铅酸蓄电池放电计算
12.4.4蓄电池的选择及容量计算方

12.4.4 蓄电池的选择及容量计算方法12.1.4.1 铅酸蓄电池[66](1)铅酸蓄电池型式。
变电所直流操作电源用铅酸蓄电池,一般均为固定式铅酸蓄电池。
国产固定式蓄电池有下列几种:①开启式G (或GG )型蓄电池;②防酸隔爆式GF (或GM )型蓄电池;③防酸式GFD 型蓄电池。
开启式G (或GG )型蓄电池,由于酸雾大,维护管理复杂且对维护工人的健康影响较大,在各生产厂已极少生产,不推荐使用。
防酸式GFD 蓄电池产品达到德国工业标准DIN43539的要求。
防酸式GF (或GM )型蓄电池同GFD 型蓄电池一样,均具有防酸隔爆的特性,且能量高,寿命较长,安装、维护管理方便,可降低蓄电池室的耐酸等级,且其价格低于GFD 型。
(2)铅酸蓄电池容量的选择。
二十世纪80年代以前蓄电池容量的选择计算基本上是沿用前苏联的计算方法。
随着国外技术的引进,能源部在总结了国内外经验的基础上,提出了用电压控制法和阶梯负荷计算法来选择蓄电池的容量。
由于阶梯负荷计算法多适用于大型发电厂,而电压控制法既可用于发电厂也可用于各种类型变电所,故本节只介绍电压控制法用以选择有端电池及无端电池直流系统固定式铅酸蓄电池的容量。
电压控制法计算方法如下;1)蓄电池容量选择应满足事故全停电状态下的持续放电容量C CB SX k c K K C K C = (12−1−1)式中 c C ——蓄电池10h 放电率计算容量,Ah ;SX C ——持续事故放电容量,Ah ;k K ——可靠系数,取1.40;C K ——容量换算系数(根据不同的放电终止电压,对应放电时间1h ,由图12−1−2中曲线查出);CB K 容量比例系数,根据事故放电时间由表12−1−2查出。
但事故放电时间,应与SX C 所取时间相一致,对变电所一般取1h ,故1=CB K 。
根据C C 计算值,选择接近该值的蓄电池容量10C 。
2)蓄电池选择容量应满足事故放电过程中各阶段电压水平要求:a )事故放电初期电压水平101.1C I K cho cho = (12−1−2)式中 c h oK ——事故放电初期冲击系数; cho I ——事故放电初期放电电流,A ;10C ——蓄电池10h 放电率额定容量,Ah ;1.1——电压水平校验系数。
铅酸电池充放电特性

密封铅酸蓄电池的充放电特性电源技术 2009-04-04 10:33 阅读360 评论0字号:大中小1、电池的放电特性电池的放电特性是一组曲线(见图1)。
在一定的环境温度下(图中为25℃),随放电电流的不同,电池端电压与放电时间的关系称为放电曲线。
由放电曲线可以看出如下特性:(1)放电时间最长的曲线,放电时间为10小时,电流恒定,我们称之为10小时放电率曲线,由此测定的电池容量用C10表示C10=6A×10h=60Ah如果用1小时恒流放电来测定这同一只电池,则C1=41.9A×1h=41.9Ah由此可见电池的容量是在标定了放电制式之后才是一个可比的确定值。
(2)无论放电电流大小,在放电的初始阶段都会使端电压下降较多,然后略有回升的现象,这是因为电池从充电状态转变为放电状态的瞬间,电池极板附近的电荷快速释放出来,而离极板较远的电荷需要逐渐运送到极板附近,然后才能释放出来,这个过程形成了电池端电压有较大的低谷。
(3)无论放电电流大小,电池端电压最终将出现急剧下降的拐点,以这些曲线的拐点连接得到的曲线就称为安全工作时的终止电压曲线,UPS的电池电压工作终点都是设计在这条拐点曲线附近的。
拐点之后的曲线具有电压急剧下降的趋势,直到放电曲线的终点,这些终点连接得到的曲线称为最小终止电压曲线,它表示放电电压低于此曲线后将造成电池的永久性失效,即电池不能再恢复储电能力。
由此可见UPS中设计有防止电池深度放电的保护功能是极为必要的。
2、电池的充电特性电池的充电特性曲线也是在25℃温度下测量和标度的(见图2)。
充电曲线通常有三条:(1)充电电流曲线:在充电开始阶段,充电电流是一个恒定值,随着充电时间的推移,充电电流逐渐下降,并最终趋于0。
这是由于在放电过程中,电池内的电荷大量流失,由放电转变为充电时,电荷的增长速度较快,化学反应将产生大量的气体和热量,对于密封电池来说,即使通过安全阀可以将气体和热量排放掉,但氢离子和水将同时损失掉,使电池的储能下降,因此必须限定充电的电流值,随着电池容量的恢复,充电电流将自动下降。
铅酸电池知识

铅酸蓄电池的电压与充电放电特性一、铅酸蓄电池的电动势和开路电压1、电动势定义电池在开路时,正极平衡电极电势与负极平衡电极电势之差,由电池中进行的反应所决定,与电池的形状、尺寸无关。
电动势表达式为:E=Eθ+RT/nFlna(H2SO4)/a(H2O)式中 E——电池电动势;Eθ——所有反应物的活度或压力等于1时的电动势,称为标准电动势(V);R——摩尔气体常数,为8.3J/(Kmol);T——温度(K);F——法拉弟常数(96500C/mol);n——电化学反应中的电子得失数目。
电动势是电池在理论上输出能量大小的量度之一,如果其它条件相同,电动势愈高的电池,理论上能输出的能量就愈大,实用价值就愈高。
2、电动势的产生电动势也等于组成电池的两个电极的平衡电势之差,即E=φe,+-φe,-,式中φe即为平衡电极电势。
电极电势的产生,与建立双电层有关。
将一金属电极插入含有该金属离子的溶液中,由于该离子在金属中与溶液中的化学势不同,因而发生金属离子在电极与溶液之间的转移。
在静电力作用下,这种转移很快达到动态平衡。
这时电极表面所带电荷符号与电极表面附近溶液层中离子所带电荷符号相反,数量相等,于是在电极与溶液的界面处形成双电层,对应于双电层的建立,电极和溶液间便产生一定的电势差,称为平衡电极电势。
电极电势的符号和数值取决于金属的种类和溶液中离子的浓度。
电极电势φe实际上由两部分组成,即紧密层电势和分散层电势。
3、开路电压电池在开路状态下的端电压即开路电压,也是两极的电极电势之差,但不是平衡电势,而是稳定电势或混合电势之差。
理论上,电池的开路电压不等于电动势,但数值上可能要接近。
铅酸蓄电池的电动势的电动势是硫酸浓度的函数。
开路电压也是硫酸浓度的函数。
电池的开路电压与电解液密度的关系可用下式计算:开路电压=d+0.85式中d——在电池电解液的温度下,电解液的密度(g/cm3)4、稳定电势的建立电极金属离子与溶液中金属离子间建立的动态平衡Me—2e Me2+ (1)它只是一种理想状况,如上述平衡电极电势的建立。
72v20ah铅酸放电电流

72v20ah铅酸放电电流摘要:1.72v20ah 铅酸放电电流的概念2.72v20ah 铅酸放电电流的计算方法3.72v20ah 铅酸放电电流的应用4.72v20ah 铅酸放电电流的注意事项正文:72v20ah 铅酸放电电流的概念:铅酸蓄电池是一种常用的蓄电池类型,广泛应用于各种电子设备和电力系统中。
其中,72v20ah 是铅酸蓄电池的一种规格,表示该蓄电池的额定电压为72V,额定电能为20Ah。
放电电流是指在放电过程中,蓄电池所能提供的电流。
72v20ah 铅酸放电电流的计算方法:根据公式:放电电流=电能/时间,我们可以计算出72v20ah 铅酸放电电流。
其中,电能的单位是安时(Ah),时间的单位是小时(h)。
将72V 和20Ah 代入公式,得到放电电流=20Ah/1h=20A。
这意味着,一个72v20ah 的铅酸蓄电池在放电过程中,最大能提供20 安培的电流。
72v20ah 铅酸放电电流的应用:72v20ah 铅酸放电电流在许多领域都有应用,例如:1.电子设备:如UPS(不间断电源)、应急照明系统等,这些设备需要有稳定的电源供应,以保证设备正常运行。
2.电力系统:在电力系统中,蓄电池组可以作为备用电源,以应对突发的电力故障。
3.交通运输:在电动汽车、电动自行车等交通工具中,铅酸蓄电池作为动力来源,提供驱动电机所需的电流。
4.通信设备:在通信系统中,如电话交换机、无线电发射塔等,铅酸蓄电池可作为备用电源,确保通信设备在停电时仍能正常工作。
72v20ah 铅酸放电电流的注意事项:1.在使用铅酸蓄电池时,应确保其放电电流不超过最大放电电流,以避免过载导致电池损坏。
2.充电时,应控制充电电流,避免过大的充电电流导致电池过热,影响电池寿命。
3.蓄电池应存放在通风、干燥的环境中,避免阳光直射和潮湿环境,以延长电池使用寿命。
什么是铅酸蓄电池的容量如何计算

1、什么是铅酸蓄电池的容量如何计算?在规定的条件下,完全充电的蓄电池能够提供的电量,通常用安时(Ah)表示。
容量=单格正极板片数×单片极板的容量。
2、铅酸蓄电池电解液主要成分是什么?是硫酸和蒸馏水(或去离子水)的混合物。
3、日常饮用的纯净水是否可用于蓄电池使用?不能应用因日常人们所饮用的纯净水其杂质含量远远高于蓄电池用水要求,只是水中的某些元素对人体有益而细菌泥沙较少。
蓄电池用水应达到JB/T10053—1999标准要求。
4、铅蓄电池充电方法有那些?主要有恒流充电、恒压充电、恒流限压充电、均衡充电、浮充电和脉冲快速充电等。
5、铅蓄电池的电解液密度与开路电压有什么关系?开路电压=0.85+电解液密度(经验公式)6、铅蓄电池的极板容量取决于什么?主要取决于正、负极板活性物质的量。
7、铅蓄电池的正、负极板的主要成分是什么?正极板活性物质主要成分是二氧化铅,负极板活性物质主要成分是海绵铅。
8、铅蓄电池电解液密度与百分含量如何换算?在25℃时密度1.25g/㎝3的硫酸电解液重量百分数约为33.5%,密度1.28g/㎝3的硫酸电解液重量百分数约为37.3%,密度1.30g/㎝3的硫酸电解液重量百分数约为39.5%,密度1.40g/㎝3的硫酸电解液重量百分数约为50.5%。
9、铅蓄电池充电时为什么会发热?蓄电池在充电过程中,电能一部分转变为化学能,还用一部分转变为热能和其他能量。
充电电池发热属于正常现象,但是温度较高时就应及时检查充电电流是否过大或者电池内部发生短路等,发热量与电解液量关系较小,如是密封电池电解液量较少时内阻增大,也会引起电池生温并且充电时端电压很高。
10、铅蓄电池充电时为什么会有刺激性气味?蓄电池在充电过程中,电池内部产生的硫酸蒸汽、水蒸气、氢气和氧气等混合物质逸出扩散到空气中,便会使人感觉道有刺激性气味。
11、什么是铅蓄电池浮充电、均衡充电?浮充电:当正常供电中断时给电路供电的蓄电池。
铅酸蓄电池工作原理

铅酸蓄电池工作原理铅酸蓄电池工作原理铅酸蓄电池正极活性物质是二氧化铅,负极活性物质是海绵铅,电解液是稀硫酸溶液,其放电化学反应为二氧化铅、海绵铅与电解液反应生成硫酸铅和水,Pb(负极)+PbO2(正极)+2H2SO4====2PbSO4+2H2O(放电反应)其充电化学反应为硫酸铅和水转化为二氧化铅、海绵铅与稀硫酸。
2PbSO4+2H2O====Pb(负极)+PbO2(正极)+2H2SO4 (充电反应)铅酸蓄电池单格额定电压为2.0V,一般串联为6V、12V用于汽车、摩托车启动照明使用,单体电池一般串联为48V、96V、110或220V用于不同场合。
电池内正、负极板间采用电阻极低、杂质少成分稳定离子能通过的橡胶、PVC、PE或AGM隔板。
免维护蓄电池的特点免维护蓄电池与普通铅蓄电池的最大区别是极板材料不同。
不仅改善了使用性能,还延长了使用寿命和储存寿命。
(1)免维护蓄电池失水量少,使用中一般不需添加蒸馏水。
(2)免维护蓄电池的栅架采用的是铅钙合金,特点是晶粒较细,耐腐蚀,不易形成微电池,自行放电量小。
(3)免维护蓄电池有集气室和新型的通气装置,可避免水分散失,有效的防止酸气外逸,从而很大程度的降低了硫酸气对极桩连接件的腐蚀。
(4)免维护蓄电池的起动电流比普通铅蓄电池大,起动性能好,一方面是由于铅钙合金的导电性能比铅锑合金好,蓄电池内阻小,输出电流大;另一方面是由于免维护蓄电池采用内连式连接,缩短了连线长度,功率损失小,放电电压高。
(5)免维护蓄电池采用铅钙合金制作栅架,增加了机械强度,提高了耐充性,还有效的防止活性物质脱落,提高了使用寿命。
两类阀控式密封铅蓄电池的比较当今阀控式密封铅蓄电池有两类,即分别采用玻璃纤维隔板和硅凝胶二种不同方式来“固定”硫酸电解液。
它们都是利用阴极吸收原理使电池得以密封的,但给阳极析出的氧到达阴极提供的通道是不同的,因而二种电池的性能各有千秋。
1 历史的简单回顾铅酸蓄电池从问世到如今,一直是军用民用领域中使用最广泛的化学电源。
铅酸蓄电池的反应方程式

铅酸蓄电池的反应方程式
铅酸蓄电池是一种常见的蓄电池类型,主要由正极的过氧化铅(PbO2)、负极的铅(Pb)以及电解液的稀硫酸(H2SO4)组成。
在充电和放电过程中,铅酸蓄电池会发生化学反应。
在充电状态下,铅酸蓄电池的反应方程式为:
正极,PbO2 + H2SO4 + 2H+ + 2e→ PbSO4 + 2H2O.
负极,Pb + H2SO4 → PbSO4 + 2H+ + 2e-。
总反应,PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O.
在放电状态下,铅酸蓄电池的反应方程式为:
正极,PbO2 + 4H+ + SO4^2+ 2e→ PbSO4 + 2H2O.
负极,Pb + SO4^2→ PbSO4 + 2e-。
总反应,PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O.
这些反应方程式描述了铅酸蓄电池在充电和放电过程中正极和
负极之间的化学反应。
在充电状态下,电流通过电池,将PbO2还原
为PbSO4,同时将Pb氧化为PbSO4。
在放电状态下,化学反应相反,PbSO4被还原为Pb和PbO2,同时硫酸根离子也参与了反应。
这些反
应是铅酸蓄电池能够存储和释放能量的基础。
铅酸蓄电池充放电原理

铅酸蓄电池充放电原理铅酸蓄电池是一种常见的化学电源,广泛应用于汽车、UPS、太阳能等领域。
本文将详细介绍铅酸蓄电池的充放电原理。
一、铅酸蓄电池的基本结构铅酸蓄电池由正极、负极、电解液和容器四部分组成。
其中,正极是由过氧化铅和氧化铅混合物制成的;负极是由纯铅制成的;电解液是硫酸溶液;容器则是用塑料或玻璃制成的。
二、充电过程1.正极反应在充电过程中,正极发生如下反应:PbO2 + H2SO4 + 2e- → PbSO4 + 2H+ + O2↑即:过氧化铅与硫酸溶液反应,生成硫酸铅和氧气。
2.负极反应同时,负极也发生如下反应:Pb + H2SO4 → PbSO4 + 2H+ + 2e-即:纯铅与硫酸溶液反应,生成硫酸铅和氢离子。
3.整体反应将以上两个反应相加,得到整体反应式:PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O即:充电过程中,铅酸蓄电池的正极和负极均转化为硫酸铅,同时放出氧气和氢离子。
三、放电过程1.正极反应在放电过程中,正极发生如下反应:PbO2 + 3H+ + SO4^2- + 2e- → PbSO4 + 2H2O即:过氧化铅与硫酸溶液中的氢离子和硫酸根离子反应,生成硫酸铅和水。
2.负极反应同时,负极也发生如下反应:Pb + SO4^2- → PbSO4 + 2e-即:纯铅与硫酸根离子反应,生成硫酸铅和电子。
3.整体反应将以上两个反应相加,得到整体反应式:PbO2 + Pb + 2H2SO4 → 2PbSO4 + 2H2O即:放电过程中,铅酸蓄电池的正极和负极均转化为硫酸铅,并释放出水分子。
四、总结铅酸蓄电池的充放电原理比较简单,主要是通过正极和负极的化学反应来实现电能的转化。
在充电过程中,正极和负极均转化为硫酸铅,并放出氧气和氢离子;在放电过程中,则相反,正极和负极均转化为硫酸铅,并释放出水分子。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
铅酸蓄电池放电计算
铅酸蓄电池放电计算是指在知道铅酸蓄电池的容量和电流下,计算出放电时间和放电效率的过程。
首先,铅酸蓄电池的容量通常用安时(Ah)来表示,表示电池能够供给一定电流下工作的时间。
电流则是电池放电时的电流,通常用安培(A)来表示。
放电时间的计算方法:将铅酸蓄电池的容量除以放电电流,即可得到电池的放电时间。
例如,一个12V、100Ah的铅酸蓄电池,放电电流为10A,那么它的放电时间为100/10=10小时。
放电效率的计算方法:放电效率是指电池实际输出的电能与理论输出电能之比,通常用百分比表示。
放电时,电池内部会产生一定的损耗,使得实际输出电能小于理论输出电能。
其计算公式为:放电效率=实际输出电能/理论输出电能×100%。
其中,实际输出电能等于电池的容量乘以电池的开路电压(即电池未接负载时的电压);理论输出电能等于放电时间乘以放电电流再乘以电池的平均电压(即电池在放电过程中电压的平均值)。
例如,一个12V、100Ah的铅酸蓄电池,放电电流为10A,放电时间为10小时,电池的开路电压为13V,在放电过程中电池电压从12V降到10V,那么它的放电效率为(100×13)/(10×12×10)×100%=108.33%。
这个结果可能看起来不符合常理,但是因为在实际放电过程中电池内部会产生一定的电化学反应,使得电池的总能量增加,所以导致放电效率大于100%。
- 1 -。