羟基磷灰石-氧化锆生物复合材料制备与性能研究

合集下载

羟基磷灰石研究进展

羟基磷灰石研究进展

羟基磷灰石研究进展摘要:由于羟基磷灰石( HA) 不但与人体骨骼晶体成分和结构基本一致,而且其生物相容性、界面生物活性均优于医用钛、硅橡胶及植骨用碳材料等植入医用材料,另外有极好骨传导性和与骨结合的能力, 无毒副作用, 无致癌作用,所以被广泛用作硬组织修复材料和骨填充材料的生理支架以及疾病、意外事故中的骨修复材料。

同时,羟基磷灰石具有良好的生物活性,具有特殊的晶体化学特点,是较好的生物材料,被广泛应用于骨组织的修复与替代技术.目前,羟基磷灰石涂层的制备方法有等离子喷涂法、激光熔覆法、电结晶液相沉积法、溶胶-凝胶法等。

对于制备要求较高、具有表面活性的吸附材料羟基磷灰石而言,溶胶- 凝胶法是较为合适的方法,本文羟基磷灰石涂层进行了研究。

主要从羟基磷灰石的合成制备,复合材料涂层种类及HA涂层影响因素,应用等方面对羟基磷灰石进行介绍,并对其进行研究展望。

关键词:羟基磷灰石制备复合材料涂层研究进展前言羟基磷灰石是一种磷酸钙生物陶瓷, 与人体自然骨和牙齿等硬组织中的无机质在化学成分和晶体结构上具有相似性,是一类重要的骨修复材料,分子式为Ca10 ( PO4) 6 ( OH ) 2 , 简写为HA 或HAP,Ca/ P 物质的量比理论值为1. 67, 属磷酸钙陶瓷中的一种生物活性材料。

从分子结构( 如图1) 可以看出, 它易与周围液体发生离子交换。

HA 属六方晶系, 空间群为P63/m。

其结构为六角柱体, 与c轴垂直的面是一个六边形, a、b 轴的夹角为120 °, 晶胞常数a= b= 9. 324 A , c= 6. 881A 。

单位晶胞含有10 个[ Ca]2+、6个[ PO4]3-和2个[ OH]-, 这样的结构和组成使得H A 具有较好的稳定性。

磷灰石是自然界广泛分布的磷酸钙盐矿物,根据其结构通道中存在的阴离子的种类,可分为氟-、氯-、羟磷灰石等不同亚种矿物。

其中,羟基磷灰石(hydroxyapatite,缩写为HA或HAp)的研究和应用最广泛。

羟基磷灰石生物复合材料的研究进展

羟基磷灰石生物复合材料的研究进展

万方数据・70・材料导报:综述篇2010年8月(上)第24卷第8期未分化间充质细胞和骨母细胞分化为成骨细胞和软骨细胞,从而诱导骨和软骨的形成K]。

但由于BMP在体内扩散快,易被蛋白酶分解,无支架和填充作用,目前多使用载体与其结合,形成BMP缓释系统。

目前,具有骨传导作用的多孔型羟基磷灰石材料与具有诱导异位成骨作用的BMP复合制成的HA—BMP已进行动物实验。

Magin等¨。

研究rhBMP7(成骨蛋白1)复合羟基磷灰石后发现,羟基磷灰石复合rhBMP7可诱导更多的骨形成。

KubokiL73证实多孔状羟基磷灰石中0.35mm孔径可直接诱导骨形成。

但羟基磷灰石不易完全降解,影响进一步吸收。

Tao等№o对一种新型HA—BMP复合人工听小骨的临床应用效果进行评价,结果显示,新型HmBMP复合人工听小骨具有良好的生物相容性和优异的传音性能,术后成功率为92.3%,随访均未见听骨脱出。

充分表明HA—BMP复合材料明显优于自体组织,临床应用效果稳定,具有广阔的应用前景。

图1羟基磷灰石的晶体结构及(0001)面的投影[21Fig.1Crystalstructureofapatiteandprojectionontothe(0001)plane[2]蚕丝蛋白(丝素)及其纤维由于具有优异的力学特性、生物相容性、生物可降解性以及本质是蛋白质的结构特点,在生物医学领域表现出极大的应用潜力,是近年来医学组织工程感兴趣的一类特殊的生物材料。

卢神州等[9]以羟基磷灰石/丝素蛋白复合凝胶为基体,以蚕丝短纤维和NaCI颗粒作为增强材料和致孔剂,制备羟基磷灰石/丝素蛋白多孔复合材料,结果表明,材料中含有少量蚕丝短纤维对材料抗弯强度和断裂能力的提高有显著效果。

2.1.2多元体系的复合骨修复是一个极其复杂有序的过程。

近年的研究表明,生长因子在骨愈合过程中起重要作用。

骨形态发生蛋白(BMP)是骨生长的启动因子,对骨愈合有明显促进作用。

羟基磷灰石的制备,实验报告

羟基磷灰石的制备,实验报告

羟基磷灰石的制备,实验报告实验报告实验名称:纳米羟基磷灰石的制备与表征一、实验目的了解纳米羟基磷灰石的制备及其性质,熟悉其表征方法,了解相关原理和操作流程。

二、实验原理羟基磷灰石,又称羟磷灰石,是钙磷灰石(Ca5(PO4)3(OH))的自然矿物化。

羟基磷灰石(HAP)是脊椎动物骨骼和牙齿的主要组成,人的牙釉质中羟基磷灰石的含量在96%以上。

羟基磷灰石具有优良的生物相容性,并可作为一种骨骼或牙齿的诱导因子,在口腔保健领域中对牙齿具有较好的再矿化、脱敏以及美白作用。

实验证明HAP粒子与牙釉质生物相容性好,亲和性高,其矿化液能够有效形成再矿化沉积,阻止钙离子流失,解决牙釉质脱矿问题,从根本上预防龋齿病。

含有HAP材料的牙膏对唾液蛋白、葡聚糖具有强吸附作用,能减少患者口腔的牙菌斑,促进牙龈炎愈合,对龋病、牙周病有较好的防治作用。

以Ca(N03)2.4H2O NH4H2 PO4 为原料,采用化学沉淀法制备HA,CA/P=1.67三、仪器与试剂材料:Ca(N03)2 4H2O 、NH4H2 PO4 、氨水仪器:磁力搅拌机四、实验步骤(1).称取6.9g 磷酸氢二铵和23.6g 硝酸钙。

(2)溶入250ml的蒸馏水中,硝酸钙用1000ml烧杯,磷酸氢二铵溶入250ml蒸馏水,用氨水分别调节PH值10-11。

(3)将磷酸氢二铵滴加到硝酸钙溶液中,控制滴加速度和搅拌速度,反应过程中检测反应的PH值以便及时做出调整。

(4)溶液滴加完后,继续搅拌加热维持1h,反应结束后陈化8h,薄膜覆盖烧杯口。

(5)蒸馏水清洗至中性,40。

C下干燥,研磨成粉状。

五、数据处理表征红外谱图1图1是HA标准红外光谱图。

HA有两个阴离子基团,P043-四面体阴离子基团和OH-基团。

图中P043-的吸收谱线571、602、963、1050和1089cm-1都出现了,OH-基团的谱线则出现在631、3570 cm-1处,证明所制备的晶体是HA晶体。

生物陶瓷材料的合成与性能优化

生物陶瓷材料的合成与性能优化

生物陶瓷材料的合成与性能优化生物陶瓷材料作为一种在医学领域得到广泛应用的材料,具有优异的生物相容性和生物活性,被广泛用于骨修复、组织工程和牙科等领域。

在这篇文章中,我们将讨论生物陶瓷材料的合成方法和性能优化的相关研究。

一、生物陶瓷材料的合成方法1.1 传统合成方法传统的生物陶瓷材料如羟基磷灰石(HA)和氧化锆等通常采用固相反应或溶胶-凝胶法进行合成。

固相反应法一般需要高温下进行,其合成过程较为复杂且存在晶粒长大和硬度不稳定等问题;而溶胶-凝胶法则能够在较低温度下制备出纳米级生物陶瓷材料,但其制备过程较为繁琐且易受到杂质的影响。

1.2 新兴合成方法随着纳米技术的发展,越来越多的新兴合成方法被应用于生物陶瓷材料的制备。

例如,水水热法能够在水溶液中制备出纳米级的生物陶瓷材料,其反应过程温和,能够控制晶粒尺寸和分布。

此外,还有电化学法、微波辐射法等新兴方法也被用于生物陶瓷材料的制备,这些方法能够提高材料的纯度和均匀性。

二、生物陶瓷材料的性能优化2.1 改变组成比例改变生物陶瓷材料的组成比例是优化其性能的重要方法之一。

例如,在HA材料中,通过将其与其他陶瓷材料如二氧化锆等进行复合,能够提高材料的力学性能和生物活性。

此外,还可以调整材料的摩尔比例,以改变其化学、物理性能,如溶解度、抗磨性等。

2.2 表面改性生物陶瓷材料的表面改性是优化其性能的另一个关键方法。

通过在材料表面修饰有机功能分子、纳米级材料等,能够提高其生物相容性和降低细胞黏附,从而改善材料与组织的接触性能。

此外,利用表面改性还可以增加材料的抗氧化性能、耐腐蚀性能等。

2.3 纳米技术应用纳米技术在生物陶瓷材料的性能优化中发挥了重要作用。

通过将纳米材料嵌入到生物陶瓷材料的矩阵结构中,能够增加材料的韧性、抗弯强度等力学性能。

此外,纳米级生物陶瓷材料还能够增加其比表面积,提高生物活性。

2.4 仿生学设计仿生学设计是一种通过模仿生物体内天然材料的结构和性能来优化生物陶瓷材料的方法。

羟基磷灰石纳米线基环境功能材料的制备与性能研究

羟基磷灰石纳米线基环境功能材料的制备与性能研究

羟基磷灰石纳米线基环境功能材料的制备与性能研究羟基磷灰石纳米线基环境功能材料的制备与性能研究一、引言在当前环境问题日益突出的背景下,开发和研究具有环境功能的材料成为了科学界和工程界的重要研究方向。

羟基磷灰石纳米线作为一种新型纳米材料,具有优异的生物相容性和生物活性,并且有着高比表面积和可调控的形貌结构等特点。

因此,以羟基磷灰石纳米线为基础的环境功能材料的研究与制备是近年来的热点之一。

二、制备方法羟基磷灰石纳米线的制备方法可以通过溶胶-凝胶法、水热法、生物模板法等多种方法进行。

以溶胶-凝胶法为例,首先将适量的钙源和磷酸源溶解在适当的溶剂中,形成溶液。

然后将溶液进行超声处理,以消除其中的气泡。

将所得溶液进行搅拌,使之充分混合,形成明亮透明的溶胶。

接下来,将溶胶进行快速凝胶化处理,形成胶体。

最后,将胶体进行干燥处理,并进行退火处理,即可得到羟基磷灰石纳米线。

三、性能研究1. 生物相容性与生物活性研究表明,羟基磷灰石纳米线具有良好的生物相容性和生物活性。

生物相容性是指材料在生物体内引起的组织反应和对生命体的损害程度。

生物活性是指材料与生物体相互作用时所引起的生化和生物学反应。

羟基磷灰石纳米线可以与人体细胞进行良好的相容性和相互作用,且能够促进骨细胞的增殖和骨组织的再生。

2. 环境吸附功能羟基磷灰石纳米线具有高比表面积和可调控的形貌结构,因此在环境吸附功能方面有很大的潜力。

在环境污染物处理中,通过调控羟基磷灰石纳米线的表面性质和孔隙结构,可以实现对重金属离子、有机物和放射性元素等污染物的高效吸附和去除。

3. 光催化性能羟基磷灰石纳米线还具有良好的光催化性能。

该材料可以通过吸收光能产生电子-空穴对,并借助其表面的羟基和氧化还原活性位点,实现有机物的降解和水的净化等环境应用。

四、应用前景随着环境问题的日益严重,羟基磷灰石纳米线基环境功能材料具有广阔的应用前景。

其在水处理、废水处理、空气净化、土壤修复等领域的应用上有着巨大的潜力。

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究

羟基磷灰石的制备及应用研究羟基磷灰石是目前应用最广泛的生物材料之一。

因其良好的生物相容性和生物活性,在骨科和牙科领域得到了广泛的应用。

本文将就羟基磷灰石的制备及应用进行研究和探讨。

1.羟基磷灰石的制备羟基磷灰石的制备主要有湿法合成和干法合成两种方法。

其中湿法合成又包括共沉淀法、溶胶-凝胶法、水热法等几种方法。

而干法合成主要有高能球磨法等方法。

1.1 湿法合成共沉淀法:羟基磷灰石的共沉淀法制备过程中利用钙、磷两个离子在一定条件下共沉淀作用,形成了羟基磷灰石。

共沉淀法具有制备工艺简单,反应速度快等优点。

但是其产品具有较大的晶体粒径和不稳定等缺陷。

溶胶-凝胶法:在溶胶-凝胶法制备羟基磷灰石过程中,通过到达成熟态的化学缓慢水解发生反应,羟基磷灰石在凝胶中形成。

该方法得到的羟基磷灰石晶体粒度分布小,晶体形态好,内部结构均匀致密等优点。

但是该方法的制备过程复杂,且需要较长时间,成本较高。

水热法:在水热法制备羟基磷灰石过程中,通过水热反应来形成羟基磷灰石。

该方法具有制备工艺简单等优点。

但是制备效率较低且羟基磷灰石的结晶度较低,易形成杂多晶和非晶态。

1.2 干法合成高能球磨法:在高能球磨法制备羟基磷灰石过程中,通过高能钨钢球的强制研磨来形成羟基磷灰石。

该方法具有制备简单,易于大规模生产等优点。

但是制备过程中需要严格控制球的大小,否则会影响羟基磷灰石的晶体粒度和分布。

2.羟基磷灰石的应用2.1 骨科领域羟基磷灰石可作为一种生物陶瓷,应用于骨科领域。

其良好的生物相容性和生物活性使得其能够与人体骨组织相容性良好。

在人工骨替代和组织修复中,羟基磷灰石能够促进骨细胞的生长和分化,提高骨修复的质量。

2.2 牙科领域在牙科领域,磷酸羟基磷灰石可以用于制备牙科修补材料,其生物相容性好,与人体牙齿组织具有相似的化学成分和物理性质。

磷酸羟基磷灰石的应用还可以提高口腔修复质量。

3.羟基磷灰石的未来展望随着骨科和牙科行业的飞快发展,羟基磷灰石的应用范围也在不断扩大。

羟基磷灰石的制备及表征【可编辑范本】

羟基磷灰石的制备及表征【可编辑范本】

羟基磷灰石的制备及表征一、实验目的1。

掌握纳米羟基磷灰石的制备及原理2.了解羟基磷灰石的表征方法及生物相容性二实验原理羟基磷灰石(hydrrosyapatite,HAP)分子式为Ca10(PO4)6(OH)2是自然骨无机质的主要成分,具有良好的生物相容性和生物活性,可以引导骨的生长,并与骨组织形成牢固的骨性结合。

HAP是生物活性陶瓷的代表性材料,生物活性材料是指能够在材料和组织界面上诱导生物或化学反应,使材料与组织之间形成较强的化学键,达到组织修复的目的。

HAP在组成上与人体骨的相似性,使HAP与人体硬组织以及皮肤、肌肉组织等都有良好的生物相容性,植入体内不仅安全、无毒,还能引导骨生长,即新骨可以从HAP植入体与原骨结合处沿着植入的体表面或内部贯通性空隙攀附生长,材料植入体内后能与骨组织形成良好的化学键结合。

HAP主要的生物学应用作骨组织代替材料,磷酸钙类生物陶瓷材料在临床应用中遇到的最大困难之一是材料强度差,尤其是韧性低,且机械可加工性差,导致其在临床应用中受到了极大的限制。

为了改善HAP陶瓷的脆性和强度问题,一般会在其中添加ZrO2和碳纤维或是Al2O3和玻璃等物质进行增韧.纳米级羟基磷灰石的制备方法很多,主要分为固相法和液相法两大类。

固相法合成在一定条件下(高温、研磨)让磷酸盐与钙盐充分混合发生固相反应,合成HAP粉末.液相法合成是在水液中,一磷酸盐和钙盐为原料,在一定条件下发生化学反应,生成溶解度较小的HAP晶粒,包括化学沉淀法.水热合成法、溶胶-凝胶法、自然烧法、微乳液法、微波法等。

化学沉淀法因具有实验条件要求不高、反应容易控制,适合制备纳米材料等优点从而得到广泛应用。

沉淀法通常是在溶液状态下将不同化学成分的物质混合,在混合溶液中加入适量的沉淀剂得到纳米材料的前驱沉淀物,再将此沉淀物结晶进行干燥或煅烧制得相应的纳米材料。

金属离子在沉淀过程是不平衡的,需要控制溶液中的沉淀剂的浓度,使沉淀过程缓慢发生,才会使溶液中的沉淀处于平衡状态,使沉淀能均匀的出现在整个溶液中。

羟基磷灰石的制备与应用研究

羟基磷灰石的制备与应用研究

羟基磷灰石的制备与应用研究1.引言羟基磷灰石(HA)是一种广泛应用于医学领域的生物材料,具有与骨骼组织相似的化学成分和结构。

因此,HA材料被广泛应用于骨修复、植入物、药物缓释等领域。

本文旨在介绍羟基磷灰石的制备方法和应用研究。

2.羟基磷灰石的制备2.1 化学合成法化学合成是制备HA材料的一种常用方法。

主要步骤包括磷酸和Ca(OH)2的反应,生成磷酸钙沉淀物,进一步反应形成HA。

其中,磷酸和Ca(OH)2的摩尔比例是重要的,影响着HA的形态和结构。

2.2 热沉淀法热沉淀法是一种常用制备HA材料的方法。

该方法主要步骤包括磷酸和CaCl2混合并调节pH值,然后在高温条件下使其反应生成HA。

这种方法可以制备出具有大量孔隙和高比表面积的HA材料。

2.3 生物制备法生物制备法是利用微生物、植物、动物等生物体通过其生理代谢产生的有机酸或其他物质来制备HA材料。

这种方法制备的HA 材料更具有生物相容性,并且制备成本更低。

3.羟基磷灰石的应用研究3.1 骨科材料由于HA与骨骼结构相似,因此它是一种在骨科领域广泛应用的生物材料。

HA材料可以用于骨修复、骨填充、植入物等领域。

HA材料具有生物相容性高、吸附能力好、力学性能良好等优点,已经成为骨科领域的重要材料。

3.2 药物缓释HA材料具有很好的生物相容性和化学稳定性,可以被用于药物缓释领域。

HA材料的微孔可以吸附药物,然后缓慢释放出来。

这种方法可以使药物在缓慢释放的过程中保持其活性,同时也可以延长药物的作用时间。

3.3 医用传感器HA材料也可以作为医用传感器的基础材料。

许多现代医疗设备和技术都需要传感器来搜集医学数据。

利用HA材料的导电性能特点,可以研制出具有高灵敏度、稳定性和生物相容性的传感器。

4.总结羟基磷灰石是一种具有广泛应用的生物材料,目前已经在医药领域得到了广泛的应用。

本文介绍了HA材料的制备方法和应用研究,展示了它的潜力和前景。

HA材料在医疗领域中将继续发挥重要作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

羟基磷灰石-氧化锆生物复合材料制备与性能研究
羟基磷灰石/氧化锆生物复合材料制备与性能研究
引言:
随着生物医学领域的快速发展,生物复合材料作为一种功能性材料在骨组织工程、生物医学和牙科等领域得到广泛应用。

羟基磷灰石(HAP)是一种常见的骨组织工程材料,而氧化锆(ZrO2)因其优异的生物相容性和机械性能而被广泛研究。

将HAP与ZrO2制备成生物复合材料,不仅可以综合两者的优点,还可以改善各自的缺点。

本文旨在介绍羟基磷灰石/氧化锆生
物复合材料的制备方法以及其性能研究。

方法:
1. 材料制备:
根据预期的复合材料性能,选择合适的HAP和ZrO2粉末,并进行表面处理以提高材料的附着力。

常用的表面处理方法有等离子喷涂、离子交换等。

2. 复合材料制备:
将经过表面处理的HAP和ZrO2混合均匀,并加入适量的有机胶粘剂,形成可压制成型的复合材料。

通过压制和烧结过程得到最终的复合材料。

结果与讨论:
1. 组织结构:
利用扫描电子显微镜(SEM)观察复合材料的组织结构。

结果显示,HAP和ZrO2颗粒均匀分布在复合材料的基质中,形
成致密的微观结构。

2. 物理性能:
对复合材料的力学性能进行测试,包括硬度、抗压强度和
断裂韧性等。

实验结果显示,羟基磷灰石/氧化锆生物复合材料具有较高的硬度和抗压强度,符合骨组织工程和牙科材料的要求。

3. 生物相容性:
将复合材料与生物体接触,观察其生物相容性。

实验结果显示,羟基磷灰石/氧化锆生物复合材料具有良好的生物相容性,不会引起免疫反应或组织排斥现象。

4. 生物活性:
利用细胞培养实验评估复合材料的生物活性。

结果显示,羟基磷灰石/氧化锆生物复合材料能促进细胞的黏附和增殖,具有良好的生物活性。

结论:
本研究成功制备了羟基磷灰石/氧化锆生物复合材料,并对其性能进行了详细研究。

结果表明,该复合材料具有优异的力学性能、良好的生物相容性和生物活性,有望在骨组织工程和生物医学领域得到广泛应用。

进一步的研究可以探索复合材料的制备参数优化和应用扩展,为生物医学领域的材料研究提供新的思路和方法
本研究成功制备了羟基磷灰石/氧化锆生物复合材料,并对其组织结构、物理性能、生物相容性和生物活性进行了详细研究。

结果显示该复合材料具有致密的微观结构、较高的硬度和抗压强度,符合骨组织工程和牙科材料的要求。

此外,复合材料表现出良好的生物相容性,不会引起免疫反应或组织排斥现象,并且能促进细胞的黏附和增殖。

因此,该羟基磷灰石/氧化锆生物复合材料在骨组织工程和生物医学领域有很大的应
用潜力。

未来的研究可以进一步优化制备参数,并拓展其在生物医学领域的应用,为材料研究提供新的思路和方法。

相关文档
最新文档