2023年高考物理一轮复习讲义——动量定理及应用

合集下载

2024高考物理一轮复习第30讲动量和动量定理(课件)

2024高考物理一轮复习第30讲动量和动量定理(课件)
2024
第30讲
高考一轮复习讲练测
动量和动量定理
目录
CONTENTS
01
复习目标
02
网络构建
03
知识梳理 题型归纳
04
真题感悟
内容索引
考点1:动量、动量变化量和冲量
知识考点
考点2:动量定理
夯基·必备基础 知识梳理
知识点1 动能、动量、动量变化量 的比较
知识点2 冲量及计算
知识点1 动量定理的理解 知识点2 动量定理的应用技巧
考点3:两类柱状模型 知识点1 流体类柱状模型 知识点2 微粒类柱状模型
考向1 动量和动量变化量的计算
提升·必考题型
归纳
考向2 冲量的计算
考向1 应用动量定理解释生活现象 考向2 应用动量定理求平均冲力
考向1 流体类柱状模型
考向3 在多过程问题中应用动量定理 考向2 微粒类柱状模型
复习目标
1、理解和掌握动量定理。 2、能够用动量定理解决和处理生活中的 实际问题。
CD
提升·必备题型归纳
真题感悟
真题感悟
提升·必备题型归纳
感谢观看 THANK YOU
夯基·必备基础知识ຫໍສະໝຸດ 知识点2 动量定理的应用技巧1.应用I=Δp求变力的冲量如果物体受到大小或方向改变的力的作 用,则不能直接用I=Ft求冲量,可以求出该力作用下物体动量的变化 Δp,等效代换得出变力的冲量I。2.应用Δp=FΔt求动量的变化。
提升·必备题型归纳 考向1 应用动量定理解释生活现象
D
提升·必备题型归纳
提升·必备题型归纳 考向3 在多过程问题中应用动量定理
ABD
提升·必备题型归纳
03 两类柱状模型

高考物理一轮复课件:第一讲 动量和动量定理

高考物理一轮复课件:第一讲 动量和动量定理

出点到回到抛出点的过程中,阻力做的功为W,阻力的冲量为I,则下列
表达式正确的是( ) D
A.W=0
I=f(t1+t2)
B.W=0
I=f(t2-t1)
C.W=-2fh
I=f(t1+t2)
D.W=-2fh
I=f(t2-t1)
例1
如图4所示,在倾角为θ=37°的固定斜面上有一质量m=5 kg的物
体沿斜面下滑,物体与斜面间的动摩擦因数μ=0.2,物体下滑2 s的时间
的墙壁后弹回,沿着同一直线以6 m/s的速度水平向左运动。碰撞前后钢球
的动量变化了多少?
做题前取正方向!!!!!
结果要写方向!!!!!
情境一:
如图1-2-1所示,一个物体质量为,初速度为 。在恒定合
力的作用下,经过一段时间,速度变为 。
思考:
(1)物体做什么运动?
(2)物体所受恒力在时间内的冲量是多少?
子下落时的空气阻力,取g=10 m/s2。则( B )
A.椰子落地时瞬间动量为20 kg·m/s
B.沙地对椰子的平均阻力约为4 000 N
C.沙地对椰子做的功约为4 000 J
D.沙坑的深度约为20 cm
6.(2022·山东卷,2)我国多次成功使用“冷发射”技术发射长征十
一号系列运载火箭。如图4所示,发射仓内的高压气体先将火
二、动量
1、定义:在物理学中,将质量和速度的乘积叫做物体的动量,用符号

p ”表示。
2、表达式:
p mv
3、单位: 千克米每秒,符号是kg·m/s
4、动量是矢量,其方向与物体速度的方向相同。
5、动量的变化量:p
的方向相同。
p2 p1 mv 2 mv1 ,方向与速度变化量

2023年高考物理一轮复习讲义——动量和能量的综合问题

2023年高考物理一轮复习讲义——动量和能量的综合问题

专题强化十三 动量和能量的综合问题 目标要求 1.掌握解决力学综合问题常用的三个观点.2.会灵活选用三个观点解决力学综合问题.1.解动力学问题的三个基本观点(1)动力学观点:运用牛顿运动定律结合运动学知识解题,可处理匀变速运动问题.(2)能量观点:用动能定理和能量守恒观点解题,可处理非匀变速运动问题.(3)动量观点:用动量守恒观点解题,可处理非匀变速运动问题.用动量定理可简化问题的求解过程.2.力学规律的选用原则(1)如果要列出各物理量在某一时刻的关系式,可用牛顿第二定律.(2)研究某一物体受到力的持续作用发生运动状态改变时,一般用动量定理(涉及时间的问题)或动能定理(涉及位移的问题)去解决问题.(3)若研究的对象为一物体系统,且它们之间有相互作用,一般用动量守恒定律和机械能守恒定律去解决问题,但需注意所研究的问题是否满足守恒的条件.(4)在涉及相对位移问题时则优先考虑能量守恒定律,系统克服摩擦力所做的总功等于系统机械能的减少量,即转化为系统内能的量.(5)在涉及碰撞、爆炸、打击、绳绷紧等物理现象时,需注意到这些过程一般均隐含有系统机械能与其他形式能量之间的转化,作用时间都极短,因此用动量守恒定律去解决.题型一 动量与能量观点的综合应用例1 (2020·天津卷·11)长为l 的轻绳上端固定,下端系着质量为m 1的小球A ,处于静止状态.A 受到一个水平瞬时冲量后在竖直平面内做圆周运动,恰好能通过圆周轨迹的最高点.当A 回到最低点时,质量为m 2的小球B 与之迎面正碰,碰后A 、B 粘在一起,仍做圆周运动,并能通过圆周轨迹的最高点.不计空气阻力,重力加速度为g ,求:(1)A 受到的水平瞬时冲量I 的大小;(2)碰撞前瞬间B 的动能E k 至少多大?答案 (1)m 15gl (2)5gl (2m 1+m 2)22m 2解析 (1)A 恰好能通过圆周轨迹的最高点,此时轻绳的拉力刚好为零,设A 在最高点时的速度大小为v ,由牛顿第二定律,有m 1g =m 1v 2l A 从最低点到最高点的过程中机械能守恒,取轨迹最低点处重力势能为零,设A 在最低点的速度大小为v A ,有12m 1v A 2=12m 1v 2+2m 1gl 联立解得v A =5gl由动量定理,有I =m 1v A =m 15gl(2)设两球粘在一起时速度大小为v ′,若A 、B 粘在一起后恰能通过圆周轨迹的最高点,需满足v ′=v A要达到上述条件,碰后两球速度方向必须与碰前B 的速度方向相同,以此方向为正方向,设B 碰前瞬间的速度大小为v B ,由动量守恒定律,有m 2v B -m 1v A =(m 1+m 2)v ′联立解得v B =5gl (2m 1+m 2)m 2 又E k =12m 2v B 2 可得碰撞前瞬间B 的动能E k 至少为E k =5gl ()2m 1+m 222m 2. 例2 如图所示,光滑水平轨道MN 左端与倾角θ=37°的足够长的斜面PM 连接,右端与半径为R 的14光滑圆弧轨道QN 连接.质量分别为m 1=2 kg 和m 2=3 kg 的滑块A 、B 之间夹有少量炸药,静止在MN 上(滑块A 、B 均可视为质点,炸药的质量忽略不计).炸药引爆后释放的化学能E =30 J 全部转化为两滑块的动能,之后滑块B 冲上圆弧轨道,滑块A 冲上斜面PM ,A 与斜面间的动摩擦因数为μ=0.5,g 取10 m/s 2,sin 37°=0.6,cos 37°=0.8.求:(1)炸药引爆后A 、B 到达M 、N 点时的动能E A 、E B 各为多大;(2)已知B 恰好能到达圆弧轨道的最高点Q ,圆弧轨道的半径R 是多大;(3)A 沿斜面上滑的最大距离x .答案(1)18 J12 J(2)0.4 m(3)0.9 m解析(1)设炸药引爆后A、B的速度大小各为v1、v2,取向左为正方向,由动量守恒定律得m1v1-m2v2=0由能量守恒定律得:E=12+12m2v22;2m1v1可得E A=12,E B=12m2v22;2m1v1联立解得E A=18 J,E B=12 J(2)B从N到Q的上滑过程,由机械能守恒定律得E B=m2gR可得R=0.4 m(3)A从M沿斜面上滑的过程,运用动能定理得:-m1gx sin 37°-μm1gx cos 37°=0-E A解得x=0.9 m.题型二力学三大观点的综合应用例3如图所示,一质量为M=3.0 kg的平板车静止在光滑的水平地面上,其右侧足够远处有一障碍物A,质量为m=2.0 kg的b球用长l=2 m的细线悬挂于障碍物正上方,一质量也为m的滑块(视为质点)以v0=7 m/s的初速度从左端滑上平板车,同时对平板车施加一水平向右的,大小为6 N的恒力F.当滑块运动到平板车的最右端时,二者恰好相对静止,此时撤去恒力F.当平板车碰到障碍物A时立即停止运动,滑块水平飞离平板车后与b球正碰并与b粘在一起成为c.不计碰撞过程中的能量损失,不计空气阻力.已知滑块与平板车间的动摩擦因数μ=0.3,g取10 m/s2,求:(1)撤去恒力F前,滑块、平板车的加速度各为多大,方向如何;(2)撤去恒力F时,滑块与平板车的速度大小;(3)c能上升的最大高度.答案(1)滑块的加速度为3 m/s2、方向水平向左,平板车的加速度为4 m/s2,方向水平向右(2)4 m/s(3)0.2 m解析 (1)对滑块,由牛顿第二定律得:a 1=μg =3 m/s 2,方向水平向左对平板车,由牛顿第二定律得:a 2=F +μmg M =6+0.3×203m/s 2=4 m/s 2,方向水平向右 (2)设经过时间t 1滑块与平板车相对静止,此时撤去恒力F ,共同速度为v 1则:v 1=v 0-a 1t 1v 1=a 2t 1解得:t 1=1 s ,v 1=4 m/s.(3)规定向右为正方向,对滑块和b 球组成的系统运用动量守恒得,m v 1=2m v 2,解得v 2=v 12=42m/s =2 m/s. 根据机械能守恒得,12×2m v 22=2mgh , 解得h =v 222g =420m =0.2 m. 例4 如图所示,水平桌面左端有一顶端高为h 的光滑圆弧形轨道,圆弧的底端与桌面在同一水平面上.桌面右侧有一竖直放置的光滑圆轨道MNP ,其形状为半径R =0.8 m 的圆环剪去了左上角135°后剩余的部分,MN 为其竖直直径,P 点到桌面的竖直距离也为R .一质量m =0.4 kg 的物块A 自圆弧形轨道的顶端释放,到达圆弧形轨道底端恰与一停在圆弧底端水平桌面上质量也为m 的物块B 发生弹性正碰(碰撞过程没有机械能的损失),碰后物块B 的位移随时间变化的关系式为s =6t -2t 2(关系式中所有物理量的单位均为国际单位),物块B 飞离桌面后恰由P 点沿切线落入圆轨道.(重力加速度g 取10 m/s 2)求:(1)BP 间的水平距离s BP ;(2)判断物块B 能否沿圆轨道到达M 点;(3)物块A 由静止释放的高度h .答案 (1)4.1 m (2)不能 (3)1.8 m解析 (1)设碰撞后物块B 由D 点以初速度v D 做平抛运动,落到P 点时v y 2=2gR ①其中v y v D=tan 45°② 由①②解得v D =4 m/s ③设平抛用时为t ,水平位移为s 2,则有R =12gt 2④ s 2=v D t ⑤由④⑤解得s 2=1.6 m ⑥物块B 碰后以初速度v 0=6 m/s ,加速度a =-4 m/s 2减速到v D ,则BD 过程由运动学公式v D 2-v 02=2as 1⑦解得s 1=2.5 m ⑧故BP 之间的水平距离s BP =s 2+s 1=4.1 m ⑨(2)若物块B 能沿轨道到达M 点,在M 点时其速度为v M ,由D 到M 的运动过程,根据动能定理, 则有-22mgR =12m v M 2-12m v D 2⑩ 设在M 点轨道对物块的压力为F N ,则F N +mg =m v M 2R⑪ 由⑩⑪解得F N =(1-2)mg <0,假设不成立,即物块不能到达M 点.(3)对物块A 、B 的碰撞过程,根据动量守恒有:m A v A =m A v A ′+m B v 0⑫根据机械能守恒有:12m A v A 2=12m A v A ′2+12m B v 02⑬ 由⑫⑬解得:v A =6 m/s ⑭设物块A 释放的高度为h ,对下落过程,根据动能定理有:mgh =12m v A 2,⑮ 由⑭⑮解得h =1.8 m .⑯课时精练1.如图,光滑轨道PQO 的水平段QO =h 2,轨道在O 点与水平地面平滑连接.一质量为m 的小物块A 从高h 处由静止开始沿轨道下滑,在O 点与质量为4m 的静止小物块B 发生碰撞.A 、B 与地面间的动摩擦因数均为μ=0.5,重力加速度为g .假设A 、B 间的碰撞为完全弹性碰撞,碰撞时间极短.求:(1)第一次碰撞后瞬间A 和B 速度的大小;(2)请计算说明物块A 与B 能否发生第二次碰撞.答案 见解析解析 (1)设碰撞前A 的速度为v ,对A 下滑过程由动能定理得:mgh =12m v 2,得v =2gh 碰撞中由动量守恒得:m v =m v ′+4m v B 由机械能守恒得:12m v 2=12m v ′2+12×4m v B 2 解得v ′=m -4m m +4m v ,v B =2m m +4mv 解得碰撞后A 的速度:v ′=-352gh B 的速度v B =252gh (2)碰撞后A 沿光滑轨道上升后又滑到O ,然后向右减速滑行至停止,对此过程由动能定理得:μmgx A =12m v ′2,解得x A =1825h B 沿地面减速滑行至停止,μ·4mgx B =12×4m v B 2 得x B =825h 因为x A >x B ,所以会发生第二次碰撞.2.如图,一水平放置的圆环形铁槽固定在水平面上,铁槽底面粗糙,侧壁光滑,半径R =2πm ,槽内放有两个大小相同的弹性滑块A 、B ,质量均为m =0.2 kg.两滑块初始位置与圆心连线夹角为90°;现给A 滑块一瞬时冲量,使其获得v 0=210 m/s 的初速度并沿铁槽运动,与B 滑块发生弹性碰撞(设碰撞时间极短);已知A 、B 滑块与铁槽底面间的动摩擦因数μ=0.2,g =10 m/s 2;试求:(1)A 、B 第一次相碰过程中,系统储存的最大弹性势能E pm ;(2)A 滑块运动的总路程.答案 见解析解析 (1)对A 滑块,由动能定理可得:-μmg 2πR 4=12m v 12-12m v 02 A 、B 碰撞时,两者速度相等时,储存的弹性势能最大,由动量守恒定律得:m v 1=(m +m )v 2又由能量守恒定律可得:12m v 12=12(m +m )v 22+E pm 解得:E pm =1.8 J (2)A 、B 发生弹性碰撞,由动量守恒定律得:m v 1=m v 3+m v 4又由机械能守恒定律可得:12m v 12=12m v 32+12m v 42 解得:v 3=0,v 4=6 m/sA 、B 的总路程为s 1,由功能关系有:-μmgs 1=0-12m v 02 A 、B 运动的总圈数为n ,有:s 1=2πRn得:n =2.5对A 、B 的运动过程分析,A 运动了1.25圈,故A 滑块的路程s 2=1.25×2πR =5 m.3.光滑四分之一圆弧导轨最低点切线水平,与光滑水平地面上停靠的一小车上表面等高,小车质量M =2.0 kg ,高h =0.2 m ,如图所示.现从圆弧导轨顶端将一质量为m =0.5 kg 的滑块由静止释放,当小车的右端运动到A 点时,滑块正好从小车右端水平飞出,落在地面上的B 点.滑块落地后0.2 s 小车右端也到达B 点.已知AB 相距L =0.4 m ,g 取10 m/s 2,求:(1)滑块离开小车时的速度大小;(2)圆弧导轨的半径;(3)滑块滑过小车的过程中产生的内能.答案 (1) 2 m/s (2) 1.8 m (3) 7 J解析 (1)滑块平抛过程中,沿竖直方向有:h =12gt 12 沿水平方向:L =v 1t 1解得:t 1=2h g =0.2 s ,v 1=L t 1=2 m/s (2)滑块滑出后小车做匀速直线运动:v 2=L t 1+Δt =0.40.2+0.2m/s =1 m/s 滑块在小车上运动的过程中,滑块与小车组成的系统在水平方向上动量守恒,选取向右为正方向,则:m v 0=m v 1+M v 2代入数据得:v 0=6 m/s滑块在圆弧导轨上运动的过程中机械能守恒,有: mgR =12m v 02 代入数据得:R =1.8 m(3)根据能量守恒可得滑块滑过小车表面的过程中产生的内能:ΔE =mgR -(12m v 12+12M v 22) 代入数据得:ΔE =7 J.4.如图所示,水平轨道OP 光滑,PM 粗糙,PM 长L =3.2 m .OM 与半径R =0.15 m 的竖直半圆轨道MN 平滑连接.小物块A 自O 点以v 0=14 m/s 向右运动,与静止在P 点的小物块B发生正碰(碰撞时间极短),碰后A 、B 分开,A 恰好运动到M 点停止.A 、B 均看作质点.已知A 的质量m A =1.0 kg ,B 的质量m B =2.0 kg ,A 、B 与轨道PM 的动摩擦因数均为μ=0.25,g 取10 m/s 2,求:(1)碰后A 、B 的速度大小;(2)碰后B 沿轨道PM 运动到M 所需时间;(3)若B 恰好能到达半圆轨道最高点N ,求沿半圆轨道运动过程损失的机械能.答案 (1) 4 m/s 5 m/s (2) 0.8 s (3) 1.5 J解析 (1)由牛顿第二定律,A 、B 在PM 上滑行时的加速度大小相同,均为a ,a =μm A g m A =μm B g m B=μg 代入数据得:a =2.5 m/s 2由运动学知识,对A ,v 12=2aL得碰后速度v 1=4 m/sA 、B 相碰的过程中系统水平方向的动量守恒,选取向右为正方向,得:m A v 0=m A v 1+m B v 2 得碰后B 的速度v 2=5 m/s(2)对B 物块,P 到M 的运动过程,有:L =v 2t -12at 2 结合(1)可解得:t 1=3.2 s(不符合,舍去)t 2=0.8 s即所求时间t =0.8 s(3)B 在M 点的速度大小v 3=v 2-at代入数值解得:v 3=3 m/sB 恰好过N 点,满足:m B v 42R=m B g M 到N 过程,由功能关系可得ΔE =12m B v 32-12m B v 42-2m B gR联立解得损失机械能:ΔE=1.5 J.。

2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)

2025版高考物理一轮总复习动量观点在电磁感应中的应用考点2动量守恒定律在电磁感应中的应用(含答案)

高考物理一轮总复习考点突破:考点2 动量守恒定律在电磁感应中的应用(能力考点·深度研析)光滑的平行导轨示意图质量m b=m a电阻r b=r a长度L b=L a力学观点杆b受安培力做变减速运动,杆a受安培力做变加速运动,稳定时,两杆的加速度均为零,以相等的速度匀速运动运动图像能量观点系统动能的减少转化为内能动量观点两杆组成的系统动量守恒(2023·全国甲卷)如图,水平桌面上固定一光滑U形金属导轨,其平行部分的间距为l,导轨的最右端与桌子右边缘对齐,导轨的电阻忽略不计。

导轨所在区域有方向竖直向上的匀强磁场,磁感应强度大小为B。

一质量为m、电阻为R、长度也为l的金属棒P静止在导轨上。

导轨上质量为3m的绝缘棒Q位于P的左侧,以大小为v0的速度向P运动并与P发生弹性碰撞,碰撞时间很短。

碰撞一次后,P和Q先后从导轨的最右端滑出导轨,并落在地面上同一地点。

P在导轨上运动时,两端与导轨接触良好,P与Q始终平行。

不计空气阻力。

求:(1)金属棒P滑出导轨时的速度大小;(2)金属棒P在导轨上运动过程中产生的热量;(3)与P碰撞后,绝缘棒Q在导轨上运动的时间。

[解析](1)由于绝缘棒Q与金属棒P发生弹性碰撞,根据动量守恒和机械能守恒可得3mv 0=3mv Q +mv P12×3mv 20=12×3mv 2Q +12mv 2P 联立解得v P =32v 0,v Q =12v 0 由题知,碰撞一次后,P 和Q 先后从导轨的最右端滑出导轨,并落在地面上同一地点,则金属棒P 滑出导轨时的速度大小为v P ′=v Q =12v 0。

(2)根据能量守恒有12mv 2P =12mv P ′2+Q 解得Q =mv 20。

(3)P 、Q 碰撞后,对金属棒P 分析,根据动量定理得-B I l Δt =mv P ′-mv P 又q =I Δt ,I =E R =ΔΦR Δt =Blx R Δt 联立可得x =mv 0R B 2l 2由于Q 为绝缘棒,无电流通过,做匀速直线运动,故Q 运动的时间为t =x v Q =2mR B 2l 2。

(统考版)2023版高考物理一轮复习 第六章 动量守恒定律 第1讲 动量和动量定理学生用书

(统考版)2023版高考物理一轮复习 第六章 动量守恒定律 第1讲 动量和动量定理学生用书

第1讲动量和动量定理一、动量、动量变化、冲量1.动量(1)定义:物体的________与________的乘积.(2)表达式:p=________.(3)方向:动量的方向与________的方向相同.2.动量的变化(1)因为动量是矢量,动量的变化量Δp也是________,其方向与速度的改变量Δv的方向________.(2)动量的变化量Δp的大小,一般用末动量p′减去初动量p进行计算,也称为动量的增量.即Δp=________.3.冲量(1)定义:________与____________的乘积叫做力的冲量.(2)公式:________.(3)单位:________.(4)方向:冲量是________,恒力冲量的方向__________.二、动量定理(1)内容:物体在一个过程始末的动量________等于它在这个过程中所受力的冲量.(2)表达式:p′-p=I或 ________=Ft.(3)矢量性:动量变化量的方向与________的方向相同,可以在某一方向上用动量定理.,科技情境如图所示为现代仿制的地动仪,龙口中的铜珠到蟾蜍口的距离为20 cm,当感知到地震时,质量为50 g的铜珠(初速度为零)离开龙口,落入蟾蜍口中,取重力加速度为10 m/s2,不计空气阻力.请完成以下判断题:(1)铜珠在空中运动的时间为0.2 s.( )(2)铜珠所受重力的冲量大小为0.1 N·s,方向竖直向下.( )(3)铜珠的动量越大,其惯性也越大.( )(4)铜珠刚落入蟾蜍口时的动量大小为0.1 kg·m/s.( )(5)铜珠在空中的整个过程中动量的变化量为0.1 kg·m/s,方向竖直向下.( )(6)铜珠所受合外力的冲量方向与物体动量变化的方向是一致的.( )考点一冲量及动量变化的计算1.对冲量的理解(1)时间性:冲量不仅由力决定,还由力的作用时间决定,恒力的冲量等于该力与该力的作用时间的乘积.(2)矢量性:对于方向恒定的力来说.冲量的方向与力的方向一致.2.动量、冲量、动量变化量、动量变化率的比较跟进训练1.颠球是足球运动基本技术之一,若质量为400 g的足球用脚颠起后,竖直向下以4 m/s 的速度落至水平地面上,再以3 m/s的速度反向弹回,取竖直向上为正方向,在足球与地面接触的时间内,关于足球动量变化量Δp和合外力对足球做的功W,下列判断正确的是( ) A.Δp=1.4 kg·m/s,W=-1.4 JB.Δp=-1.4 kg·m/s,W=1.4 JC.Δp=2.8 kg·m/s,W=-1.4 JD.Δp=-2.8 kg·m/s,W=1.4 J2.[2021·湖南卷,2]物体的运动状态可用位置x和动量p描述,称为相,对应p-x 图象中的一个点.物体运动状态的变化可用p-x图象中的一条曲线来描述,称为相轨迹.假如一质点沿x轴正方向做初速度为零的匀加速直线运动,则对应的相轨迹可能是( )3.如图所示,学生练习用头颠球.某一次足球静止自由下落80 cm,被重新顶起,离开头部后竖直上升的最大高度仍为80 cm.已知足球与头部的作用时间为0.1 s,足球的质量为,不计空气阻力,下列说法正确的是( )0.4 kg,重力加速度g取10ms2A.头部对足球的平均作用力为足球重力的10倍B.足球下落到与头部刚接触时动量大小为3.2 kg·m/sC.足球与头部作用过程中动量变化量大小为3.2 kg·m/sD.足球从最高点下落至重新回到最高点的过程中重力的冲量大小为3.2 N·s考点二动量定理的理解和应用1.应用动量定理解释的两类物理现象:(1)当物体的动量变化量一定时,力的作用时间Δt越短,力F就越大,力的作用时间Δt越长,力F就越小,如玻璃杯掉在水泥地上易碎,而掉在沙地上不易碎.(2)当作用力F一定时,力的作用时间Δt越长,动量变化量Δp越大,力的作用时间Δt越短,动量变化量Δp越小.2.用动量定理解题的基本思路:角度1应用动量定理解释生活现象例1. (多选)如图所示,篮球赛中,甲、乙运动员想组织一次快速反击,甲、乙以相同的速度并排向同一方向奔跑,甲运动员要将球传给乙运动员,不计空气阻力,则( )A .应该让运动员沿着3的方向抛出球B .应该让运动员沿着2的方向抛出球C .两运动员对球的冲量大小和方向都是相同的D .当乙接到球后要往身体方向收,延长触球时间,以免伤害手指角度2应用动量定理的定量计算例2. [2021·全国乙卷,19](多选)水平桌面上,一质量为m 的物体在水平恒力F 拉动下从静止开始运动.物体通过的路程等于s 0时,速度的大小为v 0,此时撤去F ,物体继续滑行2s 0的路程后停止运动.重力加速度大小为g .则( )A .在此过程中F 所做的功为12mv 02B .在此过程中F 的冲量大小等于32mv 0C .物体与桌面间的动摩擦因数等于v 02 4s0gD .的大小等于物体所受滑动摩擦力大小的2倍角度3动量定理与图象的综合例3. [2021·湖南卷,8](多选)如图(a),质量分别为m A 、m B 的A 、B 两物体用轻弹簧连接构成一个系统,外力F 作用在A 上,系统静止在光滑水平面上(B 靠墙面),此时弹簧形变量为x .撤去外力并开始计时,A 、B 两物体运动的a -t 图象如图(b)所示,S 1表示0到t 1时间内A 的a -t 图线与坐标轴所围图形的面积大小,S 2、S 3分别表示t 1到t 2时间内A 、B 的a -t 图线与坐标轴所围图形的面积大小.A 在t 1时刻的速度为v 0.下列说法正确的是( )A.0到t1时间内,墙对B的冲量等于m A v0B.m A>m BC.B运动后,弹簧的最大形变量等于xD.S1-S2=S3跟进训练4. (多选)一质量为2 kg的物块在合外力F的作用下从静止开始沿直线运动.F随时间t变化的图线如图所示,则( )A.t=1 s时物块的速率为1 m/sB.t=2 s时物块的动量大小为4 kg·m/sC.t=3 s时物块的动量大小为5 kg·m/sD.t=4 s时物块的速度为零考点三动量定理在生产、生活科技中的应用素养提升情境1 垒球(多选)如图所示,一个质量为0.18 kg的垒球,以25 m/s的水平速度飞向球棒,被球棒打击后反向水平飞回,速度大小变为45 m/s,设球棒与垒球的作用时间为0.01 s.下列说法正确的是( )A.球棒对垒球的平均作用力大小为1 260 NB.球棒对垒球的平均作用力大小为360 NC.球棒对垒球做的功为126 JD.球棒对垒球做的功为36 J情境2 安全气囊[2021·江西八校联考]如图所示,在发生交通事故时,安全气囊能够很好地保护人身安全.人的速度减为零的过程中,如果气囊没有弹开时的作用时间是气囊弹开时的110,则在速度变化相同的情况下,人在安全气囊未弹开与弹开时受到的作用力之比为( )A.1100B.110C.100 D.10情境3 高空坠物[2022·北京模拟]城市进入高楼时代后,高空坠物已成为危害极大的社会安全问题,由物理学知识可知,即使是很小的物体从高处坠落也可能对人造成严重的伤害.设一个50 g 的鸡蛋从16楼的窗户自由落下,相邻楼层的高度差约为3 m,鸡蛋下落起点距地面的高度约为45 m,鸡蛋撞击地面后速度减为0.为便于估算,不计空气阻力,不计与地面撞击过程中鸡蛋的重力,g取10 m/s2.(1)求鸡蛋与地面撞击前的速度大小以及撞击过程中地面对鸡蛋作用的冲量大小;(2)若鸡蛋与地面撞击的时间为3×10-3 s,求鸡蛋对地面的平均冲击力的大小.情境4 “水刀”现代切割技术常用的一种“水刀”如图所示.它将水从高压水枪中高速射出,形成很细的水束,用来切割钢板等物体.已知水束的横截面积为S,速度为v,并垂直射向钢板,若水射上钢板后的速度视为0,水的密度为ρ,求水对钢板的平均冲击力.[思维方法]流体类问题分析步骤(1)建立“柱状”模型,沿流速v的方向选取一段柱形流体,其横截面积为S.(2)微元研究,作用时间Δt内的一段柱形流体的长度为Δl,对应的质量为Δm=ρSv Δt.(3)建立方程,应用动量定理研究这段柱状流体.第六章动量守恒定律第1讲动量和动量定理必备知识·自主排查一、1.(1)质量速度(2)mv (3)速度2.(1)矢量相同(2)p′-p3.(1)力力的作用时间(2)I=Ft(3)N·s(4)矢量与力的方向相同二、(1)变化量(2)mv′-mv (3)合力科技情境(1)√(2)√(3)×(4)√(5)√(6)√关键能力·分层突破1.解析:物体的质量m=400 g=0.4 kg,以竖直向上为正方向,则足球与地面碰撞过程中动量的变化量为Δp=mv2-mv1=0.4×3 kg·m/s-0.4×(-4) kg·m/s=2.8 kg·m/s,方向竖直向上;由动能定理可知,合外力做的功为W=12mv−2212mv12=12×0.4×32J-12×0.4×42J=-1.4 J,选项C正确,A、B、D错误.答案:C2.解析:质点沿x轴正方向做初速度为零的匀加速直线运动,由运动学公式v2=2ax可得v=√2ax,设质点的质量为m,则质点的动量p=m√2ax,由于质点的速度方向不变,则质点动量p的方向始终沿x轴正方向,根据数学知识可知D正确.答案:D3.解析:设足球自由落体80 cm时的速度为v1,时间为t1,有v1=√2gh=4 m/s,t1=√2hg=0.4 s,反弹后做竖直上抛运动,而上升的最大高度也为80 cm,根据运动的对称性可知,上抛的初速度v2=v1=4 m/s,上升的时间t2=t1=0.4 s;对足球与人接触的过程,Δt=0.1 s,取向上为正方向,由动量定理有(F̅-mg)·Δt=mv2-(-mv1)=Δp,解得F̅=36 N,Δp=3.2 kg·m/s,即头部对足球的平均作用力为36 N,而足球的重力为4 N,则头部对足球的平均作用力是重力的9倍,此过程的动量变化量大小为Δp=3.2 kg·m/s,故A错误,C正确;足球刚接触时的动量为p1=mv1=1.6 kg·m/s,故B错误;足球运动的全过程,所受重力的冲量为I G=mg(t1+Δt+t2)=3.6 N·s,故D错误.故选C.答案:C例1 解析:甲和乙相对静止,所以甲将球沿着对方抛出,即沿着3方向抛出,就能传球成功,A正确,B错误;根据合外力的冲量等于动量的变化量,可知甲抛球与乙接球时球的速度的变化量大小相等、方向相反,动量的变化量等大反向,所以两运动员对球的冲量等大反向,C错误;当乙接到球后要往身体收,根据动量定理可知,动量变化量相同时,延长作用时间,可减小冲击力,以免伤害手指,D正确.答案:AD例 2 解析:设物体与桌面间的动摩擦因数为μ,根据功的定义,可知在此过程中,F做的功为W F=Fs0=12mv02+μmgs0,选项A错误;物体通过路程s0时,速度大小为v0,撤去F后,由牛顿第二定律有μmg=ma2,根据匀v02=2a2·2s0,联立解得μ=v024s0g,选项C正确;水平桌面上质量为m的物体在恒力F作用下从静止开始做匀加速直线运动,有F-μmg=ma1,又v02=2a1s0,可得a1=2a2,可得F=3μmg,即F的大小等于物体所受滑动摩擦力大小的3倍,选项D错误;对F作用下物体运动的过程,由动量定理有Ft-μmgt=mv0,联立解得F的冲量大小为I F=Ft=32mv0,选项B正确.答案:BC例3 解析:将A 、弹簧、B 看成一个系统,0到t 1时间内,重力、支持力对系统的冲量的矢量和为零,墙对系统的冲量等于系统动量的变化量,即墙对B 的冲量等于m A v 0,A 正确;t 1时刻之后,A 、B 组成的系统动量守恒,由题图(b)可知,t 1到t 2这段时间内,S 3>S 2,故B 物体速度的变化量大于A 物体速度的变化量,可知A 物体的质量大于B 物体的质量,B 正确;撤去外力F 后,A 、B 和弹簧组成的系统机械能守恒,B 运动后,A 、B 具有动量,根据系统机械能守恒和动量守恒可知,弹簧的最大形变量小于x ,C 错误;t 2时刻,A 、B 的加速度均最大,此时弹簧拉伸到最长,A 、B 共速,设速度为v ,a - t 图象与时间轴所围图形的面积代表速度的变化量,0~t 2时间内,A 的速度变化量为S 1-S 2,t 1~t 2时间内,B 的速度变化量为S 3,两者相等,即S 1-S 2=S 3,D 正确.答案:ABD4.解析:对物块,由动量定理可得:Ft =mv ,解得v =Ftm ,t =1 s 时的速率为v =1 m/s ,A 正确;在F - t 图中面积表示冲量,故t =2 s 时物块的动量大小p =Ft =2×2 kg ·m/s =4 kg ·m/s ,t =3 s 时物块的动量大小为p ′=(2×2-1×1) kg ·m/s =3 kg ·m/s ,B 正确,C 错误;t =4 s 时物块的动量大小为p ″=(2×2-1×2) kg ·m/s =2 kg ·m/s ,故t =4 s 时物块的速度为1 m/s ,D 错误.答案:AB情境1 解析:设球棒对垒球的平均作用力为F̅,由动量定理得F ̅·t =m (v -v 0),取v =45 m/s ,则v 0=-25 m/s ,代入上式,得F ̅=1 260 N ,由动能定理得W =12mv 2−12mv 02=126 J ,选项A 、C 正确.答案:AC情境2 解析:本题考查动量定理的应用,为基础性题.根据动量定理可得F Δt =mv ,得F =mv Δt,当时间变为110,作用力变为10倍.故选D.答案:D情境3 解析:(1)根据机械能守恒定律mgh =12mv 2解得鸡蛋撞击地面前的速度大小v =√2gh =30 m/s 以向下为正方向,根据动量定理 I =Δp =0-mv =-1.5 N ·s撞击过程中地面对鸡蛋作用的冲量大小为1.5 N ·s (2)根据I =Ft ,解得F =It =-500 N根据牛顿第三定律可知,鸡蛋对地面的平均冲击力大小为500 N 答案:(1)30 m/s 1.5 N ·s (2)500 N情境4 解析:取很短时间Δt ,则Δt 内射到钢板上水柱的长度l =v Δt ,水柱的质量m =ρlS =ρSv Δt .设钢板对水柱的作用力为F ,取竖直向上为正方向,由动量定理得:F Δt =0-(-mv ),可解得F =mv Δt=ρSv 2,由牛顿第三定律可得,水对钢板的平均冲击力为F ′=F =ρSv 2.答案:ρSv 2。

高考物理一轮复习讲义:专题23 动量定理及其应用

高考物理一轮复习讲义:专题23 动量定理及其应用

高三一轮同步复习专题23 动量定理及应用知识点一、动量和冲量的概念理解1、关于冲量和动量,下列说法中正确的是()A.冲量是反映力对位移的积累效应的物理量C.冲量是物体动量变化的原因B.动量是描述物体运动过程的物理量D.冲量方向与动量方向一致2、如图所示,两个质量相等的小球从同一高度沿倾角不同的两个光滑固定斜面由静止自由滑下,下滑到达斜面底端的过程中()A.两物体所受重力冲量相同B.两物体所受合外力冲量不相同C.两物体到达斜面底端时时间相同D.两物体到达斜面底端时动量相同3、关于物体的动量,下列说法正确的是()A.动量越大的物体,其质量也越大B.动量越大的物体,它的速度一定越大C.如果物体的动量改变,物体的动能一定改变D.如果物体的动能改变,物体的动量一定改变4、关于动量的变化,下列说法中正确的是()∆的方向与运动方向相同A.做直线运动的物体速度增大时,动量的增量p∆的方向与运动方向相反B.做直线运动的物体速度减小时,动量的增量p∆一定为零C.物体的速度大小不变时,动量的增量pD.物体做平抛运动时,动量的增量一定不为零5、一质点静止在光滑水平面上,现对其施加水平外力F,F随时间t按正弦规律变化,如图所示,下列说法正确的是()A.第2s末,质点的动量为0B.第2s末,质点距离出发点最远C.在0~2s内,F的功率一直增大D.在0~4s内,F的冲量为0知识点二、动量定理的理解和应用6、行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体。

若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()A.增加了司机单位面积的受力大小B.减少了碰撞前后司机动量的变化量C.将司机的动能全部转换成汽车的动能D .延长了司机的受力时间并增大了司机的受力面积7、高空作业须系安全带。

如果质量为m 的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前人下落的距离为h (可视为自由落体运动)。

2023版高考物理一轮总复习专题6动量第1讲动量冲量动量定理课件

2023版高考物理一轮总复习专题6动量第1讲动量冲量动量定理课件

动量变化量 矢量
过程量
2.冲量与功的比较
项目
冲量

作用在物体上的力和力的作 作用在物体上的力和物体在
定义
用时间的乘积
力的方向上的位移的乘积
单位
N·s
J
公式
I=Ft(F为恒力)
W=Flcos α(F为恒力)
标矢性
矢量
标量
①表示力对时间的累积 意义
②是动量变化的量度
①表示力对空间的累积 ②是能量变化多少的量度
都是过程量,都与力的作用过程相联系
1.(2021年南昌联考)(多选)如图所示,在倾角为θ的斜面上,有一
个 质 量 为 m 的 小 滑 块 沿 斜 面 向 上 滑 动 , 经 过 时 间 t1 , 速 度 为 零 后 又 下
滑,经过时间t2,回到斜面底端.滑块在运动过程中,受到的摩擦力大
小始终是Ff,对于整个运动过程,下列说法正确的是
(2)在海鸥飞行方向正下方的地面上,有一与地面平齐、长度L=6 m的岩石,以岩石左端为坐标原点,建立如图所示坐标系.若海鸥水平 飞行的高度仍为20 m,速度大小在15~17 m/s 之间,为保证鸟蛤一定能 落到岩石上,求释放鸟蛤位置的x坐标范围.
解:(1)设平抛运动的时间为 t,鸟蛤落地前瞬间的速度大小为 v.竖 直方向分速度大小为 vy,根据运动的合成与分解得 H=21gt2,vy=gt,v = v20+v2y,
在碰撞过程中,以鸟蛤为研究对象,取速度 v 的方向为正方向,由 动量定理得-FΔt=0-mv,
联立,代入数据得 F=500 N.
(2)若释放鸟蛤的初速度为v1=15 m/s,设击中岩石左端时,释放点 的x坐标为x1,击中右端时,释放点的x坐标为x2,得x1=v1t,x2=x1+ L,

新课标2023版高考物理一轮总复习第六章动量动量守恒定律第1讲动量定理课件

新课标2023版高考物理一轮总复习第六章动量动量守恒定律第1讲动量定理课件

压公仔的头部,使之缓慢下降至某一位置,之后迅速放手。公仔的
头部经过时间t,沿竖直方向上升到另一位置时速度为零。此过程弹簧始终处于
弹性限度内,不计空气阻力及弹簧质量。在公仔头部上升的过程中
Байду номын сангаас
()
A.公仔头部的机械能守恒
B.公仔头部的加速度先增大后减小
C.弹簧弹力冲量的大小为mgt
D.弹簧弹力对头部所做的功为零
情境创设 一个质量为m的物体,在粗糙的水平面上运动,物体与水平面间的动摩擦因数 为μ。
微点判断 (1)动量越大的物体,其速度越大。 (2)物体的动量越大,其惯性也越大。 (3)物体所受合力不变,则动量也不改变。 (4)物体沿水平面运动时,重力不做功,其冲量为零。 (5)物体所受合外力的冲量的方向与物体末动量的方向相同。 (6)物体所受合外力的冲量的方向与物体动量变化量的方向是一致的。
[要点自悟明]
1.动能、动量和动量变化量的比较
物理量
动能
动量
动量变化量
定义 物体由于运动而具 物体的质量和速度的 物体末动量与初动量的
有的能量
乘积
矢量差
定义式 标矢性
Ek=12mv2 标量
p=mv 矢量
Δp=p′-p 矢量
特点
状态量
状态量
过程量
关联方程
Ek=2pm2 ,Ek=12pv,p= 2mEk,p=2vEk
2.应用动量定理解题的三点说明 (1)动量定理反映了力的冲量与动量变化量之间的因果关系,即外力的冲量是原因,
物体的动量变化量是结果。 (2)动量定理中的冲量是合力的冲量,而不是某一个力的冲量,它可以是合力的冲
量,可以是各力冲量的矢量和,也可以是外力在不同阶段冲量的矢量和。 (3)动量定理表达式是矢量式,等号包含了大小相等、方向相同两方面的含义。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
答案D
解析汽车剧烈碰撞瞬间,安全气囊弹出,立即跟司机身体接触.司机在很短时间内由运动到静止,动量的变化量是一定的,由于安全气囊的存在,作用时间变长,据动量定理Δp=FΔt知,司机所受作用力减小;又知安全气囊打开后,司机受力面积变大,因此减小了司机单位面积的受力大小;碰撞过程中,动能转化为内能.综上可知,选项D正确.
2.冲量的计算方法
(1)恒力的冲量:直接用定义式I=Ft计算.
(2)变力的冲量
①作出F-t图线,图线与t轴所围的面积即为变力的冲量,如图所示.
②对于易确定始、末时刻动量的情况,可用动量定理求解.
考向1动量与动能的比较
例1 (多选)在光滑水平面上,原来静止的物体在水平力F的作用下,经过时间t、通过位移L后动量变为p、动能变为Ek.以下说法正确的是()
3.用细绳拴一小球在竖直面内做圆周运动,从A点再次转到A点的过程中,不计空气阻力,下列说法正确的是()
A.合力的冲量为0
A. +mgB. -mg
C. +mgD. -mg
答案A
解析安全带对人起作用之前,人做自由落体运动;由v2=2gh可得,安全带对人起作用前瞬间,人的速度v= ;安全带达到最大伸长量时,人的速度为零;从安全带开始对人起作用到安全带伸长量最大,取竖直向下为正方向,由动量定理可得(mg- )t=0-mv,故 = +mg= +mg,故选项A正确.
A.整个过程物块运动的时间为6s
B.整个过程物块运动的时间为8s
C.整个过程中物块的位移大小为40m
D.整个过程中物块的位移大小为60m
答案B
解析在整个过程中由动量定理得Ft1-μmgt=0,解得t=8s,选项A错误,B正确;在物块前4s运动的过程中由动量定理得Ft1-μmgt1=mv,解得v=20m/s,因物块加速和减速过程的平均速度都为 = = ,全程的平均速度也为 ,则物块的总位移x= t= ×8m=80m,选项C、D错误.
C.合外力的冲量为0
D.摩擦力的总冲量为Ff(t1+t2)
答案B
解析重力对滑块的总冲量为mg(t1+t2),A项错误;支持力对滑块的总冲量为mg(t1+t2)cosθ,B项正确;整个过程中滑块的动量发生了改变,故合外力的总冲量不为0,C项错误;上滑过程和下滑过程摩擦力的方向相反,故若以沿斜面向上为正方向,摩擦力的总冲量为Ff(t2-t1),D项错误.
③建立方程,应用动量定理FΔt=Δp研究
考向1应用动量定理处理流体类问题
例7 为估算池中睡莲叶面承受雨滴撞击产生的平均压强,小明在雨天将一圆柱形水杯置于露台,测得1小时内杯中水位上升了45mm.查询得知,当时雨滴竖直下落速度约为12m/s,据此估算该压强约为(设雨滴撞击睡莲后无反弹,不计雨滴重力,雨水的密度为1×103kg/m3)()
2.解题基本思路
(1)确定研究对象.
(2)对物体进行受力分析.可先求每个力的冲量,再求各力冲量的矢量和——合力的冲量;或先求合力,再求其冲量.
(3)抓住过程的初、末状态,选好正方向,确定各动量和冲量的正负号.
(4)根据动量定理列方程,如有必要还需要补充其他方程,最后代入数据求解.
考向1用动量定理解释生活中的现象
2018·全国卷Ⅰ·T24
实验:验证动量定理
2021·江苏卷·T11
2020·全国卷Ⅰ·T23
试题
情境
生活实践类
安全行车(安全气囊)、交通运输(机车碰撞、喷气式飞机)、体育运动(滑冰接力、球类运动)、火箭发射、爆炸、高空坠物
学习探究类
气垫导轨上滑块碰撞、斜槽末端小球碰撞

目标要求 1.能用动量定理解释生活中的有关现象.2.能利用动量定理解决相关问题,会在流体力学中建立“柱状”模型.
考向2应用动量定理处理微粒类问题
例8 宇宙飞船在飞行过程中有很多技术问题需要解决,其中之一就是当飞船进入宇宙微粒尘区时,如何保持速度不变的问题.假设一宇宙飞船以v=2.0×103m/s的速度进入密度ρ=2.0×10-6kg/m3的微粒尘区,飞船垂直于运动方向上的最大横截面积S=5m2,且认为微粒与飞船相碰后都附着在飞船上,则飞船要保持速度v不变,所需推力多大?
2.人从高处跳到低处,为了安全,一般都是脚尖先着地,这样做的目的是()
A.减小着地时所受冲量
B.使动量增量变得更小
C.增大人对地面的压强,起到安全作用
D.延长与地面的作用时间,从而减小地面对人的作用力
答案D
解析人在和地面接触时,人的速度减为零,由动量定理可知(F-mg)t=mv,而脚尖着地可以增加人与地面的作用时间,由公式可知可以减小所受地面的冲击力.故选D.
考点二
1.内容:物体在一个过程中所受力的冲量等于它在这个过程始末的动量变化量.
2.公式:Ft=mv′-mv或I=p′-p.
1.物体所受合外力的冲量方向与物体动量变化量的方向是一致的.(√)
2.动量定理描述的是某一状态的物理规律.(×)
3.运动员接篮球时手向后缓冲一下,是为了减小动量的变化量.(×)
1.对动量定理的理解
例4 (2020·全国卷Ⅰ·14)行驶中的汽车如果发生剧烈碰撞,车内的安全气囊会被弹出并瞬间充满气体.若碰撞后汽车的速度在很短时间内减小为零,关于安全气囊在此过程中的作用,下列说法正确的是()
A.增加了司机单位面积的受力大小
B.减少了碰撞前后司机动量的变化量
C.将司机的动能全部转换成汽车的动能
D.延长了司机的受力时间并增大了司机的受力面积
答案40N
解析设飞船在微粒尘区的飞行时间为Δt,
则在这段时间内附着在飞船上的微粒质量Δm=ρSvΔt
微粒由静止到与飞船一起运动,微粒的动量增加,
由动量定理得
FΔt=Δmv=ρSvΔtv
所以飞船所需推力大小
F′=F=ρSv2=2.0×10-6×5×(2.0×103)2N=40N.
课时精练
1.对于一定质量的某物体而言,下列关于动能和动量的关系正确的是()
1.动量与动能的比较
动量
动能
物理意义
描述机械运动状态的物理量
定义式
p=mv
Ek= mv2
标矢性
矢量
标量
变化因素
合外力的冲量
合外力所做的功
大小关系
p=
Ek=
变化量
Δp=Ft
ΔEk=Fl
联系
(1)都是相对量,与参考系的选取有关,通常选取地面为参考系
(2)若物体的动能发生变化,则动量一定也发生变化;但动量发生变化时动能不一定发生变化
考向3利用F-t图像求冲量
例3 一质点静止在光滑水平面上,现对其施加水平外力F,力F随时间按正弦规律变化,如图所示,下列说法正确的是()
A.第2s末,质点的动量为0
B.第2s末,质点的动量方向发生变化
C.第4s末,质点回到出发点
D.在1~3s时间内,力F的冲量为0
答案D
解析由题图可知,0~2s时间内F的方向和质点运动的方向相同,质点经历了加速度逐渐增大的加速运动和加速度逐渐减小的加速运动,所以第2s末,质点的速度最大,动量最大,方向不变,故选项A、B错误;2~4s内F的方向与0~2s内F的方向不同,该质点0~2s内做加速运动,2~4s内做减速运动,所以质点在0~4s内的位移均为正,第4s末没有回到出发点,故选项C错误;在F-t图像中,图线与横轴所围的面积表示力F的冲量,由题图可知,1~2s内的面积与2~3s内的面积大小相等,一正一负,则在1~3s时间内,力F的冲量为0,故选项D正确.
考点三
研究
对象
流体类:液体流、气体流等,通常已知密度ρ
微粒类:电子流、光子流、尘埃等,通常给出单位体积内粒子数n
分析
步骤
①构建“柱状”模型:沿流速v的方向选取一段小柱体,其横截面积为S
②微元
研究
小柱体的体积ΔV=vSΔt
小柱体质量m=ρΔV=ρvSΔt
小柱体粒子数N=nvSΔt
小柱体动量p=mv=ρv2SΔt
2020·江苏卷·T12(3)
2020·北京卷·T13
2019·江苏卷·T12(1)
2018·天津卷·T9(1)
2018·海南卷·T14
2021·全国乙卷·T14
2020·全国卷Ⅱ·T21
2020·全国卷Ⅲ·T15
2018·全国卷Ⅱ·T24
动量和能量的综合
2020·天津卷·T11
2020·山东卷·T18
(1)Ft=p′-p是矢量式,两边不仅大小相等,而且方向相同.式中Ft是物体所受的合外力的冲量.
(2)Ft=p′-p除表明两边大小、方向的关系外,还说明了两边的因果关系,即合外力的冲量是动量变化的原因.
(3)由Ft=p′-p,得F= = ,即物体所受的合外力等于物体动量的变化率.
(4)当物体运动包含多个不同过程时,可分段应用动量定理求解,也可以全过程应用动量定理.
考向2动量定理的有关计算
例5 高空作业须系安全带.如果质量为m的高空作业人员不慎跌落,从开始跌落到安全带对人刚产生作用力前,人下落的距离为h(可视为自由落体运动),此后经历时间t安全带达到最大伸长量,若在此过程中该作用力始终竖直向上.重力加速度为g,忽略空气阻力,则该段时间安全带对人的平均作用力大小为()
考点一
1.动量
(1)定义:物体的质量和速度的乘积.
(2)表达式:p=mv.
(3)方向:与速度的方向相同.
2.动量的变化
(1)动量是矢量,动量的变化量Δp也是矢量,其方向与速度的改变量Δv的方向相同.
(2)动量的变化量Δp,一般用末动量p′减去初动量p进行矢量运算,也称为动量的增量.即Δp=p′-p.
3.冲量
(1)定义:力与力的作用时间的乘积叫作力的冲量.
(2)公式:I=FΔt.
(3)单位:N·s.
(4)方向:冲量是矢量,其方向与力的方向相同.
相关文档
最新文档