埋弧焊纵焊缝终端裂纹原因分析及预防措施
直缝埋弧焊钢管焊缝横向裂纹产生原因分析

直缝埋弧焊钢管焊缝横向裂纹产生原因分析摘要:针对直缝埋弧焊钢管生产过程中的焊缝横向裂纹,从焊接过程中的应力状态和生产工艺方面分析了焊缝横向裂纹产生的原因,并指出通过改进焊接材料及相关的焊接设备、降低焊接时的低熔点杂质铜含量以及降低焊接过程中的纵向拉应力等途径可有效防止焊缝横向裂纹的产生,保证焊接质量。
1 直缝埋弧焊钢管焊缝存在的横向裂纹管线钢属微合金化控轧钢,可焊性好,使用埋弧焊进行焊接时,焊缝很少有裂纹出现,但在直缝埋弧焊钢管生产过程中,某几个规格的钢管焊缝检测到横向裂纹。
该钢管长度12m,壁厚10~30mm,直径508~1 422 mm,采用JCO成型,二氧化碳+Ar气连续预焊进行打底,3~4丝埋弧自动焊进行内外焊缝一次焊接成型,水柱式耦合超声波自动探伤进行检测,在内外焊缝上均发现过位于焊缝边缘的横向热裂纹,从焊趾向焊缝中心开裂,裂纹的长度为2~5mm,深度从焊缝表面开始向下1~2 mm,大部分裂纹在焊缝加强高度内,如图1所示。
2 裂纹检验分析通过对裂纹金相试样的检测,在焊缝裂纹表面有清晰可见的铜斑,经委托天津大学、北京钢铁研究院等单位进行电镜扫描分析证实,在裂纹表面有大量的铜存在,铜是引起焊缝产生裂纹的主要原因。
根据对裂纹的检测分析结论,为最大限度降低焊缝中的铜含量,对焊接材料及焊接设备进行了改进:与焊丝厂合作将镀铜焊丝改为不镀铜焊丝;定期更换导电杆内聚四氟乙烯软管,防止导电杆磨损;改用硬质合金导电嘴,减少导电嘴因磨损产生的铜屑;使用新焊剂并定期清理焊接机头等。
采用以上措施后,焊缝横向裂纹的数量明显减少,但仍有少量的裂纹产生。
3焊接应力状态对产生裂纹的影响从理论上分析,引起焊缝热裂纹的原因有两点:一是低熔点杂质,二是焊接过程中的拉应力。
将低熔点杂质铜的来源降到最低后仍有裂纹产生,需要从焊接应力方面寻找解决办法。
钢管生产过程中出现的焊缝横向裂纹的统计情况表明,裂纹的分布规律是:薄壁管和厚壁管较少、中间壁厚(12~16mm)较多;大管径较少,小焊管管径较多。
焊接热裂纹的产生原因及防止方法

焊接热裂纹的产生原因及防止方法一、热裂纹产生的原因分析1、焊缝中杂质和拉应力的存在因为焊缝中的杂质在焊缝结晶过程中会形成低熔点结晶。
原因是低熔点共晶物的存在.结晶时被推挤到晶界上,形成液态薄膜,凝固收缩时焊缝金属在拉应力作用下,液态薄膜承受不了拉应力而形成裂纹。
热裂纹就轻易在焊缝金属中产生.所以要控制焊缝金属杂质的含量,减少低熔点共晶物的天生。
同时由此可见结晶裂纹的产生是低熔点共晶体和焊接拉应力共同作用的结果,二者缺一不可。
低熔点共晶体是产生结晶裂纹的内因,焊接拉应力是产生结晶裂纹的外因。
2、焊缝终端部位温度的变化埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大.由于引弧板的尺寸远比筒体小,其热容量也小得多,而熄弧板与筒体之间只靠定位焊连接,故可视为大部门不连续.所以终端焊缝部位的传热前提是很差的,致使该部位局部温度升高,熔池外形发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当熄弧板尺寸过小、熄弧板与筒体之间的定位焊缝过短、过薄时更为明显. 焊缝外形对结晶裂纹的形成有显著的影响。
熔宽与熔深比小易形成裂纹,熔宽与熔深比大抗结晶裂纹性较高。
3、焊接线能量的影响因为埋弧焊所采用的焊接热输入量往往比其他焊接方法要大得多,焊接线能量的大小直接影响到焊缝的成形,而焊缝的成形外形又直接决定着焊缝凝固后的晶粒分布和低熔点共晶体的存在位置及受力情况,因而对结晶裂纹产生与否影响较大。
另外,焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大.这对开坡口的中厚板和不开坡口的较薄板尤为明显.4、其他情况如存在强制装配,装配质量不符合要求.二、焊缝裂纹的性质及特点终端裂纹形成的部位有时为终端,有时为距终端四周地区150mm 范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端四周的内部裂纹.裂纹与焊缝的波纹线相垂直,露在焊缝表面的有显著的锯齿外形。
钢制锅炉压力容器筒节纵焊缝端部产生裂纹的原因及其预防措施

钢制锅炉压力容器筒节纵焊缝端部 产生裂纹的原因及其预防措施
刘家生’ 郑力
1 . 沈阳特种设备检测研究院 1 1 0 0 3 5 2 . 沈阳圣达热力有限公司
1 1 0 1 0 1
【 摘要 】 在 采用埋弧 自 动焊焊接钢制锅炉压力 容 器筒节时, 时常发现 面 : 一是 母材 , 其中的硫 几乎可以全 部过 渡到焊 缝 中去 , 但母材 中的含 二是焊 丝 , 约有7 0 - 8 0 % 的 硫可以 过渡 到焊缝 中去 : 三是 纵焊 缝端部产生 裂纹 。 本文通过 分析 裂纹产生的原 因, 采取 有效预防措 硫 量 比较 少 : 施, 消除了裂纹产生。 焊剂, 约有5 0 %的硫可以 过渡 到焊缝 中。 可见, 严格 控制 焊接 原材料 的 【 关键词 】 钢 制锅 炉压力容器; 筒节纵焊缝端部 ; 裂纹; 原 因; 预 防措 含硫 量是限制焊 缝含硫量 的关键措施 。 ( 2 ) 用冶金方法 脱硫 为了减少 焊缝金 属中的含硫 量 , 如同脱氧 施
端 部裂 纹还 与冶金 因素 如硫 的偏 析、 尾部 熔池 形状 以 及枝 晶的 生 4 、 筒节 在冷加 工找圆时, 严禁 利 用大锤直 接敲击 焊缝 端部 和强 力 长 方向有关 。 硫 是焊 缝金 属 中有 害的杂 质之一 , 它 通常以 F e S 形式存 在 组 装; 于 钢 中, 与铁在 液 态可 以 无限 互 溶 , 而 在固态 其 溶解 度 急剧 下 降 , 因 5 、 根据 熔焊 原理 , 在 埋弧焊 焊接 时控 制熔 池 的形状 、 减 少 凹度等
国家对特 种 设备 一直 实行 许可证 管理制 度 , 由质量技 术监 督部 门 对 特种设 备的设 计、 制 造、 安装 、 改 造、 维 修的资质进行 批核准 , 同时 委托 具有 相应资质监 督检验技 术机 构对 特种设 备的制造 、 安装、 改造、
埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)

埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level.编订:__________________单位:__________________时间:__________________Word格式 / 完整 / 可编辑文件编号:KG-AO-7530-73 埋弧焊纵焊缝终端裂纹原因分析及预防措施(正式)使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体、周密的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。
下载后就可自由编辑。
一、概述在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
埋弧焊收弧裂纹的预防

埋弧焊收弧裂纹的预防16MnR钢是一种具有较高强度和韧性以及良好焊接性的低合金钢,目前被广泛应用于压力容器、船体、锅炉等焊接结构的制造。
其中压力容器筒体的主对接缝主要采用效率高、劳动条件相对较好的埋弧焊。
但在对中厚板(S>20nm)16MnR钢制压力容器的焊接过程中发现其筒体纵缝焊缝终端经常出现较短的裂纹,对此一直没有较好的解决方法,只能通过返修来解决,甚至因几次返修不合格而只能报废,延长了产品的生产周期,增加了产品的制造成本。
所以,分析此裂纹的形成原因并寻求出相应措施具有十分现实的意义。
1裂纹特点1.1裂纹所处位置及形状裂纹位于筒体纵缝的末端,在进行焊接返修时发现,该裂纹位于第一道焊缝的根部,有时也扩展到焊缝的表面。
从X射线底片上观察,一般出现在距离筒节焊缝末端(不包括媳弧板上的焊缝)0~150范围内,较细,呈浅黑色且长度较短。
1.2裂纹的影响因素随着板厚的增加,焊缝终端产生裂纹的几率大。
在其它焊接工艺参数一定的情况下,焊接电流越大,焊接速度越小,产生裂纹的几率也越大。
且在焊接其它低合金钢(S>20)时,也发现有类似现象。
2终端裂纹产生原因分析2.1钢材的焊接性分析一种低合金高强钢,其叫C)E< 0.5%,其裂纹敏感性小,焊接性好,对多种厚度规格的16MnR钢板的埋弧焊工艺作焊接工艺评定时,试板从未出现过裂纹,且拉伸、弯曲等力学性能试验结果均符1998钢制压力容器要求,证明采用的焊接工艺合理。
2.2残余应力的影响压力容器筒体卷圆时,在金属内部存在冷作残余应力,在焊接过程中,母材发生再结晶时,在焊接接头区域内产生新的焊接应力。
另外,筒节卷圆时受下料尺寸精度、卷板机精度和操作者技能的影响,纵缝接头在组装定位焊时,存在着强行组装现象,导致在定位焊焊道内留下较大的拉伸应力和切应力。
2.3焊接变形的影响由于焊接接头区域加热和冷却的不均匀性,使各部分金属发生的相变过程不一样,当温度恢复到原始的均匀状态后,焊缝必然产生焊接残余应力和变形。
焊接裂纹产生原因及防治措施

焊接裂纹产生原因及防治措施焊接裂纹是指在焊接过程中,焊缝或焊接接头出现的裂纹现象。
焊接裂纹的产生原因有很多,主要包括材料选择不当、焊接工艺参数不合理、应力集中、焊接变形等因素。
为了防止焊接裂纹的产生,需采取相应的防治措施。
一、材料选择不当是造成焊接裂纹的主要原因之一。
不同材料的热膨胀系数、熔点和强度等性质差异较大,若选择不当,会导致焊接时产生较大的残余应力,从而引发焊接裂纹。
因此,在焊接前应对材料进行仔细选择,确保焊接材料的相容性和相似性。
二、焊接工艺参数不合理也是引起焊接裂纹的重要原因。
焊接过程中,焊接电流、电压、速度等参数的选择不当,容易造成焊接热输入过大或过小,从而导致焊接裂纹的产生。
因此,需要根据焊接材料的厚度、形状和焊接位置等因素,合理调整焊接工艺参数,以减少焊接残余应力的产生。
三、应力集中也是焊接裂纹的重要原因之一。
焊接过程中,由于材料的热膨胀和收缩不均匀,会导致焊接接头处应力集中,从而造成焊接裂纹的产生。
为了减少应力集中,可以采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少残余应力的产生。
四、焊接变形也是引起焊接裂纹的常见原因。
焊接过程中,由于热膨胀和收缩的影响,焊接接头会发生一定的变形,如果变形过大,就会产生焊接裂纹。
为了控制焊接变形,可以采用适当的夹具和焊接顺序,使焊接接头得到良好的约束,减少变形的发生。
为了预防焊接裂纹的产生,可以采取以下防治措施:1.合理选择焊接材料,确保材料具有相似的熔点和热膨胀系数,减少焊接时的残余应力。
2.合理调整焊接工艺参数,根据焊接材料的特性和焊接位置,确定合适的焊接电流、电压和速度等参数,以减少焊接热输入和残余应力。
3.采取适当的预热和后热处理措施,使焊接接头的温度均匀分布,减少应力集中和残余应力的产生。
4.采用适当的夹具和焊接顺序,控制焊接变形,减少焊接裂纹的发生。
5.进行焊接前的材料表面处理,确保焊接接头的清洁度和表面质量,减少焊接缺陷的产生。
塔筒埋弧焊纵焊缝终端裂纹原因分析及预防措施

埋弧焊纵焊缝终端裂纹原因分析及预防措施从焊缝的温度变化、受力情况以及焊接热输入能量等方面分析了埋弧焊纵焊缝端部产生裂纹的原因,制定了预防终端裂纹产生的措施。
一、概述在塔筒制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端裂纹。
经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。
二、终端裂纹产生的原因分析1.终端焊缝部位温度场的变化埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温度场将发生变化,越靠近终端其变化越大。
因为引弧板的尺寸远比筒体小,其热容量也小得多,而引弧板与筒体之间只靠定位焊连接,故可视为大部分不连续。
所以终端焊缝部位的传热条件是很差的,致使该部位局部温度升高,熔池形状发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当引弧板尺寸过小,引弧板与简体之间的定位焊缝过短、过薄时更为显著。
埋弧焊收弧段焊缝裂纹原因解析和预防

直缝埋弧焊收弧段焊缝裂纹原因解析和预防郁俊(江苏常州 2013012)摘要:(近年来,随着电网产品的标准化设计越来越规范,装备制造业也有着飞速发展,焊接作为其中的一道特殊工序,其重要性显得越来越突出。
同时,在焊接过程中容易产生的缺陷,也越来越被重视和深入研究。
本文就直缝埋弧焊工序容易产生的收弧段裂纹进行原因解析,以及有针对性的进行预防,提出切实可行的预防措施。
)关键词:(直缝埋弧焊收弧裂纹解析和预防)0 引言随着电网标准化设计的推广,电力装备制造业经历着前所未有的机遇和挑战,在产量与质量的权衡中,往往是顾此失彼。
其中焊接作为一道特殊工序,成为装备制造的必谈话题,而焊缝的质量关系着产品有没有达到设计意图,以及有没有满足标准化设计的应用要求,焊缝质量来不得半点马虎。
其中,各制管加工单位均遇到过直缝埋弧焊管终端容易产生裂纹的问题,本文就其成因进行分析,同时用实际加工经验提出切实可行的预防措施,从源头上杜绝焊缝终端裂纹的产生。
1发生现象由专业制管厂商制造的直缝埋弧焊管,因其加工制造的质量和进度受控,加上其成本相对采购成品钢管而言较为合算,因此众多需要直缝埋弧焊管的厂家选择自行折弯制管。
目前,较为流行的是JCOE或UOE钢管成型工艺。
通过翻阅数年来的折弯钢管埋弧焊检验记录数据,以及对照专业制管厂家的实际操作结果,结合多年来的经验积累发现,自行折弯加工的直缝埋弧焊管都存在着一个普遍的焊缝问题——收弧段焊缝容易产生裂纹。
2 原因解析自行折弯加工的直缝埋弧焊钢管当焊接电弧接近纵焊缝终端时,焊缝在沿轴线向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而钢管在折弯卷制过程中也存在着冷作硬化应力和组装应力;在焊接过程中,因焊缝终端定位焊缝及引、熄弧板的拘束作用,在焊缝终端产生较大的拉伸应力;当电弧移动到终端定位焊缝和引、熄弧板上时,由于该部位受热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力,从而形成终端裂纹。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
埋弧焊纵焊缝终端裂纹原因分析及预防措施
集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-
埋弧焊纵焊缝终端裂纹原因分析及预防措施一、概述
在压力容器制造中,当采用埋弧焊焊接筒体纵焊缝时,经常会在纵焊缝的
端部或靠近端部处产生裂纹(以下简称终端裂纹)。
对此问题已有不少人
进行了研究,认为产生终端裂纹的主要原因是当焊接电弧接近纵焊缝终端时,焊缝在沿轴向膨胀变形的同时,还伴随有垂直轴向方向的横向张开变形;而筒体在卷制及制作装配过程中也存在着冷作硬化应力和组装应力;
在焊接过程中,因终端定位焊缝及引弧板的拘束作用,在焊缝终端产生较
大的拉伸应力;当电弧移动到终端定位焊缝和引弧板上时,由于该部位受
热膨胀变形,使焊缝终端的横向拉伸应力得到松弛,拘束力减小,便使焊缝终端刚刚凝固的焊缝金属受到较大的拉应力而形成终端裂纹。
根据上述
原因分析提出了两项解决的对策:一是增加引弧板的宽度以增加其拘束力;二是采用开槽的弹性拘束引弧板。
但是我们在实践中采取上述对策后,问题还是没有得到有效解决:如虽然采用了弹性拘束引弧板,但仍然会产生
纵焊缝的终端裂纹,且在焊接厚度较小,钢性较小而经强制装配的筒体时
也常有终端裂纹发生等;然而,当在筒体纵焊缝的延长部位带有产品试板时,虽然定位焊等情况与未带产品试板时相同,却很少产生纵缝产生终端
裂纹。
经过反复试验和分析,我们认为纵缝终端裂纹的产生,虽然与终端
焊缝处不可避免地存在着较大的拉伸应力有关,同时还与其他几个极为重要的原因有关。
二、终端级故产生的旅因分析
1.终端焊缝部位温度场的变化
埋弧焊焊接时,当焊接热源靠近纵焊缝的终端部位时,焊缝端部正常的温
度场将发生变化,越靠近终端其变化越大。
因为引弧板的尺寸远比筒体小,其热容量也小得多,而引弧板与筒体之间只靠定位焊连接,故可视为大部
分不连续。
所以终端焊缝部位的传热条件是很差的,致使该部位局部温度升高,熔池形状发生变化,熔深也将随之变大,同时熔池在高温下停留的时间也变长,熔池凝固的速度变慢,尤其当引弧板尺寸过小,引弧板与筒体之间的定位焊缝过短、过薄时更为显着。
2.焊接热输入量的影晌
由于埋弧焊所采用的焊接热输人量往往比其他焊接方法要大得多,因而熔深大,熔敷金属量大,且有焊剂层的覆盖,所以熔池大,熔池凝固的速度和
焊缝冷却速度都比其他焊接方法要慢,致使晶粒较粗大,偏析较严重,这些都为热裂纹的产生创造了极为有利的条件。
另外,且焊缝的横向收缩量远比间隙的张开量要小,使终端部位的横向拉伸力比其他焊接方法要大。
这对开坡口的中厚板和不开坡口的较薄板尤为显着。
3.其他情况
如存在强制装配,装配质量不符合要求,母材中的S、P等杂质的含量偏高及偏析,也都会导致裂纹的产生。
三、终端裂纹的性质
终端裂纹按其性质属于热裂纹,而热裂纹按其形成的阶段又可分为结晶裂纹和亚固相裂纹。
虽然终端裂纹形成的部位有时为终端、有时为距终端附近地区105mm范围内,有时为表面裂纹,有时为内部裂纹,而大多数情况是发生在终端附近的内部裂纹。
由此可见,终端裂纹的性质基本上属于亚固相裂纹,也即在焊缝终端尚处于液态时,在靠近终端附近的熔池虽已凝固,但仍处于稍低于固相线以下的高温零强度状态,在终端复杂的焊接应力(主要为拉伸应力)的作用下产生裂纹,而靠近表面的焊缝表层因易于散热,温度相对较低,并已具有一定强度且塑性极好,故终端裂纹往往存在于焊缝内部而不能用肉眼发现。