2-1有界线性算子与线性泛函1

合集下载

线性泛函数知识点总结

线性泛函数知识点总结

线性泛函数知识点总结一、线性泛函数的基本概念1.1 线性泛函数的定义线性泛函数是指一个将向量空间中的向量映射到另一个向量空间中的函数,且满足线性性质。

设V和W是两个向量空间,如果一个函数T:V→W满足以下两个条件:1) 对于任意的向量x,y∈V,有T(x+y)=T(x)+T(y);2) 对于任意的向量x∈V和标量a,有T(ax)=aT(x);则函数T被称为V到W的线性泛函数。

1.2 线性泛函数的例子下面我们举几个线性泛函数的例子,以便更好地理解这个概念。

例1:设V是实数域上的n维向量空间,W是实数域上的m维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,...,xn)∈V,有T(x)=(x1^2,x2^2,...,xn^2)∈W。

显然,函数T满足线性性质,因此它是一个线性泛函数。

例2:设V是实数域上的3维向量空间,W是实数域上的2维向量空间,定义一个函数T:V→W,使得对于任意的向量x=(x1,x2,x3)∈V,有T(x)=(x1+x2,x2+x3)∈W。

同样地,函数T也满足线性性质,因此它也是一个线性泛函数。

1.3 线性泛函数的表示线性泛函数可以用矩阵来表示。

设V和W分别是n维和m维向量空间,选择它们的一组基{e1,e2,...,en}和{f1,f2,...,fm},则对于任意的向量x=(x1,x2,...,xn)∈V,有其在基{e1,e2,...,en}下的表达式为x=x1e1+x2e2+...+xnen,而对于任意的向量y=(y1,y2,...,ym)∈W,有其在基{f1,f2,...,fm}下的表达式为y=y1f1+y2f2+...+ymfm。

定义一个线性泛函数T:V→W,使得对于任意的向量x∈V,有T(x)=y∈W,则T的矩阵表示为一个m×n的矩阵A,其中A的第i列为T(ei)在基{f1,f2,...,fm}下的坐标表示,即A=[T(e1)|T(e2)|...|T(en)]。

线性泛函分析

线性泛函分析

线性泛函分析泛函分析的主要工作在于对积分方程而不是对变分法提供一个抽象的理论. 变分法领域里所需泛函的性质是相当特殊的,对一般的泛函并不成立.此外,这些泛函的非线性造成了困难,而这种困难对于包含在积分方程中的泛函和算子则是无关紧要的.在Schmidt ,Fischer ,Riesz 为积分方程解的理论作具体推广时,他们和其他一些人也同时开始了相应的抽象理论的研究.第一个试图建立线性泛函和算子的抽象理论的,是美国数学家E .H .Moore ,他从1906年开始这一工作. Moore 认识到,在有限多个未知数的线性方程的理论、无限多个未知数的无限多个线性方程的理论、以及线性积分方程的理论之间,有许多共同的地方.他因此着手建立一种称为“一般分析”(Generl Analysis)的抽象理论,它包含上述具体理论作为特殊情形.他用的是公理方法.我们将不叙述其细节,因为他的影响并不广,而且电没有获得很有效的方法.另外,他的符号语言很奇怪,使以后的人理解起来很困难.在建立线性泛函和算子的抽象理论的过程中,第一个有影响的步骤是由Erhard Sohmidt 和Frechet 在1907年采取的.Hilbert 在他的积分方程的工作中,曾经把一个函数看成是由它相应于某标准正交函数系的Fourier 系数给定的.这些系数以及在他的无穷多个变量的二次型理论中他所赋予这些x i 的值,都是使21n x ∑∞成为有限的序列{x n }.然而,Hilbort 并没有把这些序列看成空间中点的坐标,也没有用几何的语言,这一步是由Schmidt 和Frechet 采取的. 把每一个序列{x 。

}看成一个点,函数就被表现为无穷维空间的点.Sohmidt 不仅把实数而且把复数引入序列{x 0}中.这样的空间从此以后被称为Hilbort 空间.我们的叙述 按照Schmidt 的工作.Schmidt 的函数空间的元素是复数的无穷序列z ={z n },使得.21∞∑∞=<zp p Schmidt 引入记号;211⎭⎬⎫⎩⎨⎧∑∞=-p p p z z 来表示z ;z 后来就称为z 的范数(norm).按照Hilbert ,Sehmidt 用记号).,(,),(1-∞==∑z z z 所以z 表示z p p pωω(现在通用的记号是把)),(1p p p z 定义义z -∞=∑ωω.空间中两个元素z 和ω称为正交的,当且仅当.0,=⎪⎭⎫ ⎝⎛-ωz Schmidt ;接着证明了广义的Pythagoras 定理:如果z 1, z 2, …,z n 是空间的n 个两两正交的元素,则由∑==n p p z 1ω知 .212p n p z ∑==ω由此可推出n 个两两正交的元素是线性无关的.Schrnidt 在他的一般空间中还得到了Bessel 不等式:如果{z n }是标准正交元素的无穷序列,即ωδ而z z pq q p ,),(=-是任何一个元素,那末21,(-∞=∑p p z ω≤.2ω 此外,还证明了范数的Schwarz 不等式和三角不等式.元素序列{z n }称为强收敛于z ,如果z z n -趋向于0,而每个强Cauehy 序列,即每个使q p z z -趋于0 (当p ,q 趋于0时)的序列,可以证明都收敛于某一元素z ,从而序列空间是完备的.这是一条非常重要的性质.Schmidt 接着引进了(强)闭子空间的概念.他的空间H 的一个子集A 称为闭子空间,如果在刚才定义的收敛的意义下它是闭子集,并且是代数封闭的,后者意指,如果ω1与ω2是A 的元素,那末2211ωωa a +也是A 的元素,其中a 1,a 2是任何复数.可以证明这样的闭子空间是存在的,这只需取任何一个线性无关的元素列{z n },并取{z n }中元素的所有有限线性组合.全体这些元素的闭包就是一个代数封闭的子空间.现在,设A 是任一固定的闭子空间.Schmidt 首先证明,如果z 是空间的任一元素,则存在唯一的元素ω1和ω2,使得z =ω1+ω2,其中ω1属于A , ω2和A 正交,后者是指ω2和A 的每个元素正交(这个结果,今天称为投影定理;ω1就是z 在A 中的投影)进一步,,min 2z y -=ω 其中y 是A 的变动元素,而且极小值只在21.ωω时达到y =称为z 和A 之间的距离.在1907年,Schmidt 和Frechet 同时注意到,平方可和(Lebesgue 可积) 函数的空间有一种几何,完全类似于序列的Hilbert 空间. 这个类似性的阐明是在几个月之后,当时Riesz 运用在Lebesgue 平方可积函数与平方可和实数列之间建立一一对应的Riesz-Fischer'定理指出,在平方可和函数的集合L 2中能够定义一种距离,用它就能建立这个函数空间的一种几何. L 2中,定义在区间[a , b]上的任何两个平方可积函数之间的距离这个概念,事实上也是Frechet 定义的,他把它定义为(1) ⎰-b a dx x g x f ,)]()([2其中积分应理解为Lebesgue 意义下的;并且两个函数只在一个0测集上不同时就认为是相等的.距离的平方也称为这两个函数的平均平方偏差.f 和g 的内积定义为⎰=ba dx x g x f g f )()(),(. 使(f ,g) = 0的两个函数f 与g 称为是正交的.Schwarz 不等式 dx x g x f ba )()(⎰≤dx g dx fb a b a ⎰⎰22以及对平方可和序列空间成立的其他性质,都适用于函数空间.特别是,这类平方可和函数形成一个完备的空间.这样,平方可和函数的空间,同这些函数相应于某一固定的完备标准正交函数系的Fourier 系数所构成的平方可和序列的空间,可以认为是相同的.在提到抽象函数空间时,我们应重提一下Riesz 引入的空间L p (1<p<∞).这些空间对度量pb a p dx f f f f d 12121),(⎪⎭⎫ ⎝⎛-=⎰ 也是完备的.虽然我们很快就要考察抽象空间领域中的其他成就,但下一发展涉及泛函和算子.在刚才引述的对空间L 2的函数引进了距离的1907年的文章中,以及在同年的其他文章中, Frechet 证明了,对于定义在L 2的每一个连续线性泛函U(f),存在L 2中唯一的一个u(x),使得对L 2的每个f 都有⎰=ba dx x u x f f U .)()()( 这推广了Hadamard 1903年得到的一个结果.1909年Riesz 推广了这个结果,用Stieltjes 积分表示U(f),也就是⎰=ba x du x f f U ).()()(Riesz 自己还把这个结果推广到满足下面条件的线性泛函A:对L p 中所有的f)(f A ≤p ba p dx x f M /1)(⎥⎦⎤⎢⎣⎡⎰其中M 只依赖于A .这样,存在L q 中的一个函数a(x),在允许相差一个积分为0的函数的意义下是唯一的,使得对L p 中所有的f(2) ⎰=b a dx x f x a f U .)()()( 这个结果称为Riesz 表示定理。

第三章 线性算子与线性泛函

第三章 线性算子与线性泛函

证 明 : 用 X 表 示 R上 以 2 为 周 期 的 连 续 函 数 全 体 , 赋 予
范 数 || x || m ax{| x(t) |; t }, 那 么 X 是 一 Banach空 间 。
对 每 个 x X , 其 F - 级 数 的 前 n + 1 项 的 部 分 和 记 为( S n x )(t )。
n
精品课件
共鸣定理的应用
• 1.机械求积公式的收敛性 • 2. Lagrange插值公式的发散性定理:差值
多项式作为连续函数的近似表达时,插值 点的无限增多不能更好的逼近插值函数。 • 3. Fourier级数的发散性问题:存在连续 的周期函数,其Fourier级数在给定点发散。
精品课件
1.机 械 求 积 公 式 的 收 敛 性
如果 fn 在X的每点x处有界, 那么 fn一品课件
定理2.设X,Y都是Banach空间,则B(X,Y)在强收敛意义下是
完备的。
定理3:设X是赋范线性空间,Y是Banach空间, {Tn}B(X,Y) 满足条件:(1){||Tn ||}是有界数列; (2)在X中的某一稠密子集G中的每个元素x,{Tn(x)}都收敛. 则{Tn}强收敛于某一个算子TB(X,Y),且||T||lim||T||.
第三章 线性算子与线性泛函
• 一致有界原理(共鸣定理)及其应用 • Hahn-Banach定理,非零有界线性算子存在
性定理 • 共轭空间与共轭算子 • 开映射、逆算子及闭图形定理 • 算子谱理论简介
精品课件
第一节 共鸣定理及其应用
• 定义:设A是距离空间X的子集,若A在X中的任意 一个非空开集中均不稠密(A没有内点),则称A 是稀疏(疏朗)集;称X是第一纲的,若X可表示成 至多可数的稀疏集的并;不是第一纲的X称为是第 二纲的。

巴拿赫空间上的有界线性算子(一):

巴拿赫空间上的有界线性算子(一):

巴拿赫空间上的有界线性算子(一):巴拿赫空间上的有界线性算子前面两章的内容可以看作是学习泛函分析的准备工作,让我们熟悉了泛函分析研究的主要对象之一:无限维空间。

从本章开始,我们将研究算子理论,而在泛函分析基础中,我们主要研究有界线性泛函,当然我们也会对无界线性泛函做简单的介绍,那么现在就让我们开始新的旅程吧!设及都是实(或复)的线性空间, 是由的某个子空间到线性空间中的映射,如果对任意的 , 有:我们称这样的映射为线性映射或线性算子.给出一些我们常用的记号:映射的定义域常用表示;值域通常用表示.当映射的值域在实数域或者复数域时,我们习惯称其为线性泛函,常用表示.如果是连续(按照空间的范数收敛)则称是连续线性算子;若将任何有界集映射为有界集我们称其为有界线性算子.在本小节中我们主要探索连续和有界的关系!首先,我们做一点说明,我们主要还是在无限维空间中研究.这是为什么呢?因为在有限维空间中:线性连续有界这样的映射我们实在没有兴趣研究(真的没有兴趣吗?哈哈!)比如:在中定义积分算子:这显然是一个线性泛函;并且还是连续有界的.现在我们对有界、连续、线性这几个关系进行探索!设都是实赋范线性空间, 是由的子空间到中的连续可加算子.则满足齐次性,因此是连续线性算子.证明:因为对任意的都有:又因为是连续的,因此我们由柯西引理知道是齐次的,即:推论:设都是复赋范线性空间, 是由的子空间到中的连续可加算子,且 , 则满足齐次性,因此是连续线性算子.下边一个定理是我们对有界映射常用的一种说法:设都是赋范线性空间, 是由的子空间到中的线性算子. 则有界的充分必要条件是存在 , 使得对一切 , 有 .证明:充分性:显然.必要性:考虑单位球面(再一次体现了单位球面的重要性),,那么对任意的都有:先考虑任意的,那么,所以:因此:命题得证.有了这个等价刻画之后,我们就可以证明在赋范线性空间中连续和有界是一回事:设都是赋范线性空间, 是由的子空间到中的线性算子. 则下列性质等价:(i) 连续;(ii) 在原点处连续;(iii) 有界.证明:显然.注意到线性性并叙述连续定义:对任意的(不妨取为1),存在,使得对任意的,都有:因此对任意的,都有:因此:所以:所以有界.:设且,那么:因此在处连续.故得证.线性算子空间从这里开始,我们应空间表示Banach空间.不做说明时,所说的算子都定义在整个空间上.设都是空间,我们考虑所有从的有界线性泛函,不难发现,如果是线性算子,那么也是线性算子,也是线性算子,这说明线性算子在逐点定义的加法和自然数乘下可以形成数域上的线性空间.我们将这个空间记为:,当时,我们简记为:他已经是一个线性空间了,我们要在其上赋予范数使其具有拓扑结构,可是应该怎么赋予范数呢?这是一个好问题!一方面可以根据有限维空间定义范数的延申,一方面是根据书上的,因为是有界线性泛函,所以定义:显然它可以等价定义为:有限维泛函空间中:如中也是如此定义的.(学过数值的可能会熟悉些...)因为是有界泛函,所以:因此这个定义是合理的,如果是无界泛函那么上确界可能不存在,因此定义就不合理了。

第三章 有界线性算子

第三章 有界线性算子

第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。

称)(T D 是T 的定义域。

特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。

如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。

此外取算子范数作为空间中的范数。

定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。

定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。

2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。

在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。

此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。

由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。

在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。

事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。

如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲

《泛函分析》课程教学大纲课程编码:171210140课程性质:专业方向限选课程适用专业:统计学专业所需先修课数学分析高等代数实变函数论学时学分:32学时1.5学分编写单位:数学与信息科学系一、课程说明1、课程简介:泛函分析课程是数学与应用数学专业的专业课程,是数学分析的后续课程,是近代数学中的一个重要分支,在古典分析、线性代数、线性微分方程、积分方程、变分学、逼近论等的开展基础上逐渐形成。

其内容已渗透到逼近论、偏微分方程、概率论、最优化理论等各方面.近年来,在工程技术上更是获得了广泛而有效的应用.它的开展受到了数学物理方程和量子力学的推动,后来又整理、概括了经典分析和函数论的许多成果,因此学习泛函分析时需要学生掌握分析、代数、概率论、拓扑学等基本知识,是数理方程、稳定性理论等后续课程的必要基础课程.2、教学目的要求:通过泛函分析的教学,使学生了解和掌握度量空间,赋范线性空间,有界线性算子,Hilbert空间,Banach空间的基本概念和基本理论,培养学生理论思维能力,为学习数学的其它专业课打下扎实的理论基础.3、教学重点难点教学重点:离散度量空间、序列空间、有界空间、可测函数空间的性质、度量空间中极限、稠密集、可分空间的概念、用极限的形式和集合对应关系给出两个重要定理、空间的结构理论,度量收敛;完备度量空间的定义、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和判定向量组的线性相关性、三个定理的内容;有界线性算子与连续线性泛函,算子的范数,经典空间,l p的共地空间、内积空间,施瓦茨不等式,直交投影,希尔伯特空间中的规范正交系,贝塞尔不等式,帕塞瓦尔不等式,同构映射,连续线性泛函,自共朝,本章难点柯西积分定理的证明、刘维尔定理的应用.本章内容第一节复积分的概念及其简单性质1.1复变函数积分的定义1.2复变函数积分的计算问题1.3复变函数积分的基本性质第二节柯西积分定理2.1不定积分2.2柯西积分定理的推广2.3柯西积分定理推广到复围线的情形第三节柯西积分公式及其推论3.1柯西积分公式3.1解析函数的无穷可微性3.2柯西不等式与刘维尔定理3.3摩勒拉定理第四章解析函数的幕级数表示法(8学时)教学目标1、使学生掌握复级数的基本概念及其相关性质,能够深刻认识理解复级数与实级数在概念、性质、定理上的区别与联系;2、使学生理解并掌握解析函数零点的孤立性及唯一性定理.本章重点.1、理解并掌握复级数的基本性质;2、理解并掌握幕级数敛散性的判别,收敛域的求法以及和函数的求法;3、能够熟练掌握并运用直接展法和间接展法,将某些解析函数展成泰勒级数,牢记sin z,cosz,—匚,一匚的展式,并注意展式的可展范围; 1-Z 1 + Z4、深刻理解解析函数零点的孤立性、唯一性定理及最大模定理,并能够综合运用证明有关数学问题.本章难点事级数的和函数在其收敛圆周上的状况、解析函数零点的孤立性、唯一性定理、最大模原理.本章内容第一节复级数的基本性质1.1复数项级数1.2一致收敛的复函数项级数1.3解析函数项级数第二节累级数1.1塞级数的敛散性1.2收敛半径的求法、柯西一阿达玛公式1.3基级数的解析性第三节解析函数的泰勒展式3.1泰勒定理3.2累级数的和函数在其收敛圆周上的状况3.3 一些初等函数的泰勒展式第四节解析函数零点的孤立性、唯一性定理4.1解析函数零点的孤立性4.3最大模原理第五章解析函数的罗朗展式与孤立奇点(6学时)教学目标使学生理解并掌握解析函数的罗朗展式的概念与展法,并注意与泰勒级数进行相关性质的比拟.深刻理解并牢固掌握可去奇点、极点、本性奇点的概念及等价定义.为下一章残数理论的学习打下坚实的基础.本章重点1、理解并掌握解析函数的罗朗展式以及罗朗级数与泰勒级数的关系.熟练掌握解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧;5.理解并深刻认识孤立奇点的三种类型及分类方法,熟练掌握可去奇点、极点、本性奇点的概念及等价定义;6.了解解析函数在无穷远点处的性质.本章难点解析函数在孤立奇点邻域内的罗朗展式的基本方法与技巧.本章内容第一节解析函数的罗朗展式1.1双边塞级数1.2解析函数的罗朗展式1.3罗朗级数与泰勒级数的关系1.4解析函数在孤立奇点邻域内的罗朗展式第二节解析函数的孤立奇点2.1孤立奇点的三种类型2.2可去奇点2.3极点2.4本质奇点第六章留数理论及其应用(6学时)教学目标1、使学生理解并掌握留数的定义及留数定理,会利用留数定理求解复积分与实积分,并知晓其内在联系与区别.深刻理解留数定理与柯西积分定理、柯西积分公式之间的关系;2、理解并掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围. 本章重点1、理解并掌握留数的定义及留数的求法;2、深刻理解并熟练掌握留数定理并能够灵活运用留数定理求解复积分3、了解用留数定理计算实积分的理论及基本方法;4、深刻理解并熟练掌握辐角原理、儒歇定理,会判定复方程根的个数及存在范围.本章难点留数定理与柯西积分定理、柯西积分公式之间的关系.本章内容第一节留数1.1留数的定义及留数定理1.2留数的求法1.3函数在无穷远点的留数1.4用留数定理计算实积分简介第二节辐角原理及其应用2.1对数留数2.2辐角原理2.3儒歇定理三、使用教材及参考书指定教材:钟玉泉编,复变函数论(第三版),高等教育出版社,2001年.参考书:[1]张锦豪、邱维元编,复变函数论,高等教育出版社,2001年.[2]钟玉泉编,复变函数学习指导书,高等教育出版社,1996年.[3]刚家泰,谭欣欣编,复变函数全程学习指导与解题能力训练,大连理工大学出版社,2001年.共辗算子,巴拿赫空间,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.教学难点:连续映射、空间完备性的证明、压缩映照原理及其应用、对向量组的线性相关、线性无关定义的理解和掌握一些判定定理、Holder不等式和Minkowski不等式的内容;有界线性算子与连续线性泛函;经典空间广〃的共辗空间,各种收敛性之间的各种联系,投影定理,斯捷克洛夫定理,汉恩一巴拿赫定理,一致有界性定理,逆算子定理,闭图像定理.5、教学手段及教学方法建议主要以教师讲授为主,适当的时候可以应用多媒体辅助教学.4、考核方式1)考核形式:考查2)开卷笔试3)期末总评成绩评定方法考试:试卷总分值100分,其中平时作业、期中考试及考勤占总评成绩的40%, 期末考查成绩占总评成绩的60%.5、学时分配表本课程的教学包括如下环节:课堂讲授,主要以教师讲授为主,要求学生课下预习;辅导或习题课,师生互动,边讲边练,解决学生学习过程中出现的一些问题;课外作业,通过对作业的批改,使学生加深巩固对所学内容的理解与掌握。

泛函分析知识总结

泛函分析知识总结

泛函分析知识总结与举例、应用学习泛函分析主要学习了五大主要内容:一、度量空间和赋范线性空间;二、有界线性算子和连续线性泛函;三、内积空间和希尔伯特空间;四、巴拿赫空间中的基本定理;五、线性算子的谱。

本文主要对前面两大内容进行总结、举例、应用。

一、 度量空间和赋范线性空间(一)度量空间度量空间在泛函分析中是最基本的概念,它是n 维欧氏空间n R (有限维空间)的推 广,所以学好它有助于后面知识的学习和理解。

1.度量定义:设X 是一个集合,若对于X 中任意两个元素x ,y,都有唯一确定的实数d(x,y)与之对应,而且这一对应关系满足下列条件:1°d(x,y)≥0 ,d(x,y)=0 ⇔ x=y (非负性)2°d(x,y)= d(y,x) (对称性)3°对∀z ,都有d(x,y)≤d(x,z)+d(z,y) (三点不等式)则称d(x,y)是x 、y 之间的度量或距离(matric 或distance ),称为(X,d)度量空间或距离空间(metric space )。

(这个定义是证明度量空间常用的方法)注意:⑴ 定义在X 中任意两个元素x ,y 确定的实数d(x,y),只要满足1°、2°、3°都称为度量。

这里“度量”这个名称已由现实生活中的意义引申到一般情况,它用来描述X 中两个事物接近的程度,而条件1°、2°、3°被认为是作为一个度量所必须满足的最本质的性质。

⑵ 度量空间中由集合X 和度量函数d 所组成,在同一个集合X 上若有两个不同的度量函数1d 和2d ,则我们认为(X, 1d )和(X, 2d )是两个不同的度量空间。

⑶ 集合X 不一定是数集,也不一定是代数结构。

为直观起见,今后称度量空间(X,d)中的元素为“点” ,例如若x X ∈,则称为“X 中的点” 。

⑷ 在称呼度量空间(X,d)时可以省略度量函数d ,而称“度量空间X ” 。

第三章 有线性算子

第三章 有线性算子

第三章 有界线性算子一 有界线性算子与有界线性泛函 1 定义与例设1,X X 是赋范空间,T 是X 中线性子空间)(T D 上到1X 中的映射 ,满足条件:对于任意)(,T D y x ∈,K ∈α,)(Ty Tx Y x T +=+Tx x T αα=)(称T 是X 中到1X 中的线性算子。

称)(T D 是T 的定义域。

特别地,称赋范空间X 上到数域K 中的线性算子为线性泛函,并且它们是到实数域或复数域分别称为实线性泛函与复线性泛函。

如果一个线性泛函f 是有界的,即)( |||||)(|M x x M x f ∈≤称为f 有界线性泛函。

此外取算子范数作为空间中的范数。

定理1.1 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,如果T 在某一点X x ∈0连续,则T 是连续的。

定理1.2 设1,X X 是赋范空间,T 是X 上到1X 中的线性算子,则T 是连续的,当且仅当,T 是有界的。

2 有界线性算子空间设1,X X 是赋范空间,用),(1X X β表示所有X 上到1X 中的有界线性算子全体。

在),(1X X β中可以自然地定义线性运算,即对于任意∈B A ,),(1X X β及K ∈α,定义Bx Ax x B A +=+))((Ax x A αα=))((不难到,两个有界线性算子相加及数乘一个有界线性算子仍有界线性算子。

此个取算子范数作为空间),(1X X β的范数,具体见)(77P 。

由此可知,),(1X X β是一个赋范线性空间,如果1X X =,把),(1X X β简记为)(X β。

在空间),(1X X β中按范数收敛等价于算子列在X 中的单位球面上一致收敛。

事实上,设∈nA A ,),(1X X β,...)2,1(=n 及}1||:||{=∈=X X x S 。

如果)(∞→→n A A n ,则对任意0>ε,存在N ,当N n >时,对于每一个S x ∈≤-||||Ax x A n1||||sup =x ||||Ax x A n -=||||A A n-ε<。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章 有界线性算子与线性泛函
教学目的: 掌握有界线性算子的基本性质和算子空间 B(X,Y)的性质。 授课要点: 1、 线性算子有界的等价条件。 2、 算子空间B(X,Y)的范数与基本性质。 3、 求算子范数的某些常见方法。
定义1: 设X,Y 是线性赋范空间,T:X→Y 是线性算子。T 称为是有界的,若对于X中的任 一有界集A范空间,T: X→Y 是线性算子,则下列诸条件等价: (1) T 在某一点 x 0连续. (2) T 在X 上连续. (3) T 是有界算子. (4) T 在X 的某一点的有界邻域内有界. 特别地, T 在X 的单位球中有界.
(5) 存在c>0 使得 ||Tx|| ≤ c ||x|| , ∀x ∈ X. (1) 若T = f 是X 上的线性泛函并且f ≠ 0 , 则 以上诸条件还等价于: (6) f 的0 空间N( f ) = {x ∈ X; f (x) = 0} 是X 中的闭集. (7) N( f ) 不在X 中稠密.
相关文档
最新文档