数项级数的敛散性开题报告

合集下载

【免费下载】数项级数的敛散性判别法

【免费下载】数项级数的敛散性判别法

收敛.
lim
n
anb
(1)
(2)
un

lim
n
r .则当 r
,存在正整数 N1 ,当 n
当 r 1 时,取 足够小,使 r q 1.由上述讨论,存在 N ,当 n N 时,式
(1)和式(2)同时成立,那么有 un qanb ,正项级数 qanb qb (qa )n 收敛(因为
得到的审敛法.下面用比较判别法推出更宽泛的柯西判别法.

定理 1(柯西判别法 1)设 un 为正项级数, n1

n1
(i)若从某一项起(即存在 N ,当 n N 时)有 n un q 1( q 为常数),

则 un 收敛; n1

(ii)若从某项起, n un 1,则 un 发散. n1

证(i)若当 n N 时,有 n un q 1,即 un qn ,而级数 qn 收敛, n1

根据比较原理 I 知级数 un 也收敛. n1
(ii)若从某项起,
n
un
1,则 un

1
,故
对全部高中资料试卷电气设备,在安装过程中以及安装结束后进行高中资料试卷调整试验;通电检查所有设备高中资料电试力卷保相护互装作置用调与试相技互术关,系电,力根通保据过护生管高产线中工敷资艺设料高技试中术卷资,配料不置试仅技卷可术要以是求解指,决机对吊组电顶在气层进设配行备置继进不电行规保空范护载高与中带资负料荷试下卷高问总中题体资,配料而置试且时卷可,调保需控障要试各在验类最;管大对路限设习度备题内进到来行位确调。保整在机使管组其路高在敷中正设资常过料工程试况中卷下,安与要全过加,度强并工看且作护尽下关可都于能可管地以路缩正高小常中故工资障作料高;试中对卷资于连料继接试电管卷保口破护处坏进理范行高围整中,核资或对料者定试对值卷某,弯些审扁异核度常与固高校定中对盒资图位料纸置试,.卷保编工护写况层复进防杂行腐设自跨备动接与处地装理线置,弯高尤曲中其半资要径料避标试免高卷错等调误,试高要方中求案资技,料术编试交写5、卷底重电保。要气护管设设装线备备置敷4高、调动设中电试作技资气高,术料课中并3中试、件资且包卷管中料拒含试路调试绝线验敷试卷动槽方设技作、案技术,管以术来架及避等系免多统不项启必方动要式方高,案中为;资解对料决整试高套卷中启突语动然文过停电程机气中。课高因件中此中资,管料电壁试力薄卷高、电中接气资口设料不备试严进卷等行保问调护题试装,工置合作调理并试利且技用进术管行,线过要敷关求设运电技行力术高保。中护线资装缆料置敷试做设卷到原技准则术确:指灵在导活分。。线对对盒于于处调差,试动当过保不程护同中装电高置压中高回资中路料资交试料叉卷试时技卷,术调应问试采题技用,术金作是属为指隔调发板试电进人机行员一隔,变开需压处要器理在组;事在同前发一掌生线握内槽图部内 纸故,资障强料时电、,回设需路备要须制进同造行时厂外切家部断出电习具源题高高电中中源资资,料料线试试缆卷卷敷试切设验除完报从毕告而,与采要相用进关高行技中检术资查资料和料试检,卷测并主处且要理了保。解护现装场置设。备高中资料试卷布置情况与有关高中资料试卷电气系统接线等情况,然后根据规范与规程规定,制定设备调试高中资料试卷方案。

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文关于数项级数敛散性的判别法摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法1引言 设数项级数++++=∑∞=n n na a a a211的n 项部分和为:12n S a a =+++1nni i a a ==∑若n 项部分和数列{}n S 收敛,即存在一个实数S,使lim n n S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞是否存在.从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]:数项级数1nn a ∞=∑收敛0,N N ε+⇔∀>∃∈,对,n N p N +∀>∀∈有12n n n p a a a ε++++++<.2 正项级数敛散性判别法设数项级数1nn a ∞=∑为正项级数(na ≥0).则级数的n 项部分和数列{}nS 单调递增,由数列的单调有界公理,有定理2.1[1]正项级数1n n u ∞=∑收敛⇔它的部分和数列{}n S 有上界.由定理2.1可推得 定理2.2[2]:设两个正项级数1n n u ∞=∑和1n n v ∞=∑,存在常数c 0>及正整数N ,当n >N 时有n u ≤c n v ,则(i )若级数1n n u ∞=∑收敛,则级数1n n v ∞=∑也收敛;(ii )若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.一般常及其极限形式:定理2.2’(比较判别法的极限形式)[2]:设1n n u ∞=∑和1n n v ∞=∑是两个正项级数且有limnn nu v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散;(ii )若 λ=0,级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(iii )若 λ=+∞,级数1n n v ∞=∑发散,则级数1n n u ∞=∑也发散.由比较判别法可推得:定理2.3(达朗贝尔判别法也称比值判别法,D ’Alembert )[3]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N 时有1n n u u +≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1n n u u +≥1,则级数1n n u ∞=∑发散.定理2.3’(达朗贝尔判别法也称比值判别法的极限形式)[3]:设1n n u ∞=∑是一个正项级数,(i )若lim n →∞1n n u u +=r <1,则级数1n n u ∞=∑收敛;(ii )若lim n →∞1n nu u +=r >1则级数1n n u ∞=∑发散.定理2.4(柯西判别法也称根式判别法)[4]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N n n u ≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数列的子列{}i n n n u ≥1,则级数1n n u ∞=∑发散.定理2.4’(根式判别法的极限形式)[5]:设1n n u ∞=∑是一个正项级数,(i )lim n →∞n n u =r <1,则级数1n n u ∞=∑收敛;(ii )lim n →∞n n u r >1,则级数1n n u ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对r=1的情形都未论及.实际上,当lim n →∞1n nu u +=1或lim n →∞n n u 时,无法使用这两个判别法来判别敛散性.如级数11n n ∞=∑和211n n ∞=∑,都有11lim lim 111n n nn n n→∞→∞+==+, 2221(1)lim lim 111n n n n n n→∞→∞+⎛⎫== ⎪+⎝⎭, 1lim 1nn n =,211n n n=.但前者发散而后者收敛.此外,定理2.3和定理2.4中关于收敛的条件1n nu u +≤q n n u ≤q <1也不能放宽到1n n u u +n n u <1.例如,对调和级数11n n∞=∑,有 1n n u u +=1nn +n n u 1n n但级数却是发散的.对于严格正项级数,比较判别法、比式判别法及根式判别法用上(下)极限形式更为方便. 定理2.5[2]设∑∞=1n n a 为严格正项级数.10若∑∞=1n n b 是收敛的严格正项级数,使+∞<∞→nnn b a lim ,则级数∑∞=1n n a 收敛. 20若∑∞=1n n b 为发散的严格正项级数,使0lim >∞→nnn b a ,(可取)∞+,则级数∑∞=1n n a 发散. 定理2.6[2]设∑∞=1n n a 为严格正项级数.10若1lim1<=+∞→q a a nn n ,则级数∑∞=1n n a 收敛. 20若1lim1>=+∞→q a a nn n ,则级数∑∞=1n n a 发散.定理2.7[2]设∑∞=1n n a 为正项级数,且q a n n n =∞→lim ,则10当1<q 时,级数∑∞=1n n a 收敛.20当1>q 时,级数∑∞=1n n a 发散.我们知道,广义调和级数(p-级数)∑∞=11n pn当1>p 时收敛,而当1≤p 时发散.因此,取p-级数作为比较的标准,可得到较比式判别法更为精细而又应用方便的判别法,即定理2.8(拉阿贝判别法,Raabe )[3]:设∑∞=1n n u 是正项级数并记11,n n n u R n u +⎛⎫=- ⎪⎝⎭(i )若存在1q >及自然数N ,使当n ≥N 时有,n R q ≥则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1,n R ≤则级数1n n u ∞=∑发散.定理2.8’(拉阿贝判别法的极限形式)[8]:设1n n u ∞=∑是正项级数且有r u u n n n n =⎪⎪⎭⎫⎝⎛-+∞→1lim 1, 则 (1)当1>r 时,级数1n n u ∞=∑收敛;(2)当1<r 时,则级数1n n u ∞=∑发散.考虑到级数与无穷积分的关系,可得 定理2.9(积分判别法)[4]:设函数()f x 在区间),1[+∞上非负且递减,)(n f u n =,1,2,n =,则级数∑∞=1n n u 收敛的充分必要条件是极限⎰+∞→xx dt t f 1)(lim存在.证:由于0)(≥x f ,知⎰=xdt t f x F 1)()(单调递增.因此极限⎰+∞→+∞→=xx x dt t f x F 1)(lim)(lim 存在)(x F ⇔在),1[+∞有界.(充分性)设⎰+∞→xx dt t f 1)(lim存在,则存在0>M ,使M dt t f x x≤+∞∈∀⎰1)(),,1[级数∑∞=1n n u 的部分和)()2()1(21n f f f u u u S n n +++=+++=⎰⎰⎰-++++≤nn dt t f dt t f dt t f f 13221)()()()1(M f dt t f f n+≤+=⎰)1()()1(1.即部分和数列有上界.所以级数∑∞=1n n u 收敛.(必要性)设正项级数∑∞=1n n u 收敛,则它的部分和有上界,即存在+∈∀>N n M ,0有M S n ≤.从而对),1[+∞∈∀x ,令1][+=x n ,则 ⎰⎰⎰⎰⎰-+++=≤n n nxdt t f dt t f dt t f dt t f dt t f 1322111)()()()()(M S n f f f n ≤=-+++≤-1)1()2()1( . 故极限⎰+∞→xx dt t f 1)(lim存在.由此我们得到两个重要的结论[6]: (1)p 级数11p n n ∞=∑收敛⇔1;p > (2)级数21ln pn n n∞=∑收敛⇔ 1.p > 证:两个结论的证法是类似的,所以下面只证明结论(1) 在p 级数一般项中,把n 换为x ,得到函数()f x =1(1).p x x≥ 我们知道,这个函数的广义积分收敛⇔ 1.p >因此根据正项级数的广义积分判定法,结论(1)成立.还是以p-级数为比较标准,可得定理2.10(阶的估计法)[3]:设1n n u ∞=∑为正项级数⎪⎭⎫⎝⎛=p n n O u 1)(∞→n ,即n u 与p n 1当∞→n 是同阶无穷小.则(1)当1>p 时,级数1n n u ∞=∑收敛;(2)当1≤p 时,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得定理2.11(比值比较判别法)[7]:设级数1n n u ∞=∑和1n n v ∞=∑都是正项级数且存在自然数N ,使当n≥N 时有11n n n nu v u v ++≤, 则有(i )若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;(ii ) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证:当n ≥N 时,由已知有12121111n N N n N N n n N N N n N N n Nu u u u v vv v u u u u v v v v +++++-+-=≤=. 由此可得,.N N n n n n N Nu vu v u v v u ≤≤ 再由比较判别法即知定理结论成立. 较比式判别法更为精细的判别法是定理2.12[3](高斯判别法,Gauss ):设1n n u ∞=∑是正项级数且满足 11,ln ln n n u u v o u n n n n n λ+⎛⎫=+++ ⎪⎝⎭则有(i )若1λ>或者1λ=,1u >或者1,1u v λ==>,则级数1n n u ∞=∑收敛;(ii ) 若1λ<或者1λ=,1u <或者1,1u v λ==<,则级数1n n u ∞=∑发散.定理2.12’[9](高斯推论):设1n n u ∞=∑是正项级数且满足211,n n u uO u n n λ+⎛⎫=++ ⎪⎝⎭则有(i )若1λ>或1λ=,1u >,则级数1n n u ∞=∑收敛;(ii )若1λ<或1λ=,1u ≤,则级数1n n u ∞=∑`发散.3 一般项级数敛散性判别法我们经常遇到一些级数,它们并不是都为非负,如交错级数等,对于这一类的级数我们不能再套用上述的正项级数的判别法来判断它们的敛散性了.根据柯西收敛原理,级数1n n u ∞=∑收敛的充分必要条件是:对任给的0ε>,存在N ,只要n N >,对任意正整数p ,有12.n n n p u u u ε++++++<在研究一般项级数的判别法前我引进绝对收敛与条件收敛的概念. 定义[4]:若级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑是绝对收敛的;若级数1n n u ∞=∑收敛,但级数1n n u ∞=∑发散,则称级数1n n u ∞=∑是条件收敛的.由柯西收敛准则,有 定理3.1[4]若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛.要判别级数∑∞=1||n n u 敛散性,可用上述介绍的正项级数敛散性的判别方法去判断.定理3.2[6](分部求和判别法):对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果极限lim n n n A p →∞存在,那么下面两个级数有相同的收敛性:1,nn n up ∞=∑11().n n n n A p p ∞+=-∑这个判别法的特点是:把因子1,2,,,n u u u 分离出来,求出部分和n A ,再研究级数11()n n n n A pp ∞+=-∑的收敛性(前提是极限lim n n n A p →∞存在.)证明:先分析级数1n n n u p ∞=∑的部分和.为此分析乘积k k u p ;用增减项的办法,可以看出,11111()()k k k k k k k k k k k k u p A A p A p A p p A p -----=-=---.由此得到1111()()k k k k k k k k k u p A p A p A p p ----=---.让k 从1变到n,对等式的各项求和,110011()(0,0)nnkk n n k k k k k up A p A p p A p --===--==∑∑.这个等式可以改写为1111()nn kk n n k k k k k up A p A p p -+===--∑∑.(这叫做阿贝尔分部求和公式.)现在令n →∞,考察极限1lim nk k n k u p →∞=∑.由阿贝尔分部求和公式可以看出:因为极限lim n n n A p →∞存在,所以1lim n k k n k u p →∞=∑存在111lim ()n k k k n k A p p -+→∞=⇔-∑存在.这个结论的级数语言是:111()k k n n n n n up A p p ∞∞+==⇔-∑∑收敛收敛. 这样就证明完成了证明.对于最特殊的变号级数—交错级数,有定理 3.3[10](莱布尼兹判别法):对于交错级数,如果一般项的绝对值组成的数列单调递减趋向于0(当n →∞),那么交错级数收敛.对于一般项级数,则有定理3.4[10](狄利克雷判别法): 对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果{}n A 是有界数列,并且数列{}n p 单调递减趋向于0,那么级数1,n n n u p ∞=∑收敛.证明: 由条件可知, lim n n n A p →∞=0.因此根据分部求和判别法, 下面两个级数有相同的收敛性: 1,n n n up ∞=∑11().n n n n A p p ∞+=-∑ 以下只需验证:后一个级数是绝对收敛的.实际上,数列{}n A 是有界的,不妨设()n A A n ≤∀.这样一来,11()()n n n n n A p p A p p ++-≤-.另外,1111111()lim ()lim()nn n k k n n n n k pp p p p p p ∞+++→∞→∞==-=-=-=∑∑ 因此根据控制收敛判别法,级数11()n n n n A p p ∞+=-∑收敛.定理3.5(阿贝尔Aebel 判别法)[4]设数列}{n a 单调有界,级数∑∞=1n n b 收敛,则级数∑∞=1n n n b a 收敛.主要参考文献:[1]刘玉琏,傅沛仁等. 数学分析讲义(第三版). 北京: 高等教育出版社, 2003[2]罗仕乐 . 数学分析续论 . 韶关学院数学系选修课程. 2003.8[3]李成章,黄玉民. 数学分析(上册).北京: 科学出版社,1999.5[4]邓东皋, 尹小玲. 数学分析简明教程.北京: 高等教育出版社, 2000.6[5]张筑生. 数学分析新讲.北京: 北京大学出版社, 2002.2[6]丁晓庆. 工科数学分析(下册).北京: 科学出版社,2002.9[7]R.柯朗, F.约翰. 微积分和数学分析引论.北京: 科学出版社, 2002.5[8]朱时. 数学分析札记 .贵州: 贵州教育出版社, 1996.5[9][美] 约翰鲍逊等,邓永录译. 现在数学分析基础.广东:中山大学出版社, 1995.2[10] 王昆扬. 数学分析专题研究.北京: 高等教育出版社, 2001.6The law of differentiating about the fact that several items of progression disappear and dispersingLiu Xianyang(Department of Mathematics,Shaoguan University,00 mathematics and applied mathematics undergraduate course. ,Shaoguan 512005,GuangDong)Abstract:One of the main content while analyzing that progression is mathematics. That the several a item ofprogressions of study disappear and disperse to differentiate law have a lot of kinds we, If Cauchy differentiate law, D'Alembert differentiate law, Raabe differentiate , Gauss differentiate law, Dirichlet differentiate law, Leibniz differentiate law, Abel differentiate law, etc. law. That items of progression disappear and disperse to differentiate law sum up, systematize it logarithm.Keywords:Several items of progression ; A progression ; Turn into number progression ; Hold back the scattered quality ; Differentiate law ization.。

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文

数项级数敛散性的判别法毕业论文关于数项级数敛散性的判别法摘要:级数是数学分析中的主要内容之一.我们学习过的数项级数敛散性判别法有许多种,如柯西(Cauchy)判别法、达朗贝尔(D ’Alembert )判别法、拉阿贝(Raabe)判别法、高斯(Gauss)判别法、狄里克莱(Dirichlet)判别法、莱布尼兹(Leibniz)判别法、阿贝尔(Abel)判别法等.对数项级数敛散性判别法进行归纳,使之系统化. 关键词:数项级数; 正项级数 ; 变号级数; 敛散性; 判别法1引言 设数项级数++++=∑∞=n n na a a a211的n 项部分和为:12n S a a =+++1nni i a a ==∑若n 项部分和数列{}n S 收敛,即存在一个实数S,使lim n n S S →∞=.则称这个级数是收敛的,否则我们就说它是发散的.在收敛的情况下,我们称S 为级数的和.可见,无穷级数是否收敛,取决于lim n n S →∞是否存在.从而由数列的柯西(Cauchy )收敛准则,可得到级数的柯西(Cauchy )收敛准则[1]:数项级数1nn a ∞=∑收敛0,N N ε+⇔∀>∃∈,对,n N p N +∀>∀∈有12n n n p a a a ε++++++<.2 正项级数敛散性判别法设数项级数1nn a ∞=∑为正项级数(na ≥0).则级数的n 项部分和数列{}nS 单调递增,由数列的单调有界公理,有定理2.1[1]正项级数1n n u ∞=∑收敛⇔它的部分和数列{}n S 有上界.由定理2.1可推得 定理2.2[2]:设两个正项级数1n n u ∞=∑和1n n v ∞=∑,存在常数c 0>及正整数N ,当n >N 时有n u ≤c n v ,则(i )若级数1n n u ∞=∑收敛,则级数1n n v ∞=∑也收敛;(ii )若级数1n n u ∞=∑发散,则级数1n n v ∞=∑也发散.一般常及其极限形式:定理2.2’(比较判别法的极限形式)[2]:设1n n u ∞=∑和1n n v ∞=∑是两个正项级数且有limnn nu v →∞=λ, (i )若0<λ<+∞,则两个级数同时敛散;(ii )若 λ=0,级数1n n v ∞=∑收敛,则级数1n n u ∞=∑也收敛;(iii )若 λ=+∞,级数1n n v ∞=∑发散,则级数1n n u ∞=∑也发散.由比较判别法可推得:定理2.3(达朗贝尔判别法也称比值判别法,D ’Alembert )[3]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N 时有1n n u u +≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1n n u u +≥1,则级数1n n u ∞=∑发散.定理2.3’(达朗贝尔判别法也称比值判别法的极限形式)[3]:设1n n u ∞=∑是一个正项级数,(i )若lim n →∞1n n u u +=r <1,则级数1n n u ∞=∑收敛;(ii )若lim n →∞1n nu u +=r >1则级数1n n u ∞=∑发散.定理2.4(柯西判别法也称根式判别法)[4]:设1n n u ∞=∑是一个正项级数,则有(i )若存在0<q <1及自然数N ,使当n ≥N n n u ≤q ,则级数1n n u ∞=∑收敛;(ii )若存在自然数列的子列{}i n n n u ≥1,则级数1n n u ∞=∑发散.定理2.4’(根式判别法的极限形式)[5]:设1n n u ∞=∑是一个正项级数,(i )lim n →∞n n u =r <1,则级数1n n u ∞=∑收敛;(ii )lim n →∞n n u r >1,则级数1n n u ∞=∑发散.注意:在比值判别法和根式判别法的极限形式中,对r=1的情形都未论及.实际上,当lim n →∞1n nu u +=1或lim n →∞n n u 时,无法使用这两个判别法来判别敛散性.如级数11n n ∞=∑和211n n ∞=∑,都有11lim lim 111n n nn n n→∞→∞+==+, 2221(1)lim lim 111n n n n n n→∞→∞+⎛⎫== ⎪+⎝⎭, 1lim 1nn n =,211n n n=.但前者发散而后者收敛.此外,定理2.3和定理2.4中关于收敛的条件1n nu u +≤q n n u ≤q <1也不能放宽到1n n u u +n n u <1.例如,对调和级数11n n∞=∑,有 1n n u u +=1nn +n n u 1n n但级数却是发散的.对于严格正项级数,比较判别法、比式判别法及根式判别法用上(下)极限形式更为方便. 定理2.5[2]设∑∞=1n n a 为严格正项级数.10若∑∞=1n n b 是收敛的严格正项级数,使+∞<∞→nnn b a lim ,则级数∑∞=1n n a 收敛. 20若∑∞=1n n b 为发散的严格正项级数,使0lim >∞→nnn b a ,(可取)∞+,则级数∑∞=1n n a 发散. 定理2.6[2]设∑∞=1n n a 为严格正项级数.10若1lim1<=+∞→q a a nn n ,则级数∑∞=1n n a 收敛. 20若1lim1>=+∞→q a a nn n ,则级数∑∞=1n n a 发散.定理2.7[2]设∑∞=1n n a 为正项级数,且q a n n n =∞→lim ,则10当1<q 时,级数∑∞=1n n a 收敛.20当1>q 时,级数∑∞=1n n a 发散.我们知道,广义调和级数(p-级数)∑∞=11n pn当1>p 时收敛,而当1≤p 时发散.因此,取p-级数作为比较的标准,可得到较比式判别法更为精细而又应用方便的判别法,即定理2.8(拉阿贝判别法,Raabe )[3]:设∑∞=1n n u 是正项级数并记11,n n n u R n u +⎛⎫=- ⎪⎝⎭(i )若存在1q >及自然数N ,使当n ≥N 时有,n R q ≥则级数1n n u ∞=∑收敛;(ii )若存在自然数N ,使当n ≥N 时有1,n R ≤则级数1n n u ∞=∑发散.定理2.8’(拉阿贝判别法的极限形式)[8]:设1n n u ∞=∑是正项级数且有r u u n n n n =⎪⎪⎭⎫⎝⎛-+∞→1lim 1, 则 (1)当1>r 时,级数1n n u ∞=∑收敛;(2)当1<r 时,则级数1n n u ∞=∑发散.考虑到级数与无穷积分的关系,可得 定理2.9(积分判别法)[4]:设函数()f x 在区间),1[+∞上非负且递减,)(n f u n =,1,2,n =,则级数∑∞=1n n u 收敛的充分必要条件是极限⎰+∞→xx dt t f 1)(lim存在.证:由于0)(≥x f ,知⎰=xdt t f x F 1)()(单调递增.因此极限⎰+∞→+∞→=xx x dt t f x F 1)(lim)(lim 存在)(x F ⇔在),1[+∞有界.(充分性)设⎰+∞→xx dt t f 1)(lim存在,则存在0>M ,使M dt t f x x≤+∞∈∀⎰1)(),,1[级数∑∞=1n n u 的部分和)()2()1(21n f f f u u u S n n +++=+++=⎰⎰⎰-++++≤nn dt t f dt t f dt t f f 13221)()()()1(M f dt t f f n+≤+=⎰)1()()1(1.即部分和数列有上界.所以级数∑∞=1n n u 收敛.(必要性)设正项级数∑∞=1n n u 收敛,则它的部分和有上界,即存在+∈∀>N n M ,0有M S n ≤.从而对),1[+∞∈∀x ,令1][+=x n ,则 ⎰⎰⎰⎰⎰-+++=≤n n nxdt t f dt t f dt t f dt t f dt t f 1322111)()()()()(M S n f f f n ≤=-+++≤-1)1()2()1( . 故极限⎰+∞→xx dt t f 1)(lim存在.由此我们得到两个重要的结论[6]: (1)p 级数11p n n ∞=∑收敛⇔1;p > (2)级数21ln pn n n∞=∑收敛⇔ 1.p > 证:两个结论的证法是类似的,所以下面只证明结论(1) 在p 级数一般项中,把n 换为x ,得到函数()f x =1(1).p x x≥ 我们知道,这个函数的广义积分收敛⇔ 1.p >因此根据正项级数的广义积分判定法,结论(1)成立.还是以p-级数为比较标准,可得定理2.10(阶的估计法)[3]:设1n n u ∞=∑为正项级数⎪⎭⎫⎝⎛=p n n O u 1)(∞→n ,即n u 与p n 1当∞→n 是同阶无穷小.则(1)当1>p 时,级数1n n u ∞=∑收敛;(2)当1≤p 时,级数1n n u ∞=∑发散.把比较判别法和比式判别法结合,又可得定理2.11(比值比较判别法)[7]:设级数1n n u ∞=∑和1n n v ∞=∑都是正项级数且存在自然数N ,使当n≥N 时有11n n n nu v u v ++≤, 则有(i )若1n n v ∞=∑收敛,则1n n u ∞=∑也收敛;(ii ) 若1n n u ∞=∑发散,则1n n v ∞=∑也发散.证:当n ≥N 时,由已知有12121111n N N n N N n n N N N n N N n Nu u u u v vv v u u u u v v v v +++++-+-=≤=. 由此可得,.N N n n n n N Nu vu v u v v u ≤≤ 再由比较判别法即知定理结论成立. 较比式判别法更为精细的判别法是定理2.12[3](高斯判别法,Gauss ):设1n n u ∞=∑是正项级数且满足 11,ln ln n n u u v o u n n n n n λ+⎛⎫=+++ ⎪⎝⎭则有(i )若1λ>或者1λ=,1u >或者1,1u v λ==>,则级数1n n u ∞=∑收敛;(ii ) 若1λ<或者1λ=,1u <或者1,1u v λ==<,则级数1n n u ∞=∑发散.定理2.12’[9](高斯推论):设1n n u ∞=∑是正项级数且满足211,n n u uO u n n λ+⎛⎫=++ ⎪⎝⎭则有(i )若1λ>或1λ=,1u >,则级数1n n u ∞=∑收敛;(ii )若1λ<或1λ=,1u ≤,则级数1n n u ∞=∑`发散.3 一般项级数敛散性判别法我们经常遇到一些级数,它们并不是都为非负,如交错级数等,对于这一类的级数我们不能再套用上述的正项级数的判别法来判断它们的敛散性了.根据柯西收敛原理,级数1n n u ∞=∑收敛的充分必要条件是:对任给的0ε>,存在N ,只要n N >,对任意正整数p ,有12.n n n p u u u ε++++++<在研究一般项级数的判别法前我引进绝对收敛与条件收敛的概念. 定义[4]:若级数1n n u ∞=∑收敛,则称级数1n n u ∞=∑是绝对收敛的;若级数1n n u ∞=∑收敛,但级数1n n u ∞=∑发散,则称级数1n n u ∞=∑是条件收敛的.由柯西收敛准则,有 定理3.1[4]若级数∑∞=1||n n u 收敛,则级数∑∞=1n n u 收敛.要判别级数∑∞=1||n n u 敛散性,可用上述介绍的正项级数敛散性的判别方法去判断.定理3.2[6](分部求和判别法):对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果极限lim n n n A p →∞存在,那么下面两个级数有相同的收敛性:1,nn n up ∞=∑11().n n n n A p p ∞+=-∑这个判别法的特点是:把因子1,2,,,n u u u 分离出来,求出部分和n A ,再研究级数11()n n n n A pp ∞+=-∑的收敛性(前提是极限lim n n n A p →∞存在.)证明:先分析级数1n n n u p ∞=∑的部分和.为此分析乘积k k u p ;用增减项的办法,可以看出,11111()()k k k k k k k k k k k k u p A A p A p A p p A p -----=-=---.由此得到1111()()k k k k k k k k k u p A p A p A p p ----=---.让k 从1变到n,对等式的各项求和,110011()(0,0)nnkk n n k k k k k up A p A p p A p --===--==∑∑.这个等式可以改写为1111()nn kk n n k k k k k up A p A p p -+===--∑∑.(这叫做阿贝尔分部求和公式.)现在令n →∞,考察极限1lim nk k n k u p →∞=∑.由阿贝尔分部求和公式可以看出:因为极限lim n n n A p →∞存在,所以1lim n k k n k u p →∞=∑存在111lim ()n k k k n k A p p -+→∞=⇔-∑存在.这个结论的级数语言是:111()k k n n n n n up A p p ∞∞+==⇔-∑∑收敛收敛. 这样就证明完成了证明.对于最特殊的变号级数—交错级数,有定理 3.3[10](莱布尼兹判别法):对于交错级数,如果一般项的绝对值组成的数列单调递减趋向于0(当n →∞),那么交错级数收敛.对于一般项级数,则有定理3.4[10](狄利克雷判别法): 对级数1,n n n u p ∞=∑用n A 表示级数1n n u ∞=∑的部分和,即 1nn k k A u ==∑.如果{}n A 是有界数列,并且数列{}n p 单调递减趋向于0,那么级数1,n n n u p ∞=∑收敛.证明: 由条件可知, lim n n n A p →∞=0.因此根据分部求和判别法, 下面两个级数有相同的收敛性: 1,n n n up ∞=∑11().n n n n A p p ∞+=-∑ 以下只需验证:后一个级数是绝对收敛的.实际上,数列{}n A 是有界的,不妨设()n A A n ≤∀.这样一来,11()()n n n n n A p p A p p ++-≤-.另外,1111111()lim ()lim()nn n k k n n n n k pp p p p p p ∞+++→∞→∞==-=-=-=∑∑ 因此根据控制收敛判别法,级数11()n n n n A p p ∞+=-∑收敛.定理3.5(阿贝尔Aebel 判别法)[4]设数列}{n a 单调有界,级数∑∞=1n n b 收敛,则级数∑∞=1n n n b a 收敛.主要参考文献:[1]刘玉琏,傅沛仁等. 数学分析讲义(第三版). 北京: 高等教育出版社, 2003[2]罗仕乐 . 数学分析续论 . 韶关学院数学系选修课程. 2003.8[3]李成章,黄玉民. 数学分析(上册).北京: 科学出版社,1999.5[4]邓东皋, 尹小玲. 数学分析简明教程.北京: 高等教育出版社, 2000.6[5]张筑生. 数学分析新讲.北京: 北京大学出版社, 2002.2[6]丁晓庆. 工科数学分析(下册).北京: 科学出版社,2002.9[7]R.柯朗, F.约翰. 微积分和数学分析引论.北京: 科学出版社, 2002.5[8]朱时. 数学分析札记 .贵州: 贵州教育出版社, 1996.5[9][美] 约翰鲍逊等,邓永录译. 现在数学分析基础.广东:中山大学出版社, 1995.2[10] 王昆扬. 数学分析专题研究.北京: 高等教育出版社, 2001.6The law of differentiating about the fact that several items of progression disappear and dispersingLiu Xianyang(Department of Mathematics,Shaoguan University,00 mathematics and applied mathematics undergraduate course. ,Shaoguan 512005,GuangDong)Abstract:One of the main content while analyzing that progression is mathematics. That the several a item ofprogressions of study disappear and disperse to differentiate law have a lot of kinds we, If Cauchy differentiate law, D'Alembert differentiate law, Raabe differentiate , Gauss differentiate law, Dirichlet differentiate law, Leibniz differentiate law, Abel differentiate law, etc. law. That items of progression disappear and disperse to differentiate law sum up, systematize it logarithm.Keywords:Several items of progression ; A progression ; Turn into number progression ; Hold back the scattered quality ; Differentiate law ization.。

关于数项级数敛散性的判定(可编辑修改word版)

关于数项级数敛散性的判定(可编辑修改word版)

n 3 5 n2 353关于数项级数敛散性的判定1、问题的提出数项级数敛散性的判别问题,是数学分析的一个重要部分.数项级数,从形式上看,就是无穷多个项的代数和,它是有限项代数和的延伸,因而级数的敛散性直接与数列极限联系在一起,其判别方法多样,技巧性也强,有时也需要多种方法结合使用,同时,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的工具,所以研究数项级数的判定问题是很重要的.2、熟练掌握并准确应用级数的概念、性质和判定定理2.1 数项级数收敛的定义∞ ∞数项级数∑un 收敛⇔ 数项级数∑u n 的部分和数列{S n }收敛于 S .n =1n =1这样数项级数的敛散性问题就可以转化为部分和数列{S }的极限是否存在的问题的讨论,但由于求数列前 n 项和的问题比较困难,甚至可能不可求,因此,在实际问题中,应用定义判别的情况较少.2.2 数项级数的性质∞ ∞∞( 1) 若级数∑un 与∑vn 都收敛, 则对任意常数 c,d, 级数∑(cun+ dv n ) 亦收敛, 且n =1 n =1n =1∞∞∞ ∞∞∑(cun+ dv n ) = c ∑u n + d ∑v n ;相反的,若级数∑(cu n + dv n ) 收敛,则不能够推出级数∑u n 与n =1 n =1n =1n =1n =1∑vn 都收敛.n =1∞∞∞注:特殊的,对于级数∑un 与∑vn ,当两个级数都收敛时,∑(un± v n ) 必收敛;当其中一个n =1 n =1n =1∞∞收敛,另一个发散时,∑(un± v n ) 一定发散;当两个都发散时, ∑(u n ± v n ) 可能收敛也可能发散.n =1n =1∞1 1 ∞1 1例 1 判定级数∑( n n =1 + n ) 与级数∑( + n ) 的敛散性.n =1∞1∞1∞11解:因为级数∑ nn =1与级数∑ nn =1收敛,故级数∑( nn =1∞1 2 -1 n - 1 n + 1n - 1 n =1 ⎢ ∞∞1∞1∞1 1因为级数∑ n 发散,级数∑ 2n 收敛,故级数∑( n + 2n ) 发散.n =1 n =1 n =1(2) 改变、增加或去掉级数的有限个项不会改变原级数的敛散性.(3) 在收敛级数的项中任意加括号,既不改变级数的敛散性,也不改变它的和.即收敛的级数在不改变各项顺序的情况下,对它的各项任意加括号后,得到的新级数还是收敛的;加括号后得到的新级数发散,那么原级数也是发散的.例 2 判定级数-+ + 1 - 1+ 的敛散性.∞ ⎛11 ⎫ 1 1 2∞ 2 解:先考察级数∑ n =1 ⎝ - ⎪ ,因为u n = - n + 1⎭= n - 1 ,而级数∑ n - 1 发散,由于加括号后得到得新级数发散,则原级数发散.∞∞(4) 级数收敛的必要条件 若级数∑un 收敛,则lim u n = 0 .若lim u n ≠ 0 ,则级数∑u n 发散.n =1n →∞n →∞n =12.3 判定定理2.3.1 级数收敛的柯西准则级 数∑un 收 敛n =1⇔ ∀> 0 , ∃N ∈ N *, 使 得 当 m > N 以 及∀p ∈ N * ,都 有u m +1 + u m +2 + + u m + p < .例 1 用柯西准则判别级数∑ sin 2n 2n的敛散性.证明:由于u m +1 + u m +2 + + u m + p =+ sin 2m +22m +2+ +< 1 2m +1+ 1 2m +2+ + 1 2m + p = 1- 2m 1 < 1 2m + p 2m因此, 对于任意的 > 0 .取 N = ⎡log⎣1 ⎤ 使得当 m > N 及任意的2⎥⎦p ∈ N * ,由上式就有u m +1 + u m +2 + + u m + p < 成立,故由柯西准则可推出原级数收敛.2.3.2 正项级数判别法(1) 正项∑un 收敛⇔ 它的部分和数列{S n }有界.∞ 1 2 + 1 n - 1 n + 1 sin 2m +12m +1 sin 2m + p2m + pn 4(n +1) n 4• nn ∞∞∞∞∞ ∞(2) 比较判别法 如果∑un 和∑vn 是正项级数,若存在某整数N ,对一切 n > N 都有u n ≤ v nn =1n =1∞∞∞∞(i) 若级数∑vn 收敛,则级数∑un 也收敛;(ii )若级数∑un 发散,则级数∑vn 也发散.n =1n =1n =1n =1等比级数和 P-级数的敛散性①等比级数∑ a q n = a + aq + aq 2 + + aq n + ,当 q < 1 时,级数收敛;当 q ≥ 1 时,级数n =1发散.∞1②P -级数∑ p,当 p ≤ 1时,发散;当 p > 1时,收敛.n =1例 2 判别级数∑1解:因为u n =敛.的敛散性.<1 =1n2,而且 P-级数∑1收敛,由比较判别法知该级数收5 n2∞∞u n (3) 比较判别法的极限形式 如果∑un 和∑vn 是正项级数(v n ≠ 0) ,如果lim= l ,则n =1 n =1 n →∞v n∞∞∞(i )当0 < l < +∞ 时,∑un 和∑vn 同时收敛或发散;(ii )当l = 0 时, ∑v n 收敛时,n =1n =1 n =1∞∞∞∑un也收敛;(iii )当l = +∞ 时,∑vn 发散时,∑un 也发散.n =1n =1n =1例 3 判别级数∑(na - 1)(a > 1)的敛散性.解:因为lim 令t = 1 lim a t - 1 = lim a tln a = ln a ,而正项级数∑ 1 发散,由比较原则 n →∞ 1 nn t →0 t t →0 1 n的极限形式知原级数发散.(4) 比式判别法 如果∑u n 为正项级数,且 n =1u n +1u n= ,∞∞(i )若0 < < 1,则∑un 收敛;(ii )若≥ 1, ∑u n 发散.n =1n =1n 4(n + 1)na - 1 1 5∑∞1例 4 判别级数 (n + 1)! 的敛散性.10n解:因为limu n +1= lim (n + 2)! • 10n = lim n + 2= +∞ ,所以由比式判别法知原级数发散. n →∞u nn →∞ 10n +1 (n + 1)! ∞n →∞ 10u n +1(5) 比式判别法的极限形式 如果∑un 为正项级数,且lim=,则n =1n →∞ u n∞∞(i )若< 1,则∑un 收敛;(ii )若> 1或= +∞ 时, ∑u n 发散.n =1n =1例 5 判别级数∑ 解:因为lim u n +1 3n • n ! nn= lim的敛散性.3n +1(n + 1)! • n n = lim 3= 3 > 1 ,所以由比式判别法的极限形n →∞ u nn →∞ (n + 1)n +1 3n n ! n →∞ ⎛1 + ⎝ 1 ⎫ne ⎪ ⎭式知原级数发散.∞∞(6)根式判别法 如果∑un 为正项级数,(i )如果 n u nn =1≤ < 1,则∑u n 收敛;(ii )若 n =1≥ 1 ,则级数∑un 发散.n =1(7) 根式判别法的极限形式 如果∑un 为正项级数,还有lim n u n =,n =1n →∞∞∞(i )当< 1时,则∑un 收敛;(ii )当> 1时,则∑u n 发散.n =1n =1⎛ n ⎫n例 6 判别级数∑ 2n + 1⎪ 的敛散性.⎝解:因为lim ⎭= lim n = 1 < 1,所以由比式判别法极限形式知原级数收敛. n →∞ n →∞ 2n + 1 2 +∞(8) 积分判别法 若 f (x ) 为[1,+∞) 上的非负减函数,那么正项级数∑ f (n ) 与反常积分 ⎰1收敛或同时发散.例 7 判别级数∑n 2 + 1的敛散性.f (x )dx 同时解:设 f (x ) = 1 ,则 f (x ) 在[1,+∞) 上为非负单调递减函数,而 +∞ dx =x 2 + 1故由积分判别法知原级数收敛.⎰11 + x 24∞ n u n n ⎛ n ⎫n ⎝ 2n + 1⎭⎪ n∞∞nn∞∞ ⎛ u n⎫(9) Raabe 判别法 设u n > 0 , R n = n un +1 - 1⎪, n = 1,2, .⎭(i) 若存在 q > 1 及正整数 N ,使得当 n ≥ N 时有 R n ≥ q ,则级数∑un 收敛;n =1(ii )若存在正整数 N ,使得当 n ≥ N 时有 R n ≤ 1,则级数∑un 发散.n =1(10) Raabe 判别法的极限形式 设∑un 是正项级数,且有lim R n = r ,n =1n →∞(i ) 若 r > 1 ,则级数∑un 收敛;n =1(ii ) 若 r < 1,则级数∑un 发散.n =1例 8 判别级数∑ (2n - 1)!! (2n )!! ⋅ 1 的敛散性.2n + 1解:容易验证,因为→ 1(n → ∞)这个级数用比式判别法和根式判别法都失效,这时可以用 Raabe⎛ u n⎫ ⎧(2n + 2)(2n + 3) ⎫ (6n + 5)n 3判别法.此时, R n = n u- 1⎪ = n ⎨ (2n + 2)2 - 1⎬ = (2n + 1)2 → (n → ∞).由 Raabe 判别 2 ⎝ n +1 ⎭ ⎩ ⎭法知原级数收敛.正项级数的判别方法有很多种,下面总结一下这几种方法的选择顺序:①若lim u 易于求的,考察 n →∞lim u n 的值: lim u n ≠ 0 ,则依据级数收敛的必要条件,知级数发散;②若lim u n = 0 ,不能直接判断n →∞n →∞n →∞级数是收敛还是发散,此时用比式判别法或根式判别法,当< 1时,级数收敛;若> 1或= +∞ 时,级数发散;③当= 1时,级数可能收敛也可能发散,此时用比较判别法,找出一个已知敛散性的级数与之比较,然后根据比较判别法或其极限形式判定级数的敛散性,当然,对于一些具体问题,我们应该根据其特点分析,找到更简便的判别方法.2.3.3 一般项级数的判别方法(1) 交错级数判别法∞Leibniz 判别法 若交错级数 ∑(-1)n +1u n =1n( u n > 0 ),满足下述两个条件:(i )数列{u n}单调递减; (ii ) lim u = 0 ,则级数收敛. n →∞∞ ∞ ⎝∞∞n →∞n →∞n →∞注:用 Leibniz 判别法判定u n > u n +1 u 时,可以用以下几种方法:①比值法:考察是否有 u > 1 ;②差值法: 考察是否有 u n - u n +1 > 0 ; ③ 导数法: 即建立一个连续可导的函数f (n ) = u n (n = 1,2, ) ,考察是否有 f '(n ) < 0 .n +1f (x ) , 使例 9 判定级数∑(-1)n =1n -1n + 1 (n + 1) ln (n + 1)的敛散性.n + 1n + 1解:因为此级数为交错级数 ,设u n =(n + 1)ln (n + 1) ,易证lim u n = lim(n + 1)ln (n + 1) = 0 ,下面判定u n > u n +1 ,下面我们用导数的知识判定数列{u n }单调递减.设 f (n ) = u n =(n + 1,则 f '(n ) = (un + 1)ln (n + 1))' = ln (n + 1) - n ,又设 g (n ) = ln (n + 1) - n ,则 g '(n ) = 1 - 1 < 0 ,∴ g (n ) 单 n(n + 1)2 ln 2 (n + 1)n + 1调递减, g (n ) < g (0) ,∴ f '(n ) < 0 , f (n ) 单调递减, u n > u n +1 ,由 Leibniz 判别法,知原级数发散.(2) 绝对收敛∞ ∞若级数∑un 各项绝对值组成的级数∑ un收敛,则原级数绝对收敛.n =1n =1∞∞性质:绝对收敛的级数一定收敛.此定理的逆命题不成立,即:若∑un 收敛,不能判定∑ un 也 n =1n =1收敛.(3) Abel 判别法若{a n }为单调有界数列,且级数∑bn 收敛,则级数∑ a n bn 收敛.∑( )n 1 ⎛ 1 ⎫n( ) 例 10 判定级数- 1 ln (n ) 1 + n ⎪ 4 - arctan n 的收敛性. n =2⎝ ⎭ ∞ ( )n 1⎧⎪⎛1 ⎫n⎫⎪ 解:根据 Leibniz 判别法知级数∑ -1 ln n 收敛.因为⎨ 1 + n ⎪ ⎬ 递增有界,故由 Abel 判别法n ∑( )n 1 ⎛ 1 ⎫ n =2 ⎪⎩⎝ ⎭ ⎪⎭{ } 知级数 - 1 ln (n ) 1 + n ⎪收敛,又因 4 - arctan n 递减有界,再由 Abel 判别法知原级数收敛. n =2⎝ ⎭(4)Dirichlet 判别法若数列{a n }单调递减,且lim a n = 0 ,又级数∑bn 的部分和数列有界,则级数∑ a n bn 收敛.∞ nx 2 -1 ln 1 +⎪ (4n - 2)(4n + 1)⎝ n ⎭(4n - 2)(4n + 1) (- 1 ) ln 1 + n⎛ 1 ⎫ n ⎪ (4n - 2)(4n + 1) ⎝ ⎭ 3n n∞例 11 判定级数∑n =1sin nx , x ∈ (0,2) (> 0)的敛散性.n解: 由于当 x ∈ (0,2)时, 有 ∑ s in kx ≤ 1, 即 ∑∞ sin nx 的部分和数列有界, 而数列 k =1 sin n =1⎧ 1 ⎫(> 0) 单调递减,且lim 1= 0 ,故由 Dirichlet 判别法知,原级数收敛.⎨ ⎬⎩ n ⎭n →∞ n对于交错级数敛散性判定问题,应先判定其是否绝对收敛,即若∑ unn =1收敛,则∑un 收敛;若不n =1是绝对收敛,则根据 Leibniz 判别法,Abel 判别法,Dirichlet 判别法判定其是否条件收敛.3、巧妙判别数项级数敛散性以上介绍了一些判别数项级数敛散性的基本方法,但是在实际的应用中往往需要多种方法结合,且有时还有一定的技巧性,下面结合一些实例列举一些常用的判别方法和技巧.3.1 等价无穷小替换的方法判断级数敛散性∞ ∞应用定理:设∑un 和∑vn 是两个正项级数,且当n → ∞ 时, u n 和 v n 为等价的无穷小量,则n =1n =1∞∞∑un 和∑vn 的敛散性保持一致.n =1n =1证明:由于当 n → ∞ 时, u n 和v n为等价的无穷小量,即lim u n n →∞ v= 1 ≠ 0 ,由比较判别法的极限形 n∞∞式可知级数∑un 和级数∑vn 同时收敛或同时发散.n =1例 1 判定级数∑n =1( )n n =1⎛1 ⎫的敛散性.(- )n⎛ + 1 ⎫ 1 解: 设 u n = 1 ln 1 ⎝ ⎪ ⎭ , 则 u =~ n = 4n 1 4n 2, (n → ∞), 而级数∞1∑ 2收敛,所以原级数绝对收敛.n =13.2 运用常用不等式判断级数的敛散性∞ ∞ ∞ ∞ na n n 2 + ∑ n∞∞⎝∑ 常用的不等式有: ln n < n , ln (1 + x ) < x , e x > 1 + x∞ ⎛ 1n + 1⎫ 例 2 判定级数 - ln n =1 ⎝ ⎪ 的敛散性. n ⎭ 解:此题我们可以利用不等式ln ( 1 + x ) < x ,1n + 1 1 n 1 ⎛1 ⎫ 1 1 有u n = n - ln n = + ln = + ln 1 - ⎪ < - n n + 1 n n + 1 n n + 1 ⎝ ⎭∞ ⎛ 11 ⎫ 因为级数∑ n - n + 1⎪ 收敛,故原级数收敛.n =1 ⎝ ⎭ 3.3 运用平均不等式ab ≤1 (a2 + b 2 )判断级数敛散性2∞ ∞∞应用定理:若级数∑ a 2和级数∑b 2都收敛,则级数∑ a b绝对收敛.nn =1∞a 2nn =1∞b 2n nn =1∞ 1(a 2 + b 2 )证明:已知级数∑n =1n和级数∑n =1n 都收敛,根据级数收敛的性质,则级数∑ 2n n 收敛,由于有不等式 a b ≤1(a 2 + b 2 ),再根据比较判别法,知级数∑ a b∞收敛,所以级数∑ a b 绝对n n2nnn nn =1n nn =1收敛.∑2∑( )nn例 3 设常数> 0 ,级数 n =1 a n 收敛,判断级数- 1n =1 的敛散性.n 2 +∞ 2∞ 1 ∞ ⎛ 2 1 ⎫ 解:因为级数∑ a n 收敛,并且级数∑ n 2 + 1 也收敛,所以级数∑ a n + n2 ⎪ 收敛,n =1 n =11 1 ⎛2 1 ⎫ ⎝ + ⎭∞又因为 = a n n 2 + ≤ 2 a n + n 2 ⎪ ,由比较判别法可知,级数 收 + ⎭敛,故原级数绝对收敛.3.4 拉格朗日微分中值定理判断级数敛散性∞ ⎡ ⎛ 1 ⎫⎛ 1 ⎫⎤应用定理:设 f (x ) 在(0,1)内可导,且其导函数有界,则级数∑ ⎢ fn + k ⎪ - f n + k ⎪⎥ 绝对收 n =1 ⎣ ⎝ 1 ⎭ ⎝ 2 ⎭⎦敛.证明:因为 f (x ) 在(0,1)内可导,且其导函数有界,所以存在 M f '(x ) ≤ M ,于是由拉格朗日中值定理得> 0 ,对于一切 x ∈ (0,1) ,都有a nn 2 + ∞n n ∞lim ln 2 ⎪ u⎛ 1 ⎫ ⎛ 1 ⎫ '⎛ 1 1 ⎫ M (k 2 - k 1 ) f n + k ⎪ - f n + k ⎪ = f() n + k- n + k ⎪ ≤ (n + k )(n + k ) , ⎝ 1 ⎭ ∞ ⎝ 2 ⎭ 1 ⎝ 12 ⎭ ∞ ⎡ ⎛1 1 ⎫ ⎛2 1 ⎫⎤ 由于级数∑ (n + k )(n + k ) 收敛,所以级数∑⎢ f n + k ⎪ - f n + k ⎪⎥ 绝对收敛.n =1 1 2 ∞ ⎛ 1n =1 ⎣ ⎝ 1 ⎫ 1 ⎭ ⎝ 2 ⎭⎦ 例 4 判定级数∑ sin n + 10 - s in n + 1⎪ 的敛散性.n =1 ⎝⎭ 解:设函数 f (x ) = sin 1 ,则 f '(x ) = - 1x x 2⋅ cos 1 ,知 f '(x ) 有界,令 k x 1= 10, k 2 = 1,由于满足 ∞ ⎛ 1 1 ⎫上述定理条件,故级数∑ sin n + 10 - s in n + 1⎪ 收敛.n =1 ⎝ ⎭ 3.5 对数判别法判断级数敛散性∞ln 1u n∞应用定理:若级数∑un 为正项级数,若有> 0 ,使得当 n ≥ n 0 时,n =1ln n ≥ 1 +,则级数∑u nn =1ln 1u n∞收敛,若有 n ≥ n 0 时,ln n ≤ 1 ,则级数∑u n 发散. n =1ln 1u n 1∞ 1证明:如果 n ≥ n 0 时,不等式ln n ≥ 1 +成立,则有u n ≥1+ .由于级数∑ 1+ 收敛,所以 n =11∞ln ∞n由比较判别法知级数∑u n 收敛.同理可证,当不等式 n =1 ln n ≤ 1 成立时,则级数∑u n 发散. n =1∑ a ln n ( > )例 5 判定级数 a n =1 2n1 的敛散性.ln 1 u 2nln a ln n n ln 2 - ln n • ln a n 解:由于 n= ln n = ln n ln n = ln 2 ln n- ln a ,由洛必达法则可知:⎛ n - ln a ⎫ = ln 2 lim x - ln a = ln 2 lim 1 - ln a = +∞ n →+∞⎝ ln n ⎭n →+∞ ln x nn ←∞ 1 x所以,对> 0 ,存在 n 0 ,使得当 n ≥ n 0 时, ln 2 ln n- ln a ≥ 1 +,因而根据以上定理原级数发散.⎭⎦ ∞n n+ O , ∞ 例 7 判别级数的敛散性.⎝ n3.6 泰勒展开式判断级数的敛散性∞ ⎡ ⎛ 1 ⎫n⎤例 6 判别级数∑⎢ e - 1 + n ⎪ ⎥ 的敛散性.n =1 ⎢⎣ ⎝ ⎭ ⎥⎦ n⎛ 1 ⎫⎛ 1 1⎛ 1 ⎫ ⎫⎛ 1 ⎫n ln 1+ ⎪n n n - 2n2 +o n 2 ⎪ ⎪ ⎡ ⎛ 1 ⎛ 1 ⎫⎫⎤解:因为u = e - 1 + ⎪ = e - e ⎝⎭ = e - e ⎝⎝ ⎭ ⎭ ~ e ⎢1 - 1 - + o ⎪⎪⎥n ⎝ n ⎭⎣2n ⎝ n ⎭⎪ ~e (n → ∞).由于级数∑∞e 发散,所以原级数发散.2nn =1 2n3.7 拆项法判断级数的敛散性将级数的一般项运用等价变形、三角基本公式、有理化等方法拆成几项之差也是判别级数收敛的一种常用方法.∑sin (n )2 - n sinn =1 n 2sin (n)2 - n sinsin (n )2sin1 ∞ 1解:因为=n 2n 2∞sin (n )2-,而且n∞ sin≤ 2 ,由于级数∑ 2 收敛,n =1 根据比较判别法知级数∑2n =1收敛;而且∑n =1,当= k时,该级数收敛;当≠ k时,该级数发散.由此可知,当= k时,原级数收敛;当≠ k时,原级数发散.3.8 Gauss 判别法判断级数的敛散性若 a n > 0(n = 1,2, ) ,且 a n a = + n ⎛ 1 ⎫ n1+ ⎪ > 0 ,则级数 ∑ a n 当>1 时收敛;当n +1 ⎝ ⎭ n =1< 1时发散;而当= 1 时,对> 1收敛,对≤ 1发散.∞p (p + 1) (p + n - 1) 1例 8 判别级数∑ n =1( p > 0, q > 0) 的敛散性. n ! n q解:对于这个级数来说,an + 1 ⎛ n + 1⎫q ⎛ p ⎫-1⎛ 1 ⎫q +1 q - p + 1 ⎛ 1 ⎫n = ⎪ = 1 + ⎪ 1 + ⎪ = 1 + + O ⎪ , a n +1 p + n ⎝ n ⎭ ⎝ n ⎭ ⎝ n ⎭ n ⎝ n 2⎭所以它在 q > p 时收敛,在 q ≤ p 时发散.3.9 运用函数判定数项级数的敛散性以前讨论的方法判定级数敛散性都与数列极限紧密联系,这种方法利用函数来研究数项级数.给出了利用函数的导数和极限判别数项级数敛散性的的方法.sin (n )2n 2 n∞∞∞ ∞⎨ f (x ) ∞⎪ 收敛,则 应用定理 2 如果 存在, ⎪ 绝对收敛,则 . 应用定理 4 如果 存在,而且,则 ⎪ 绝对收敛. 由于已知 存在,即 存在,对 满足定理 3 条件,所以⎪ 绝对收敛. ∑ f ⎛ 1 ⎫ lim f (x ) = 0 n =1 ⎝ n⎭∞⎛ 1 ⎫ x →0⎛ 1 ⎫证 明 : 已 知 级 数 ∑ f ⎪ 收 敛 , 有 级 数 收 敛 的 必 要 条 件 得 lim f ⎪ = 0 , 因 而n =1lim f (x ) = lim f ⎛ 1 ⎫= 0 .⎝ n ⎭ x →∞ ⎝ n ⎭⎪x →0n →∞ ⎝ n ⎭∞ ⎛ 1 ⎫例 9 判别级数∑ n e n - 1⎪cos n 的敛散性.n =1 ⎛ 1 ⎫ ⎪ ⎝ ⎭ e x - 1 ⎛ 1 ⎫ 解:由于lim n e n - 1⎪ = lim = 1 ,又由于 limcos 不存在,所以lim f ⎪ 不存在,由定理 1 的n →∞ ⎝ ⎪ x →0 ⎭x →0 2 x →∞ ⎝ n ⎭ 逆否命题可知,级数不收敛.lim f '(x ) ∑ f ⎛ 1 ⎫ lim f '(x ) = 0 x →0 = n =1 ⎝ n ⎭x →0 f (0) = f '(0) = 0 ∑ f ⎛ 1 ⎫ 应用定理 3 如果函数在 x 0 存在二阶导数,且 ,则n ⎪ 绝对收敛. n =1 ⎝ ⎭ lim f ' (x ) lim f (x ) = lim f '(x ) = 0 ∑ f ⎛ 1 ⎫ x →0x →0x →0n =1⎝ n ⎭ 证明:首先作辅助函数G (x ) = ⎧0⎩ x = 0 x ≠ 0考察G (x ),有G (0) = 0G '(0) = limf (x ) = lim f '(x ) = 0 x →0 x x →0G ' (0) = lim G '(x ) - G '(0) = lim f (x ) = lim f ' (x )x →0 xx →0 x x →0 lim f ' (x ) G ' (0) = 0 G (x ) ∑ f ⎛ 1 ⎫ x →0⎡1 - 1 ⎤ 2n =1 ⎝ n ⎭例 10 判别级数∑ ⎢ a n+ an- 2 ⎥ 的敛散性.⎢ n =1 ⎢⎣ 1 ⎥ a n- 1 ⎥⎦⎛ a x + a -x - 2 ⎫22 ln a (a x + a -x - 2)2解:不妨设 f (x ) = ⎝ a x- 1 ⎪ ,则 f '(x ) = ⎭ (a x - 1)3∞ 应用定理 1 若级数x= f ' (x ) =2 l n 2 (- a 3x + 6a 2x - 14a x + 2a -2x - 9a -x + 16)(a x - 1)4求极限得lim f (x ) = 0x →0应用洛必达法则,得lim f x →0'(x ) =8 ln a (2a 2x + 2a -2x - a x + a -x ) 27a 3x - 24a x + 3a x 0lim f x →0' (x )= lim x →0 ln 2 (81a 3x + 96a 2x - 14a x + 32a -2x - 9a -x ) 64a 4x - 81a 3x + 24a 2x - a x= 4 ln 2 a⎡ 1 - 1 ⎤ 2所以lim f ' (x ) 存在,根据定理 4 知级数∑ ⎢ a n + a n- 2 ⎥ 绝对收敛.x →0 ⎢ n =1 ⎢⎣ 1 ⎥ a n - 1 ⎥⎦从以上分析和各例子可以看出,判定数项级数敛散性方法众多,我们应深刻体会各个定义、性质、定理的条件及结论,同时也要善于观察和总结,正确且灵活地使用各定理.∞。

函数项级数收敛判别法的推广和应用【开题报告】

函数项级数收敛判别法的推广和应用【开题报告】

开题报告数学与应用数学函数项级数收敛判别法的推广和应用一、选题的意义人类的文明进步和社会发展,无时无刻不受到数学的恩惠和影响,数学科学的应用和发展牢固地奠定了它作为整个科学技术乃至许多人文学科的基础的地位。

数学分析的形成和发展是由于物理学、天文学、几何学等研究领域的进展和突破。

级数是研究函数的一个重要工具,在理论上和实际应用中都处于重要地位,,这是因为:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。

级数的收敛问题是级数理论的基本问题。

将函数表为级数,从而借助级数去研究函数,即函数项级数函数项级数的出现不仅大大丰富和发展了已有的微积分理论,同时大大扩展了微积分学的应用范围。

首先,函数项级数为函数的构造开辟了一个新天地。

其次,函数项级数理论提供了研究函数的一个基本方法。

利用级数的理论出现了Taylor展开式和 Fourier 展开式的有关理论,以后又出现了用多项式和三角函数来逼近函数的理论。

实际上函数项级数的理论对近代各种函数逼近理论以及无穷维空间中元素按基底的展开理论都产生了重大的影响。

研究函数项级数收敛具有重要意义,我们通过研究函数项级数收敛判别法,尤其是一致收敛的判别法,并且将它们推广和应用具有理论和现实作用。

二、研究的主要内容,拟解决的主要问题(阐述的主要观点)所谓函数项级数1() nn u x∞=∑在某区间I上收敛,是指它逐点收敛。

即:对I中每固定一点X∈I,作为数项级数,1() nn u x∞=∑总是收敛的。

因此对收敛性,可用数项级数的各种判别法进行判断。

如:利用级数收敛的定义或者级数收敛的柯西准则。

如果是正项级数的话还可以用比较原则、比式判别法、根式判别法等。

由于无穷级数的收敛性和它的部分和数列的收敛性是相同的,因此,研究函数项级数的收敛性可以研究它的部分和数列的收敛性。

关于数项级数敛散性的判定

关于数项级数敛散性的判定

关于数项级数敛散性的判定摘要:就数项级数敛散性的判定进行了深入细致的分析、探究与总结,重点论述了正项级数及一般项级数的敛散性判别方法,提出了数项级数敛散性判定的一般步骤,以及判定过程中需要注意的一些问题。

使得对数项级数敛散性的知识有了更深的认识,提高了解题能力。

关键词:数项级数;正项级数;交错级数;一般项级数;敛散性 引言:无穷级数是高等数学的一个重要组成部分,是研究“ 无穷项相加” 的理论 ,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

如今,无穷级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具,而应用的前提是级数收敛,所以其收敛性的判别就显得十分重要,判断级数敛散的理论和方法很多,本文的根本目的是对数项级数敛散性的判定进行深入的研究与总结。

1.预备知识: 1.1级数的定义及性质定义1:给定一个数列{}n u ,对它的各项依次用“+”号连接起来的表达式......21++++n u u u称为数项级数。

其中n u 称为该数项级数的通项。

数项级数的前n 项之和记为:∑=+++==nk n k n u u u u S 121...。

称为数项级数第n 个部分和。

定义2:若数项级数的部分和数列{}n S 收敛于S (即S S n n =∞→lim ),则称数项级数收敛。

若{}n S 是发散数列,则称数项级数发散。

即:n n S ∞→lim 不存在或为∞。

性质:(1)级数收敛的柯西准则:级数收敛的充要条件:0>∀ε,0>∃N ,使得当N m >以及对任意正整数P ,都有 ε<++++++p m m m u u u (21)推论:级数收敛的必要条件:若级数收敛,则0lim =∞→n n u 。

(2)设有两收敛级数n u s ∑=,n v ∑=σ,则其和与差)(n n v u ±∑也收敛,并且σ±=±∑s v un n)(。

数项级数开题报告书

数项级数开题报告书

安徽师范大学本科生毕业论文(设计)开题报告书题目数项级数学生姓名王彤学号100701139 指导教师倪玲学院数学计算机科学学院专业数学与应用数学职称讲师选题的理论意义与实践意义:数项级数是《数学分析》的一个重要组成部分,是全部级数理论的基础,是研究“无穷项相加”的理论,它是表示函数、研究函数的性质以及进行数值计算的一种工具。

数项级数主要包括正项级数和交错级数,而研究数项级数的首要问题就是判别级数的敛散性问题。

如今,级数已经渗透到科学技术的很多领域,成为数学理论和应用中不可缺少的有力工具。

级数的收敛问题是级数理论的基本问题,是当今数学分析的重要内容,判别数项级数的收敛或发散,是级数的重点。

研究方向的动态及本文创新点:在18世纪,甚至到今天,级数一直被认为是微积分的一个不可缺少的部分。

除了用于微积分之外,级数的主要应用之一在于计算一些特殊的量,如e,以及对数函数和三角函数值。

级数也是进一步研究函数的有力工具:一方面能借助级数表示许多常用的非初等函数,微分方程的解就常用级数表示;另一方面又可将函数表为级数,从而借助级数去研究函数,例如用幂级数研究非初等函数,以及进行近似计算等。

随着研究领域的逐渐扩展,数学家们运用级数所取得的成功变得越来越多。

本文将写出判别级数敛散性的若干种方法,及其若干应用。

主要研究内容及提纲:首先,探讨数项级数敛散性的含义及其几种常用的判别方法,常用的方法有比较判别法、达朗贝尔判别法、积分判别法、柯西判别法、阿贝尔判别法、狄利克莱判别法及交错级数的莱布尼茨判别法等。

然后,初步探讨数项级数敛散性判别方法的若干应用,即该如何选择一种恰当的判别方法来判别一个数项级数的敛散性,特别是比较判别法和柯西判别法在判断级数敛散性中的重要作用。

研究的方法与手段:正确理解数项级数敛散性的含义及其常用的几种判别方法,然后从级数在数学分析这门自然科学中的重要地位入手,收集相关资料,运用归纳总结的方法,探讨数项级数敛散性各种判别方法的应用性。

微积分第二版课件第二节数项级数敛散性判别法

微积分第二版课件第二节数项级数敛散性判别法

定理 正项级数 un 收敛的充分必要条件为:它的 n1
前n 项部分和所构成的数列 {Sn}有上界.
定理(比较判别法1) 设两个正项级数 un与 vn ,
n1
n1
如果满足 un vn ,(n 1,2,),那么
(1) 若 vn收敛, 则 un 收敛.(大的收敛小的必收敛)
n1
n1
(2) 若 un 发散, 则 vn 发散. (小的发散大的必发散)
kvn (k
0) ,则正项级数
un
也发散.
n1

判定级数
(1)
n1
1 2n
; 1
(2)
n1
n 2n
1
n
的敛散性.

(1)因为
un
1 1 0(n 1,2,) 2n 1 2n
而级数
1
发散,由比较法知
1
发散.
n12n
n12n 1
(2)对于正项级数
n1
n n 2n 1
因为
un
n
n
比值的极限 lim un1 ,则
n1
n un
(1)当 1时,级数收敛;
(2)当 1 时,级数发散;
(3)当 1时,级数可能收敛也可能发散.
说明:比值判别法比比较判别法使用方便,它主 要判别一般项由指数幂或阶乘等形式构成的正项级数
的敛散性.但当 1 时,判别法失效.

判定 (1)
综合上述有 n1n1p当p 1时收敛,0 p 1时发散.
例 判定 (1)
1
, (2)
1
的敛散性.
n1(n 1)(n 4) n1n n 2

(1)因为 0 un
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

怀化学院本科毕业论文(设计)任务书论文题目数项级数的敛散性
学生姓名系别数学系专业数学与应用数学指导老师姓名职称
题目来源1.科学技术□ 2.生产实践□ 3.社会经济□4.自拟■ 5.其他□
毕业论文(设计)内容要求:
1选题内容符合专业培养目标要求.
2主题突出,层次清晰,结构合理,无科学性错误,并能做一些适当的创新.
3文字简练、通顺,格式符合规范要求.
主要参考资料:
[1]华东师范大学数学系.数学分析(下册)(第三版)[M].北京:高等教育出版社,2001.
[2]同济大学应用数学系.高等数学(下册)(第五版)[M].北京:高等教育出版社,2002.
[3]同济大学,天津大学,重庆大学等.高等数学(第四版)[M].北京:教育出版社,2003.
[4]彭砚,陈铿羽.级数敛散性的根值判别法的推广[J].高等数学研究.2008,11(3):35~37.
[5]汪晓勤.19世纪上半叶的无穷级数敛散性判别法[J].高等数学研究.2004:127~134.
[6]李世金,赵洁.数学分析解题方法600例[M].上海:华东师范大学出版社.1992.
毕业论文(设计)工作计划:
1、2012.11.15 接受毕业论文任务;
2、2012.11.16-11.30 查阅文献资料,收集素材,完成开题报告书;
3、2012.12.1-2013.2.30 查阅论文所需的资料和文献,并进行论文的撰写工作,完成论文初稿;
4、2013.3.1-4.30 在指导老师的指导下修改、完善论文,论文定稿;
5、2013.5.1-5.10 深入专研论文,为论文答辩做好准备。

接收任务日期 2012 年 11 月 15 日要求完成任务日期 2013 年 4 月 30 日
学生(签名)年月日
指导教师(签名)年月日
系主任(签名)年月日
说明:本表为学生毕业论文(设计)指导性文件,由指导教师填写,一式两份,一份交系(部)存档备查,一份发给学生。

g i h
r
e
本科生毕业论文(设计)
开 题 报 告 书
题 目 数项级数的敛散性
学生姓名
学 号
系 别 数学与应用数学系 专 业 数学与应用数学
指导教师
2012年 11 月 17 日
论文(设计)题目数项级数的敛散性
一、选题的目的、意义及相关研究动态和自己的见解:
数项级数是数学分析中的重要内容,正确理解、判定数项级数的敛散性是学习无穷级数的前提与关键。

然而,数项级数敛散性的判别是数学分析中的一个难点,主要是因为级数的敛散性与数列的极限联系在了一起,它是数学分析中两个难点的结合。

但是掌握好了数项级数的敛散性对我们学习函数项级数、幂级数和傅里叶级数都有着极大的帮助,而且数项级数的敛散性在很多实际问题中也有着广泛的作用。

因此,熟练掌握并准确应用数项级数的概念、性质、判定定理判别其敛散性具有重要的意义。

近年来,已有许多数学工作者对数项级数的敛散性进行了深入地探究,如张守田的“数项级数审敛的思路与技巧”,周卫春的“数项级数敛散性讨论方法解析”,王静的“判别数项级数敛散性的一些方法和技巧”等,本文也将对这一问题进行系统的探究。

二、课题的主要内容:
本文首先简单介绍数项级数的概念及其所包括的正项级数和一般项级数,然后重点介绍级数的各种判别法,如柯西准则、比较判别法、比值判别法、根式判别法、莱布尼茨判别法、阿贝尔判别法、狄利克雷判别法等七种基本的判别方法和高斯判别法、对数判别法、柯西积分法、等价量法、拆项法、利用不等式及利用泰勒展开式等七种具有一定技巧的特殊判别方法,对各种判别法都给予举例说明。

这些判别数项级数敛散性的方法及技巧可以帮助我们快速准确地选取最合适的判别法来判别数项级数的敛散性,从而进一步加深我们对数项级数敛散性的理解,把对数项级数敛散性的研究推向更高层次。

最后对本论文进行归纳总结。

三、研究方法、设计方案或论文撰写提纲:
研究方法:文献资料法、举例论证法。

设计方案:明确数项级数的敛散性,选取相应的判别法对数项级数的敛散性进行判别,且以实例加以说明和归纳,对其中有特点的例题进行分析和点评。

论文撰写提纲:摘要,关键字(中,英文)
1、引言
2、明确数项级数的敛散性,应用相关定理及判别方法对数项级数的敛散性进行
判别
3、归纳出七种基本判别方法
4、总结出一些判别技巧
5、结论,参考文献,致谢
四、完成期限和预期进度:
1、2012.11.15 接受毕业论文任务;
2、2012.11.16-11.30 查阅文献资料,收集素材,完成开题报告书;
3、2012.12.1-2013.2.30 查阅论文所需的资料和文献,并进行论文的撰写工作,完成论文初稿;
4、2013.3.1-4.30 在指导老师的指导下修改、完善论文,论文定稿;
5、2013.5.1-5.10 深入专研论文,为论文答辩做好准备。

五、主要参考文献(不少于10篇):
[1]华东师范大学数学系.数学分析(下册)(第三版)[M].北京:高等教育出版社,2001.
[2]同济大学应用数学系.高等数学(下册)(第五版)[M].北京:高等教育出版社,2002.
[3]同济大学,天津大学,重庆大学等.高等数学(第四版)[M].北京:教育出版社,2003.
[4]彭砚,陈铿羽.级数敛散性的根值判别法的推广[J].高等数学研究.2008,11(3):35~37.
[5]汪晓勤.19世纪上半叶的无穷级数敛散性判别法[J].高等数学研究.2004:127~134.
[6]李世金,赵洁.数学分析解题方法600例[M].上海:华东师范大学出版社,1992.
[7]张永明.数项级数审敛法的改进及应用[J].北京印刷学院学报.2001,9(4):20~23.
[8]张永明.正项级数收敛性的一种新的判别法[J].数学的实践与认识.2004,34(1):173~176.
[9]花树忠.柯西根值判别法的推广[J].高等数学研究.2004,7(3):19~20.
[10]张永明,田益民,王丹.正项级数审敛法的研究进展[J].北京印刷学院学报.2006,14(2): 38~39.
[11]杨钟玄.双比值判别法与对数判别法的比较[J].四川师范大学学报.2004,(1):57~60.
[12]杨丽.有关级数敛散性的几个问题[J].锦州师范学院学报.,2003,24(2):63~64.
6、指导教师意见:
签名:年月日
七、开题报告会纪要

地点

姓名职务(职称)姓名职务(职称)




会议记录摘要:
问:选这个题目的目的是什么?
答:我们在数学分析这门课程中学习了数项级数的敛散性,在学习过程中我发现判别数项级数的敛散性具有重要的意义,对后续学习函数项级数、幂级数和傅里叶级数起着积极的作用。

因此,我选择这个题目。

问:你打算怎样完成这个选题?
答:首先我对我们学习中最常用到的七种判别方法进行归纳总结,然后有针对性的去参阅数项级数敛散性相关知识的文献资料,加深知识理解;再阅读大量期刊文章,整理资料;最后进行总结归纳与探究分析,确定写这篇论文的主要目的和意义;在指导老师指导下进行初步的论文写作。

问:本论文的创新点在哪?
答:本文的创新之处在于:它在七种基本判别方法的基础上进一步探究得到七种具有一定技巧的判别方法,通过大量的例题予以说明,并讨论其中的数学思想,对数学分析的后续学习具有一定的帮助。

会议主持人:
会议记录人:
年月日
八、开题答辩小组意见:
负责人签名:
年月日
九、系(部)意见:
负责人签名:
单位(盖章)
年月日。

相关文档
最新文档