x2??1(a?b?0),焦点在y轴上. a2b2(谁的_______________,焦点就在谁的轴上。
)x2y2双曲线:2?2?1(a?0,b?0),焦点在x轴上;aby2x2??1(a?0,b?0),焦点在y轴上. a2b2(谁的______________,焦点就在谁的轴上。
)抛物线:y?2px,y??2px,(其中p?0),焦点在x轴上;22x2?2py,x2??2py, (其中p?0),焦点在y轴上。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
椭圆周测
一、选择题(10×5=50分)
1、已知椭圆125222yax)5(a的两个焦点为1F、2F,且8||21FF,弦AB过点1F,
则△2ABF的周长为( )
(A)10 (B)20 (C)241 (D) 414
2、已知椭圆22159xy上一点P到椭圆的一焦点的距离为3,则P到另一焦点的距离是
( )
A.253 B.2 C.3 D.6
3、离心率为32,长轴长为6的椭圆的标准方程是( )
(A)22195xy (B)22195xy或22159xy
(C)2213620xy (D)2213620xy或2212036xy
4、如果椭圆22194xy+=的弦被点(1,1)平分,则这条弦所在的直线方程是( )
(A)49130xy+-=(B)230xy+-=(C)01232yx(D)082yx
5.如果22212xyaa表示焦点在x轴上的椭圆,则实数a的取值范围为( )
A.(2,) B.2,12, C.(,1)(2,) D.任意实数R
6、一个椭圆长轴的长度、短轴的长度和焦距成等差数列,则该椭圆的离心率是( )
A.54 B.53 C. 52 D.
5
1
7.关于曲线的对称性的论述正确的是( )
A.方程220xxyy的曲线关于X轴对称 B.方程330xy的曲线关于Y轴对称
C.方程2210xxyy的曲线关于原点对称 D.方程338xy的曲线关于原点对称
8、椭圆141622yx上的点到直线022yx的最大距离是( )
(A)10 (B)11 (C)22 (D)3
9、设椭圆22221(0)xyabab+=>>的左、右焦点分别为1F、2F,A是椭圆上的一点,
21AFAF^,原点O到直线1
AF
的距离为112OF,则椭圆的离心率为( )
A、13 B、31- C、22 D、21-
10、如图,DPx轴,点M在DP的延长线上,且||2||DMDP.当点P在圆
22
1xy
上运动时,点M的轨迹的方程( )
(A)22195xy (B)2212036xy (C)2213620xy (D)
1422yx
2
1 2 3 4 5 6 7 8 9 10
二、填空(4*5=20分)
12、已知1F、2F是椭圆1:2222byaxC(a>b>0)的两个焦点,P为椭圆C上一点,
且21PFPF.若21FPF的面积为9,则b=____________.
13.已知BA),0,21(是圆FyxF(4)21(:22为圆心)上一动点,
线段AB的垂直平分线交BF于P,则动点P的轨迹方程
为 .
14.如图,把椭圆2212516xy的长轴AB分成8等份,过每个分点作x轴的垂线交椭圆的
上半部分于1234567,,,,,,PPPPPPP七个点,F是椭圆的一个焦点,则
1234567
PFPFPFPFPFPFPF
;
15.在ABC△中,ABBC,7cos18B.若以AB,为焦点的椭圆经过点C,则该椭
圆的离心率e .
三、解答题(2题共30分)
16、(1)椭圆的一个顶点为(0,2),其长轴长是短轴长的2倍,求椭圆的标准方程.
(2) 已知椭圆19822ykx的离心率21e,求k的值.
17.(15分)已知椭圆mxyyx及直线1422。
(1)当m为何值时,直线与椭圆有公共点?
(2)若直线被椭圆截得的弦长为,5102求直线的方程.
3
参考答案
1 2 3 4 5 6 7 8 9 10
D C B A B B C A B D
12、3 13、13422yx 14、35 15、
3
8
16、解:(1)当02,A为长轴端点时,2a,1b,
椭圆的标准方程为:11422yx;
(2)当02,A为短轴端点时,2b,4a,
椭圆的标准方程为:116422yx;
分析:分两种情况进行讨论.
解:当椭圆的焦点在x轴上时,82ka,92b,得12kc.由21e,得4k.
当椭圆的焦点在y轴上时,92a,82kb,得kc12.
由21e,得4191k,即45k.
∴满足条件的4k或45k.
17、解:(1)把直线方程mxy代入椭圆方程1422yx得 1422mxx,
即012522mmxx.020161542222mmm,解得
252
5
m
.
(2)设直线与椭圆的两个交点的横坐标为1x,2x,由(1)得5221mxx,51221mxx.
根据弦长公式得 :51025145211222mm.解得0m.方程为
xy
.