数据结构课程设计单链表操作

合集下载

单链表课程设计

单链表课程设计

单链表课程设计一、课程目标知识目标:1. 学生能理解单链表的基本概念,掌握其结构特点及在数据结构中的重要性。

2. 学生能够运用所学知识,实现单链表的创建、插入、删除和查找等基本操作。

3. 学生能够掌握单链表与数组、栈、队列等其他数据结构的关系与区别。

技能目标:1. 学生能够运用编程语言(如C、C++等)实现单链表的相关操作,提高编程能力。

2. 学生能够通过实际操作,培养解决实际问题的能力,提高逻辑思维能力。

情感态度价值观目标:1. 学生通过学习单链表,培养对数据结构的兴趣,提高学习积极性。

2. 学生在学习过程中,学会与他人合作,培养团队精神和沟通能力。

3. 学生能够认识到数据结构在计算机科学中的重要性,增强对专业知识的认同感。

课程性质分析:本课程为计算机科学与技术专业的基础课程,旨在让学生掌握单链表这一基础数据结构,为后续学习更复杂的数据结构打下基础。

学生特点分析:学生已具备基本的编程能力,具有一定的逻辑思维能力,但可能对数据结构的应用场景认识不足,需要通过实际案例激发兴趣。

教学要求:1. 结合实际案例,讲解单链表的理论知识,让学生了解其在实际问题中的应用。

2. 通过课堂讲解、上机实践等教学手段,让学生掌握单链表的相关操作。

3. 注重培养学生的编程能力和逻辑思维能力,提高解决实际问题的能力。

二、教学内容1. 单链表基本概念:介绍单链表的定义、结构特点及其在数据结构中的应用场景。

- 教材章节:第二章第二节- 内容安排:讲解单链表的组成元素(节点、指针)、分类(单向、双向)及优缺点。

2. 单链表基本操作:- 教材章节:第二章第三节- 内容安排:讲解单链表的创建、插入、删除、查找等基本操作,并通过实例演示。

3. 单链表与其它数据结构的对比:- 教材章节:第二章第四节- 内容安排:分析单链表与数组、栈、队列等其他数据结构的区别和联系,突出单链表的特点。

4. 单链表编程实践:- 教材章节:第二章第五节- 内容安排:结合上机实践,让学生动手实现单链表的基本操作,培养编程能力和解决实际问题的能力。

单链表的操作课程设计

单链表的操作课程设计

单链表的操作 课程设计一、课程目标知识目标:1. 理解单链表的概念,掌握单链表的结构特点及其在数据结构中的重要性。

2. 学会创建单链表,理解单链表节点的定义及链表的初始化过程。

3. 掌握单链表的基本操作,包括插入、删除、查找和遍历等。

技能目标:1. 能够运用所学知识,独立编写程序实现单链表的创建和基本操作。

2. 能够通过单链表解决实际问题,如数据管理、排序等。

3. 能够对单链表程序进行调试和优化,提高程序的执行效率。

情感态度价值观目标:1. 培养学生的逻辑思维能力,提高学生分析问题和解决问题的能力。

2. 激发学生对数据结构的兴趣,引导学生主动探索和学习更多相关知识。

3. 培养学生的团队协作意识,通过课堂讨论和小组活动,让学生学会互相帮助和共同进步。

本课程针对高年级学生,在已有编程基础和基本数据结构知识的前提下,进一步深化对单链表的认识和应用。

课程注重理论与实践相结合,强调学生的动手实践能力和问题解决能力的培养。

通过本课程的学习,期望学生能够掌握单链表的相关知识,为后续学习更复杂的数据结构打下坚实基础。

二、教学内容1. 单链表的基本概念:包括单链表的定义、结构特点及其在数据结构中的应用场景。

- 教材章节:第二章第二节“线性表的链式存储结构”2. 单链表的创建与初始化:讲解单链表节点的定义,演示如何创建和初始化一个单链表。

- 教材章节:第二章第三节“单链表的创建与初始化”3. 单链表的基本操作:- 插入:介绍在单链表中插入节点的具体方法,包括头部插入、尾部插入和指定位置插入。

- 删除:讲解删除单链表中节点的操作,包括头部删除、尾部删除和指定位置删除。

- 查找:介绍在单链表中查找特定节点的算法。

- 遍历:演示如何遍历单链表,访问链表中的所有节点。

- 教材章节:第二章第四节“单链表的基本操作”4. 单链表的应用案例:结合实际问题,展示如何运用单链表解决数据管理和排序等问题。

- 教材章节:第二章第五节“单链表的应用实例”5. 单链表的调试与优化:介绍如何对单链表程序进行调试和优化,提高程序执行效率。

数据结构-单链表基本操作实现(含全部代码)

数据结构-单链表基本操作实现(含全部代码)

数据结构-单链表基本操作实现(含全部代码)今天是单链表的实现,主要实现函数如下:InitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。

最坏是O(n),即从头查找p之前的结点,然后删除p所指结点LocateElem(LinkList L,ElemType e) 参数:单链表L,元素e 功能:查找第⼀个等于e的元素,返回指针时间复杂度O(n)代码:/*Project: single linkeed list (数据结构单链表)Date: 2018/09/14Author: Frank YuInitList(LinkList &L) 参数:单链表L 功能:初始化时间复杂度 O(1)ListLength(LinkList L) 参数:单链表L 功能:获得单链表长度时间复杂度O(n)ListInsert(LinkList &L,int i,ElemType e) 参数:单链表L,位置i,元素e 功能:位置i后插时间复杂度O(n)[加⼊了查找]若已知指针p指向的后插 O(1)ListDelete(LinkList &L,int i) 参数:单链表L,位置i 功能:删除位置i元素时间复杂度O(n)[加⼊了查找]若已知p指针指向的删除最好是O(1),因为可以与后继结点交换数据域,然后删除后继结点。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的本次实验的主要目的是深入理解和掌握数据结构中单链表的基本概念、操作原理和实现方法。

通过实际编程实现单链表的创建、插入、删除、查找等操作,提高对数据结构的应用能力和编程技能。

二、实验环境本次实验使用的编程语言为 C 语言,开发环境为 Visual Studio 2019。

三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

数据域用于存储节点的数据信息,指针域用于指向下一个节点的地址。

通过这种链式结构,可以方便地进行节点的插入、删除和遍历等操作。

四、实验内容与步骤1、单链表节点的定义```ctypedef struct Node {int data;struct Node next;} Node;```2、单链表的创建```cNode createList(){Node head = NULL;Node newNode;int data;printf("请输入节点数据(输入-1 结束):\n");scanf("%d",&data);while (data!=-1) {newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (head == NULL) {head = newNode;} else {Node temp = head;while (temp>next!= NULL) {temp = temp>next;}temp>next = newNode;}scanf("%d",&data);}return head;}```3、单链表的插入操作```cvoid insertNode(Node head, int position, int data) {Node newNode =(Node)malloc(sizeof(Node));newNode>data = data;newNode>next = NULL;if (position == 1) {newNode>next = head;head = newNode;} else {Node temp = head;int count = 1;while (temp!= NULL && count < position 1) {temp = temp>next;count++;}if (temp!= NULL) {newNode>next = temp>next;temp>next = newNode;} else {printf("插入位置无效!\n");}}}```4、单链表的删除操作```cvoid deleteNode(Node head, int position) {if (head == NULL) {printf("链表为空,无法删除!\n");return;}Node temp = head;if (position == 1) {head = head>next;free(temp);} else {Node prev = NULL;int count = 1;while (temp!= NULL && count < position) {prev = temp;temp = temp>next;count++;}if (temp!= NULL) {prev>next = temp>next;free(temp);} else {printf("删除位置无效!\n");}}}```5、单链表的查找操作```cNode searchNode(Node head, int data) {Node temp = head;while (temp!= NULL) {if (temp>data == data) {return temp;}temp = temp>next;}return NULL;}```6、单链表的遍历打印```cvoid printList(Node head) {Node temp = head;while (temp!= NULL) {printf("%d ", temp>data);temp = temp>next;}printf("\n");}```五、实验结果与分析1、创建单链表输入一系列整数,成功创建了单链表。

数据结构单链表实验报告

数据结构单链表实验报告

数据结构单链表实验报告一、实验目的1、深入理解单链表的数据结构及其基本操作。

2、掌握单链表的创建、插入、删除、查找等操作的实现方法。

3、通过实际编程,提高对数据结构和算法的理解和应用能力。

二、实验环境1、操作系统:Windows 102、编程语言:C 语言3、开发工具:Visual Studio 2019三、实验原理单链表是一种常见的数据结构,它由一系列节点组成,每个节点包含数据域和指针域。

指针域用于指向下一个节点,从而形成链表的链式结构。

单链表的基本操作包括:1、创建链表:通过动态分配内存创建链表的头节点,并初始化链表为空。

2、插入节点:可以在链表的头部、尾部或指定位置插入新的节点。

3、删除节点:根据给定的条件删除链表中的节点。

4、查找节点:在链表中查找满足特定条件的节点。

四、实验内容(一)单链表的创建```cinclude <stdioh>include <stdlibh>//定义链表节点结构体typedef struct Node {int data;struct Node next;} Node;//创建单链表Node createList(){Node head =(Node)malloc(sizeof(Node));if (head == NULL) {printf("内存分配失败!\n");return NULL;}head>data = 0;head>next = NULL;return head;}int main(){Node list = createList();//后续操作return 0;}```在创建单链表时,首先为头节点分配内存空间。

若内存分配失败,则提示错误信息并返回`NULL`。

成功分配内存后,初始化头节点的数据域和指针域。

(二)单链表的插入操作插入操作分为三种情况:头部插入、尾部插入和指定位置插入。

1、头部插入```cvoid insertAtHead(Node head, int data) {Node newNode =(Node)malloc(sizeof(Node));if (newNode == NULL) {printf("内存分配失败!\n");return;}newNode>data = data;newNode>next = head>next;head>next = newNode;}```头部插入时,创建新节点,将新节点的数据域赋值,并将其指针域指向原头节点的下一个节点,然后更新头节点的指针域指向新节点。

单链表基本操作

单链表基本操作

单链表基本操作在计算机科学里,链表是一种常见的数据结构,它可以用来解决各种复杂的问题。

其中,单链表是最常见的一种,它由一系列节点组成,每个节点包含了一个数据元素和一个指针,指向下一个节点。

这篇文章将介绍单链表的基本操作,包括创建、插入、删除和遍历等。

创建单链表创建单链表是基本操作之一,它有两种方法:头插法和尾插法。

头插法是从链表的头节点开始,逐个将新节点插入。

具体来说,创建一个空链表,设置一个头节点,将头节点的指针指向空;依次输入新节点,将新节点的指针指向表头,将表头的指针指向新节点。

这样,每插入一个新节点就成为了新的表头,即最后插入的节点为新的表头。

尾插法则是从链表的尾节点开始,逐个将新节点插入。

具体来说,创建一个空链表,设置一个头节点,将头节点的指针指向空;依次输入新节点,将新节点的指针指向空,将最后一个节点的指针指向新节点。

这样,最后插入的节点为尾节点,它的指针值为空。

插入节点插入节点是指在单链表的任意位置插入一个新节点。

插入节点的前提是找到插入位置,可以通过遍历单链表来查找插入位置。

插入新节点的基本步骤如下:1、创建新节点;2、将新节点的指针指向待插入节点的后继节点;3、将待插入节点的指针指向新节点。

删除节点删除节点是指删除单链表中的任意节点。

删除节点的前提是找到删除的节点位置,可以通过遍历单链表来查找删除位置。

删除节点的基本步骤如下:1、找到要删除的节点;2、将该节点的前驱节点的指针指向该节点的后继节点;3、删除该节点。

遍历节点遍历节点是指按照链表的顺序依次访问链表中的各个节点。

遍历节点的基本步骤如下:1、从链表的头节点开始遍历;2、依次访问每个节点的数据元素;3、通过指针访问下一个节点,直到遇到尾节点。

优缺点单链表的优点是简单,灵活,易于实现和扩展,可以方便地进行插入和删除等操作。

其缺点是存在指针开销,查找元素时需要遍历整个链表,不能直接访问链表中任意位置的节点。

总结单链表是一种最常用的数据结构,它是由一系列节点组成,每个节点包含一个数据元素和一个指针,指向下一个节点。

数据结构 实验一:实现单链表各种基本运算的算法

数据结构 实验一:实现单链表各种基本运算的算法

- 1 -实验一:实现单链表各种基本运算的算法一、 实验目的1、 掌握单链表存储结构的类型定义;2、 实现单链表各种基本运算的算法。

二、 实验环境1、 Windows 操作系统;2、 Visual C++ 6.0三、 实验内容实现单链表各种基本运算的算法。

四、 概要设计1.存储结构的类型定义:Typedef struct LNode{ElemType data;Struct LNode *next;}LinkList;2.单链表示意图:3.项目组成图:4.algo2_2.cpp 的程序文件包含的函数原型及功能:InitList(LinkList *&L) 初始化单链表LDestroyList(LinkList *&L) 释放单链表LListEmpty(LinkList *L)判断单链表L 是否为空表ListLength(LinkList *L)返回单链表L 的元素个数DispList(LinkList *L)输出单链表LGetElem(LinkList *L,int i,ElemType &e)获取单链表L 的第i 个元素LocateElem(LinkList *L,ElemType e)在单链表L 中查找元素eListInsert(LinkList *&L,int i,ElemType e)在单链表L 中的第i 个位置上插入元素e…… head a 1 a 2 a 3 a n ∧ListDelete(LinkList *&L,int i,ElemType &e)在单链表L中删除第i个元素5.exp2_2.cpp程序文件简介:InitList(LinkList *&L) 初始化单链表LDestroyList(LinkList *&L) 释放单链表LListEmpty(LinkList *L) 判断单链表L是否为空表ListLength(LinkList *L) 返回单链表L的元素个数DispList(LinkList *L) 输出单链表LGetElem(LinkList *L,int i,ElemType &e) 获取单链表L的第i个元素LocateElem(LinkList *L,ElemType e) 在单链表L中查找元素eListInsert(LinkList *&L,int i,ElemType e) 在单链表L中的第i个位置上插入元素e ListDelete(LinkList *&L,int i,ElemType &e) 在单链表L中删除第i个元素6.proj2-2的项目的模块结构:在文件algo2-2中,(1)定义单链表结构类型;(2)初始化单链表(3)定义释放单链表的函数(4)定义判断单链表是否为空的函数(5)定义返回单链表元素个数的函数(6)定义输出单链表的函数(7)定义获取第i个元素的函数(8)定义查找元素的函数(9)定义插入元素的函数(10)定义删除元素的函数在文件exp2-2中分别调用algo2-2中所定义的函数7.函数调用关系图:五、详细设计源代码清单见附录。

实验二 单链表基本操作

实验二 单链表基本操作

实验二单链表基本操作一实验目的1.学会定义单链表的结点类型,实现对单链表的一些基本操作和具体的函数定义,了解并掌握单链表的类定义以及成员函数的定义与调用。

2.掌握单链表基本操作及两个有序表归并、单链表逆置等操作的实现。

二实验要求1.预习C语言中结构体的定义与基本操作方法。

2.对单链表的每个基本操作用单独的函数实现。

3.编写完整程序完成下面的实验内容并上机运行。

4.整理并上交实验报告。

三实验内容1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。

(2)在La中第i个元素之前插入一个新结点。

(3)删除La中的第i个元素结点。

(4)在La中查找某结点并返回其位置。

(5)打印输出La中的结点元素值。

2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

合并思想是:程序需要3个指针:pa、pb、pc,其中pa,pb分别指向La表与Lb表中当前待比较插入的结点,pc 指向Lc表中当前最后一个结点。

依次扫描La和Lb中的元素,比较当前元素的值,将较小者链接到*pc 之后,如此重复直到La或Lb结束为止,再将另一个链表余下的内容链接到pc所指的结点之后。

3.构造一个单链表L,其头结点指针为head,编写程序实现将L逆置。

(即最后一个结点变成第一个结点,原来倒数第二个结点变成第二个结点,如此等等。

)四思考与提高1.如果上面实验内容2中合并的表内不允许有重复的数据该如何操作?2.如何将一个带头结点的单链表La分解成两个同样结构的单链表Lb,Lc,使得Lb中只含La表中奇数结点,Lc中含有La表的偶数结点?1.编写程序完成单链表的下列基本操作:(1)初始化单链表La。

(2)在La中第i个元素之前插入一个新结点。

(3)删除La中的第i个元素结点。

(4)在La中查找某结点并返回其位置。

(5)打印输出La中的结点元素值。

#include<stdio.h>#include<stdlib.h>#include <malloc.h>#define OK 1#define ERROR 0typedef int Status;typedef int ElemType;//定义存储结构typedef struct Lnode{int data; /*每个元素数据信息*/struct Lnode *next; /*存放后继元素的地址*/} LNode,*LinkList;int main(){void Create_L(LinkList &L,int n);void Print_L(LinkList L);Status ListInsert_L(LinkList &L,int i,ElemType e);Status ListDelete_L(LinkList &L,int i,ElemType &e);Status Find_L(LinkList L,int e);LinkList La;//创建单链表Laint n;printf("请输入链表La中的元素个数:\n");scanf("%d",&n);Create_L(La,n);//初始化单链表printf("现在La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备插入元素,请输入插入位置及所插入元素的值\n");int i,e;scanf("%d %d",&i,&e);ListInsert_L(La,i,e);printf("插入后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("现在准备删除元素,请输入删除位置\n");scanf("%d",&i);ListDelete_L(La,i,e);printf("删除后La中的元素为:\n");Print_L(La);printf("-------------------------------------\n\n");printf("请输入所要查找元素的值:\n");scanf("%d",&e);Find_L(La,e);printf("所要查找元素的位置为:%d\n",Find_L(La,e)); }void Create_L(LinkList &L,int n){int j=1;L=(LinkList)malloc(sizeof(Lnode));L->next =NULL;//先建立一个带头结点的单链线性表L for(int i=n;i>0;--i){LinkList p=(LinkList)malloc(sizeof(Lnode));printf("请输入链表La中的第%d个元素:\n",j++);scanf("%d",&p->data);p->next=L->next;L->next =p;}//(逆序实现)/*LinkList q=L;for(int i=1;i<=n;i++){LinkList p=(LinkList)malloc (sizeof(Lnode));q->next=p;p->next=NULL;q=q->next ;printf("请输入链表La中的第%d个元素:\n",i);scanf("%d",&p->data);}//(正序实现)*/}//初始化单链表//输出单链表void Print_L(LinkList L){LinkList p;p=L->next;while(p){printf("%d ",p->data );p=p->next;}printf("\n");}//在单链表L的第i个位置前插入元素eStatus ListInsert_L(LinkList &L,int i,ElemType e) {LinkList p=L;int j=0;while(p&&j<i-1){p=p->next; ++j;}if(!p||j>i-1) return ERROR;LinkList s=(LinkList)malloc(sizeof(LNode));s->data=e; s->next=p->next;p->next=s;return OK;} //ListInsert_L//删除单链表L中第i个位置上的元素Status ListDelete_L(LinkList &L,int i,ElemType &e) {LinkList p=L;int j=0;while( p->next && j<i-1){p=p->next; ++j;}if(!p->next||j>i-1) return ERROR;LinkList q=p->next; p->next=q->next;e=q->data;free(q);return OK;}//LinkDelete_L/*查找元素并返回位置*/Status Find_L(LinkList L,int e){LinkList p=L->next;int j=1;while(p->data!=e&&p->next){p=p->next;j++;}if(p->data==e) return j;else{printf("无当前元素\n");return ERROR;}if(!p){printf("无当前元素\n");return ERROR;}}//定位2 .构造两个带有表头结点的有序单链表La、Lb,编写程序实现将La、Lb合并成一个有序单链表Lc。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《数据结构课程设计》报告题目:单链表操作专业:计算机科学与技术班级:单链表操作针对带头结点的单循环链表,编写实现以下操作的算法函数。

实现要求:⑴单链表建立函数create:先输入数据到一维数组A[M]中,然后根据一维数组A[M]建立一个单循环链表,使链表中个元素的次序与A[M]中各元素的次序相同,要求该函数的时间复杂度为O(m);⑵定位查找函数Locate:在所建立的单循环链表中查找并返回值为key的第1个元素的结点指针;若找不到,则返回NULL;⑶求出该链表中值最大和次大的元素值,要求该算法的时间复杂度为O(m),最大和次大的元素值通过指针变量带回,函数不需要返回值;⑷将链表中所有值比key(值key通过形参传入)小的结点作为值为key的结点前驱,所有值比key大的结点作为值为key的结点后继,并尽量保持原有结点之间的顺序,要求该算法的时间复杂度为O(m);⑸设计一个菜单,具有上述处理要求和退出系统功能。

⒈本人完成的工作:一、定义结构体:LNode二、编写以下函数:(1)建立单循环链表(2)建立定位查找函数(3)求出链表中最大和次大值(4)将链表中的值和输入的Key比较,小的作为key前驱结点,大的作为key 的后继结点三、设计具有上述处理要求和退出系统菜单⒉所采用的数据结构:单链表数据结构的定义:typedef struct Node //定义结点的结构体{DataType data; //数据域struct Node *next; //指针域}LNode; //结点的类型⒊所设计的函数(1)Create(void)LNode *Create(void) //建立单循环链表,链表头结点head作为返回值{int i,j,n,A[M]; //建立数组A【M】LNode *head,*p,*move;head=(LNode*)malloc(sizeof(LNode)); //创建空单循环链表head->next=head;move=head;printf("请输入数组元素的个数:"); //输入数组scanf("%d",&n);printf("请输入数组:");for(i=0;i<n;i++) //保存数组元素scanf("%d",&A[i]);//勾链建表,使链表中元素的次序与数组A各元素次序相同for(j=0;j<n;j++) //根据一维数组A[M]建立一个单循环链表{p=(LNode*)malloc(sizeof(LNode));p->data=A[j];p->next=move->next;move->next=p;move=move->next;}return head; //返回头指针}(2)Locate(LNode *head,DataType key)LNode *Locate(LNode *head,DataType key) //建立定位查找函数Locate {LNode *q=head->next;//查找并返回值为key的第1个元素的结点指针;若找不到,则返回NULL while(q!=head && q->data!=key)q=q->next;if(q->data==key)return q;else{printf("查找的结点不存在!!\n");return NULL;}}(3)Search(LNode *head,DataType *a,DataType *b)//求链表的最大值和次大值,分别由*a和*b带回void Search(LNode *head,DataType *a,DataType *b){LNode *p,*Max,*Secmax;p=head->next->next;//*Max和*Secmax指第一个结点,*p指向第二个结点,Max=head->next;Secmax=head->next->next;;while(p!=head){if(Max->data > p->data) //*Max指向最大值{if(p->data > Secmax->data)Secmax=p;}else //*Sexmax指向次大值{Secmax=Max;Max=p;}p=p->next;}*a=Max->data; //把最大和次大值分别赋值给*a和*b *b=Secmax->data;}(4)Sort(LNode *head)//查找key,把链表中比key小的作为前驱结点,比key大的作为后继结点LNode *Sort(LNode *head){ //*front指向key前部分链表,*rear指向key后部分链表LNode *k,*p,*front,*rear,*L; DataType key;front=head;p=head->next;printf("请输入key:");scanf("%d",&key);L=Locate(head,key); //调用Locate()查找keyk=L;rear=k;while(p!=head){if(front->next!=k) //判断key前面链表是否已经比较完毕{if(p->data > k->data)//将key结点前驱比key大的插到key后面{front->next=front->next->next; //断开结点p->next=rear->next; //插入结点rear->next=p;rear=rear->next;p=front->next; //*p指回key的前驱结点}else{p=p->next; //移动指针front=front->next;}}else{p=rear->next;if(p->data < k->data)//将key结点后继比key小的插到key前面{rear->next=rear->next->next; //断开结点p->next=front->next; //插入结点front->next=p;front=front->next;p=rear->next; //*p指回key的后继结点}else{p=p->next; //移动指针rear=rear->next;}}}return head; //返回头指针}(5)主函数:void main() //主函数{LNode *L,*W,*H;DataType a,b;int key,choice; //choice记载操作,key为输入值printf("\n");H=Create(); //调用Create()建立单循环链表//界面美化printf("\n");printf("***************************************************************\n");printf("* *\n");printf("* 定位查找-------------------------------------------------1 *\n");printf("* 输出最大和次大值-----------------------------------------2 *\n");printf("* 输出比较值key后的结果------------------------------------3 *\n");printf("* 重新输入一个数组-----------------------------------------4 *\n");printf("* 退出系统-------------------------------------------------0 *\n");printf("* *\n");printf("***************************************************************\n");printf("\n");//功能选择printf("请选择系统功能:");scanf(" %d", &choice);printf("\n");while(choice != 0){switch (choice){case 1: //查找数值key并返回指针{printf("请输入要查找的值:");scanf("%d",&key);L=Locate(H,key);if(L!=NULL)printf("查找成功!!\n");}break;case 2: //求链表的最大和次大值{Search(H,&a,&b);printf("最大值:%d\n",a);printf("次大值:%d\n",b);}break;case 3: //将key插入链表中{H=Sort(H);W=H->next;printf("结果是:"); //输出结果while(W!=H){printf(" %d",W->data); //依次输出W=W->next;}printf("\n");}break;case 4:main();default:printf("请输入正确的选项!!\n"); //错误处理}//功能重复printf("********************************************************* ******\n");printf("* *\n");printf("* 定位查找-------------------------------------------------1 *\n");printf("* 输出最大和次大值-----------------------------------------2 *\n");printf("* 输出比较值key后的结果------------------------------------3 *\n");printf("* 重新输入一个数组-----------------------------------------4 *\n");printf("* 退出系统-------------------------------------------------0 *\n");printf("* *\n");printf("********************************************************* ******\n");printf("请选择系统功能:");scanf(" %d", &choice);}}⒋运行结果:⒌问题与总结(1)在编写Create()函数时,要根据一维数组A【M】建立单循环链表,一开始只是用for语句结合头结点创建单链表方法。

相关文档
最新文档