(整理)53双因素方差分析.
双因素试验的方差分析

i 1
j 1
要判断因素A,B及交互作用AB对试验结果是否 有显著影响,即为检验如下假设是否成立:
H01 :1 2 a 0
H02 : 1 2 b 0
H03 : ij 0 i 1, 2, , a; j 1, 2, ,b
➢ 总离差平方和的分解定理 仿单因素方差分析的方法,考察总离差平方和
a
Ti.2
b,
i1
p T 2 ab ,
DB
b
T.
2 j
a,
j1
ab
R
X
2 ij
i1 j1
例1 设甲、乙、丙、丁四个工人操作机器Ⅰ、Ⅱ、Ⅲ各一天, 其产品产量如下表,问工人和机器对产品产量是否有显著 影响?
机器 B 工人 A
ⅠⅡ
Ⅲ
甲
50 63 52
乙
47 54 42
丙
47 57 41
F值
F 值临介值
因素A 因素B
SS A SSB
df A
MS A
SS A df A
FA
MS A MSE
df B
MSB
Байду номын сангаас
SSB df B
FB
MSB MSE
F (a 1 ,
ab n 1) F (b 1 ,
ab n 1)
A B
误差 总和
SS AB
SSE SST
df AB df E dfT
MS AB SS AB
F0.01 3,6 9.78 F0.05 3,6 4.76 F0.01 2,6 10.92
FB F0.01 2,6
结论:工人对产品的产量有显著影响, 机器对产品的产量有极显著影响。
双因素方差分析

y ij ij ij 2 , ij ~ N ( 0, )
假定 ij 相互独立
i 1,2,, r , j 1,2,, s
沿用有重复试验的有关记号,模型可以改写为
yij i j ij ij ~ N (0, 2 ) i 0, j 0, j i
FA B
S A B ( r 1)( s 1) S E rs( t 1)
~ F (( r 1)( s 1), rs( t 1))
表1 双因素方差分析表
来源
因子A 因子B 交互作用 误差 总和
平方和
自由度
均方
SA SA r 1 SB SB s 1
S A B S A B ( r 1)(s 1)
1 t yij yijk t k 1 1 r t y j yijk rt i 1 k 1
引入总的偏差平方和(总变差):
ST yijk y
i 1 j 1 k 1 r s t
2
可以证明
其中
ST S E S A S B S AB
S E yijk yij
§4.2
双因素方差分析
有重复试验的方差分析
无重复试验的方差分析
一、有重复试验的双因素方差分析
设有两个因素A,B作用于试验指标。
因素A有r个水平 A1 , A2 , Ar , 因素B有s个水平B1 , B2 ,, Bs , 现对因素A,B的每对组合 ( Ai , B j ) 都作 t (t 2)次试 验(称为等重复试验)。
表2 方差分析表
来源
因子A 因子B 误差 总和
平方和
双因素方差分析结果解读

双因素方差分析结果解读双因素方差分析(Two-wayANOVA)是一种分析数据的统计方法,它可以检验同一总体的两个或多个变量之间的差异。
双因素方差分析的一个重要特点是它可以检验基于不同组别、不同资源或者不同情况下同一个总体上的差异。
它可以检验在多个组别之间存在差异、或者在不同组别之间存在偏差的情况。
本文将通过介绍双因素方差分析的原理、分析方法、结果解读方法,帮助读者更好地解读双因素方差分析的结果。
首先,双因素方差分析的原理是涉及两个不同的自变量,即因变量和一个或多个自变量。
因变量是一个连续的响应变量,而自变量则分为定类的自变量和定序的自变量,根据不同的实验需求采用不同的变量。
例如,定类的自变量可以用于比较基于性别或不同药物治疗后被试者的反应,定序的自变量则可用于比较基于疗程的不同反应。
其次,双因素方差分析需要构建一个双因素的实验单元,即一个自变量和一个因变量的实验设计,它可以确定每个组别之间的比较,比如在不同性别和不同处方药物治疗下被试者的反应。
双因素方差分析可以检验两个或多个因变量是否相对独立,以及独立或不独立的因变量是否存在差异。
最后,双因素方差分析的结果解读是比较重要的一步,它可以有效地解释出双因素实验单元下的差异或偏差,帮助研究者更好地做出他们的决策。
通常,根据双因素方差分析的结果可以检测出两个或多个自变量的差异,以及基于性别、时间、处方药物治疗等不同情况下的被试者的反应等。
只有当双因素方差分析的F值超过某一显著性水平的时候(通常为0.05或0.01),双因素方差分析的结果才被认为是显著的,可以通过结果解释和决策。
综上所述,双因素方差分析是一种非常有用的统计方法,可以检验同一总体的两个或多个变量之间的差异。
其中双因素方差分析原理,分析方法,以及结果解读方法都非常重要,有助于我们在解决实际问题时更好地解读双因素方差分析的结果,识别出不同组别,或者在不同组别之间存在的差异,从而发现新的实验结果,增加研究的学术价值。
双因素方差分析【最新】

双因素方差分析一、双因素方差分析的含义和类型(一)双因素方差分析的含义和内容在实际问题的研究中,有时需要考虑两个因素对实验结果的影响。
例如上一节中饮料销售量的例子,除了关心饮料颜色之外,我们还想了解销售地区是否影响销售量,如果在不同的地区,销售量存在显著的差异,就需要分析原因,采用不同的推销策略,使该饮料品牌在市场占有率高的地区继续深入人心,保持领先地位,在市场占有率低的地区,进一步扩大宣传,让更多的消费者了解,接受该产品。
在方差分析中,若把饮料的颜色看作影响销售量的因素A,饮料的销售地区看作影响因素B。
同时对因素A和因素B进行分析,就称为双因素方差分析。
双因素方差分析的内容包括:对影响因素进行检验,究竟一个因素在起作用,还是两个因素都起作用,或是两个因素的影响都不显著。
双因素方差分析的前提假定:采样地随机性,样本的独立性,分布的正态性,残差方差的一致性。
(二)双因素方差分析的类型双因素方差分析有两种类型:一个是无交互作用的双因素方差分析,它假定因素A 和因素B的效应之间是相互独立的,不存在相互关系;另一个是有交互作用的双因素方差分析,它假定因素A和因素B的结合会产生出一种新的效应。
例如,若假定不同地区的消费者对某种品牌有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景;否则,就是无交互作用的背景。
有交互作用的双因素方差分析已超出本书的范围,这里介绍无交互作用的双因素方差分析。
1.无交互作用的双因素方差分析。
无交互作用的双因素方差分析是假定因素A和因素B的效应之间是相互独立的,不存在相互关系;2.有交互作用的双因素方差分析。
有交互作用的双因素方差分析是假定因素A和因素B的结合会产生出一种新的效应。
例如,若假定不同地区的消费者对某种颜色有与其他地区消费者不同的特殊偏爱,这就是两个因素结合后产生的新效应,属于有交互作用的背景,否则,就是无交互作用的背景。
二、数据结构方差分析的基本思想:通过分析研究中不同来源的变异对总变异的贡献大小,从而确定可控因素对研究结果影响力的大小。
双因素试验方差分析

SS E df E
SST
注意
df E dfT df A f B , SSE SST SSA SSB
各因素离差平方和的自由度为水平数减一,总平方 和的自由度为试验总次数减一。
双因素(无交互作用)试验的方差分析表
简便计算式:
SS A DA p, SSB DB p
双因素试验的方差分析
在实际应用中,一个试验结果(试验指标)往往 受多个因素的影响。不仅这些因素会影响试验结果, 而且这些因素的不同水平的搭配也会影响试验结果。 例如:某些合金,当单独加入元素A或元素B时, 性能变化不大,但当同时加入元素A和B时,合金性 能的变化就特别显著。 统计学上把多因素不同水平搭配对试验指标的 影响称为交互作用。交互作用在多因素的方差分析 中,把它当成一个新因素来处理。 我们只学习两个因素的方差分析,更多因素的 问题,用正交试验法比较方便。
双因素无重复(无交互作用)试验资料表
因素 B 因素 A
B1
X 11 ... X a1
B2
X 12 ... X a2
... Bb
... ... ... X 1b ... X ab
Ti. X ij X i. T b i.
j 1
b
A1 ... Aa
a b i 1 j 1
1 b i ij i 水平Ai对试验结果的效应 a j 1 1 a j ij j 水平Bj对试验结果的效应 b i 1 试验误差 ij X ij ij
特性:
i 1
a
i
0;
j 1
b
j
0; ij ~ N 0,
双因素试验方差分析课件

未来将结合其他统计方法,如回归 分析、聚类分析等,以更全面地揭 示多因素对试验结果的影响。
THANKS
感谢您的观看
重复原则
在相同条件下重复进行试 验,提高试验的可靠性和 准确性。
对照原则
设置对照组,以消除非试 验因素的影响,突出试验 因素的作用。
试验的分类
STEP 02
STEP 03
多因素试验
同时考虑多个因素对试验 结果的影响。
STEP 01
双侧双因素试验
同时考虑两个因素对试验 结果的影响。
单侧双因素试验
只考虑两个因素中的一个 因素对试验结果的影响。
结果解释
根据方差分析的结果,解释各因素 对观测值的影响程度和显著性,得 出结论。
双因素试验方差分析的注意事项
数据的正态性和同方差性
样本量和试验精度
在进行方差分析之前,需要检验数据 是否符合正态分布和同方差性,以确 保分析结果的准确性。
适当增加样本量可以提高试验精度和 降低误差,对方差分析的结果产生积 极影响。
方差分析的步 骤
01
02
03
04
计算平均值和方差
计算各组的平均值和方差。
检验假设条件Βιβλιοθήκη 检查是否满足方差分析的假设 条件。
进行方差分析
使用适当的统计软件或公式进 行方差分析,并解释结果。
结论与建议
根据分析结果得出结论,并提 出相应的建议。
双因素试验方差分析
双因素试验方差分析的步骤
确定试验因素
明确试验的两个因素,并确定每个 因素的取值水平。
试验设计
根据试验目的和因素水平进行试验 设计,确保每个因素的每个水平都 被充分考虑。
数据收集
双因素方差分析剖析

双因素方差分析剖析在双因素方差分析中,有两个主要的因素被研究。
这些因素可以是两个不同的处理条件、两个不同的处理时间、两个不同的处理剂量等。
同时,每个因素都可以有两个或多个水平(即取值范围)。
为了进行双因素方差分析,研究人员首先需要确定研究对象和目标变量。
然后他们需要确定每个因素的水平和变量的测量方法。
例如,如果他们想要研究两种不同的药物对于治疗一种疾病的效果,他们需要确定每种药物的剂量以及测量疾病症状的方法。
接下来,研究人员需要收集数据,并进行统计分析。
在双因素方差分析中,主要的统计指标是方差和F值。
方差用来衡量不同因素和不同水平之间的差异。
F值是方差之比,用来判断不同因素之间是否存在显著差异。
进行双因素方差分析之后,研究人员可以得出结论。
如果F值大于临界值,那么可以得出不同因素之间存在显著差异的结论。
如果F值小于临界值,那么就可以得出不同因素之间没有显著差异的结论。
此外,研究人员还可以通过进行后续的多重比较来进一步分析不同因素之间的差异。
常用的多重比较方法包括Tukey方法和Bonferroni方法。
然而,双因素方差分析也存在一些限制。
首先,它只能处理两个或多个因素对于一个或多个变量的影响。
如果有更多的因素需要考虑,就需要进行更复杂的分析方法。
其次,双因素方差分析假设变量的分布是正态分布的,并且各组之间的方差是相等的。
如果数据不符合这些假设,就需要采用其他的非参数方法进行分析。
总之,双因素方差分析是一种常用的统计方法,可以帮助研究人员研究两个或更多因素对于一个或多个变量的影响。
它可以帮助确定不同因素之间的重要性,并且可以探索不同因素之间的相互作用。
然而,研究人员需要在收集数据和进行分析时注意假设的前提条件,并且需要根据具体情况选择合适的统计方法。
双因素方差分析

这种各个因素的不同水平的搭配所产生的新的影响 在统计上称为交互作用. 各因素间是否存在交互作用是 多因素方差分析新产生的问题.
一、无交互作用的方差分析
考虑的因素记为A的第i种效应和因素B的第j 种效应分 别记作αi , βj,试验误差记作εij,其数据结构如下:
第7.3节 双因素方差分析
一、无交互作用的方差分析 二、有交互作用的方差分析 三、利用Excel进行双因素方差分析的步骤
在许多实际问题中, 往往需要同时考察几个因素对指 标的影响,这种同时研究两个因素对试验指标影响的方 差分析,就是 双因素方差分析 (double factor analysis of variance)问题.
B1
B2
B3
A1
390 380 440 420 370 350
A2
390 410 450 430 370 380
解 由Excel软件依次单击:工具-数据分析-方差分析:可重 复双因素方差分析, 如下图
单击“确定”后,得分析结果如下:
由此可见,因素B显著,而因素A和A与B交互作用都 不显著.下面着重考察因素B.
方差来源 平方和 自由度
A B 误差 总和
Q1
r-1
Q2
s-1
Q3 (r-1)(s-1)
Q
rs-1
均方 S12 S22 S32
F值 S12/S32 S22/S32
显著性
二、有交互作用的方差分析
如果因素A 和因素B 没有交互作用, 则只需要在各 个组合水平下各做一次试验就可以进行方差分析.
但是如果因素A 和因素B 有交互作用,这时必须在 各个组合水平下做重复试验方可进行方差分析.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
§5.3 双因素方差分析I 无交互作用的双因素方差分析(1) 数学模型 现在考虑影响试验指标的因素有两个:A, B 。
因素A 有水平r 个;有水平s 个;因素A, B 的各种组合水平均只作一次试验;两因素之间无交互作用。
数据结构表假设:(1*) {:1;1}ij Y i r j s ≤≤≤≤独立;(2*) 2~(,)ij ij Y N μσ,即具有相同的方差;(3*)ij ij ij Y e μ=+,其中 2~(0,)ij e N σ,且{}ij e 独立; 数学模型: i j i j ij i jY e μαβγ=++++ , 其中:111()r s ij i j rs μμ-===∑∑—总平均值; 11si i j j s μμ-⋅==∑;11rj iji r μμ-⋅==∑;i i αμμ⋅=-—因素A 在水平Ai 下对试验指标的效应值;j j βμμ⋅=-—因素B 在水平Bj 下对试验指标的效应值;10r i i α==∑; 10s j j β==∑;rA1212s s r r rs Y Y Y Yr Y ⋅12..s Y Y Y ⋅⋅⋅i j i j i i γμμαβ=---—因素A, B 的交互效应值;{}ij e —随机部分,假定:独立同正态分布;注: “无交互作用”等价于:0ij γ=,即ij i i μμαβ=++;(2) 方差分析(i) 假设检验问题 两种因素分别进行检验:0112:0r H ααα====即因素A 对试验指标影响不显著;0212:0s H βββ====即因素B 对试验指标影响不显著;注:当01H 和02H 成立时,,(1;1)ij i r j s μμ=≤≤≤≤.(ii) 构造F-统计量及否定域 设()111r siji j Y rs Y-===∑∑;11si ij j Y s Y -⋅==∑;11rj ij i Y r Y -⋅==∑;2211()rsT ij i j S Y Y ===-∑∑;221()rA i i S s Y Y ⋅==-∑;221()sB j j S r Y Y ⋅==-∑;2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑;注:注意,2211()rsE ij i j i j S Y Y Y Y ⋅⋅===--+∑∑211()r sij ij i i j j i j e e e e μμμμ⋅⋅⋅⋅===+----++∑∑ 211[()()]rsij i j ij i j i j e e e e μμμμ⋅⋅⋅⋅===--++--+∑∑211()rsij i j i j e e e e ⋅⋅===--+∑∑.这里利用了“无交互效应”的假设条件:0i j i j i jγμμμμ⋅⋅=--+=.由此可见,2E S 与α⋅及β⋅无关,即与假设01H 和02H 是否成立无关。
“无交互效应”的假设条件就是这里提出来的!!* 引理: 设n rs =,则(1*) 分解式:2222T A B E S S S S =++; (2*) 独立性:{2A S ,2B S ,2E S}是两两独立的,且2A S +2B S 与2E S 独立; (3*) 统计特性:当01H 和02H 同时成立时,有2221~T n S σχ-;当01H 成立时,有2221~A r S σχ-;当02H 成立时,有2221~Bs S σχ-;对任意情形,有2222(1)(1)(1)(1)(1)~E n r s r s S σχχ-------=.注:2[(1)(1)]ES r s --是2σ的一个无偏估计. 证2211[()()()]rsT ij i j i j i j S Y Y Y Y Y Y Y Y ⋅⋅⋅⋅===--++-+-∑∑221111()()rsrsij i j i i j i j Y Y Y Y Y Y ⋅⋅⋅=====--++-∑∑∑∑ 211()rsj i j Y Y ⋅==+-∑∑112()()rsi j i j Y Y Y Y ⋅⋅==+--∑∑112()()rsij i j i i j Y Y Y Y Y Y ⋅⋅⋅==+--+-∑∑112()()rsij i j j i j Y Y Y Y Y Y ⋅⋅⋅==+--+-∑∑.易见, 此式中的三个混合项均为零. 故(1*)成立. 独立性(2*)的证明如下: 注意,(,)0k ij i j Cov Y Y Y Y Y ⋅⋅⋅--+=; (,)0ij i j Cov Y Y Y Y Y ⋅⋅--+=.(**)而这两个等式的成立只要展开即知. 于是,k Y ⋅与ij i j Y Y Y Y ⋅⋅--+独立;Y与ij i j Y Y Y Y ⋅⋅--+独立;从而,j Y Y ⋅-与211()s r ij i j j i Y Y Y Y ⋅⋅==--+∑∑独立; 故2A S 与2E S独立;同理,可证:2B S 与2E S独立; 按抽样分布定理,Y 与2A S 和2B S 均独立,而i Y ⋅与j Y ⋅独立是假设条件的结果.故2A S 与2B S 独立;显然,2A S +2B S 与2E S 独立.结论(3*)是抽样分布定理和结论(2*)的推论.*构造F-统计量如下:22(1)~(1,(1)(1))[(1)(1)]A A E S r F F r r s S r s -=-----,当01H 成立时;22(1)~(1,(1)(1))[(1)(1)]B A E S s F F s r s S r s -=-----,当02H 成立时; 注:上面的分析表明:对假设01H 和02H 可以分别进行检验。
* 否定域的结构 解释:当0i α≈时,2A S 应接近零;当0j β≈时,2B S 应接近零;按此解释,01H 和02H 的否定域结构形式为:2{:}A A K Y S a =>;2{:}B B K Y S b =>;为了决定a, b , 构作方程:01(|)A A P F a H α>=;02(|)B B P F b H α>=;由此即可决定a, b .(iii) 方差分析表无交互效应的双因素方差分析表在进行判决时,首先选取(0,1)α∈,然后由下列方程确定临界值a 和b :01(|)A P F a H α=>;02(|)B P F b H α=>.最后进行判决:若A F a >,则拒绝01H ;否则,接受01H ; 若B F b >,则拒绝02H ;否则,接受02H ; 例5.3.1(p.164)A S 2A E F S S a χ=B S 2B E F S S b χ=E S此题的数据表为因素A = {A1, A2, A3} ;因素B = {B1, B2, B3} , 即每个因素三个水平。
试问:每个水平组合各作一次试验,要求分析两个因素对产品合格率的影响是否显著? 练习题(p.188) :3; II 有交互作用的双因素方差分析 (1) 数据结构表有交互作用的双因素方差分析数据结构表在这个数据表中,水平的每个组合(,)i j A B 都有n 个观测值{:1}ijk Y k n ≤≤. (2) 数学模型rA 11,r Y Y(1*) 假设:{:1;1;1}ijkY i r j s k n ≤≤≤≤≤≤独立;2~(,),(1;1;1)ijk ijk Y N i r j s k n μσ≤≤≤≤≤≤;注:{:1;1;1ijkYi rj s k n≤≤≤≤≤≤都有相同的方差2σ.(2*)模型i j k i j i j k ij i ji j kY e e μμαβγ=+=++++; 其中,2~(0,)ijk e N σ,{}ijk e 独立;111()rsij i j rs μμ-===∑∑; i i αμμ⋅=-,10r i i α==∑;j j βμμ⋅=-,10sj j β==∑; ()ij ij i j γμμαβ=-++,10sij j γ==∑,10rij i γ==∑;(3*) 解释:i i αμμ⋅=-反映因素A 的水平 Ai 对试验指标的影响效应;j j βμμ⋅=-反映因素B 的水平 Bj 对试验指标的影响效应;()ij ij i j γμμαβ=-++反映组合(,)i j A B 对试验指标的交互效应.(3) 假设检验问题 这里,要求检验三个内容,因此,有三个假设:0112:0;rH ααα==== 0212:0;s H βββ====03:0,(1,1);ij H i r j s γ=≤≤≤≤(4) 检验统计量的设计 按数学模型,有 (1*) 误差22111()rsnT ijk i j k S Y Y ====-∑∑∑2111()rsni j ij ijk i j k e e αβγ====+++-∑∑∑;22211()()r rA i i i i i S sn Y Y sn e e α⋅⋅⋅⋅===-=+-∑∑;22211()()s sB j j j j j S rn Y Y rn e e β⋅⋅⋅⋅===-=+-∑∑;2211()rsA B ij i j i j S n Y Y Y Y ⨯⋅⋅⋅⋅⋅===--+∑∑211()rsij ij i j i j n e e e e γ⋅⋅⋅⋅⋅===+--+∑∑;22111()rsnE ijk ij i j k S Y Y ⋅====-∑∑∑2111()rsnijk ij i j k e e ⋅====-∑∑∑;其中,1111()r s nijki j k Y rsn Y -====∑∑∑;11nij ijk k Y n Y -⋅==∑;111()sni ijkj k Y sn Y -⋅⋅===∑∑; 111()r nj ijki k Y rn Y -⋅⋅===∑∑.(2*) 基本结论(i) 误差的分解式:22222T A B A B E S S S S S ⨯=+++;(ii) 误差之间的独立性: 在任何情况下,2222{, ,, } A B A B E S S S S ⨯是两两独立的,222+ +A B A B S S S ⨯与2 E S 独立;(iii) 误差的统计特性: 当01H ,02H ,03H 成立时,2221~T r s nS σχ-;当01H 成立时, 2221~A r S σχ-; 当02H 成立时, 2221~B s S σχ-; 当03H 成立时,2221~A B rs S σχ⨯-;在任何情况下,222(1)~E r s n S σχ-.(证明方法类似于无交互作用的情形) (3*) 设计F-检验统计量当01H 成立时, 22(1)~(1,(1))[(1)]A A E S r F F r rs n S rs n -=---;当02H 成立时,22(1)~(1,(1))[(1)]B B E S s F F s rs n S rs n -=---;当03H 成立时,22(1)~((1)(1),(1))[(1)]A B A BE S sF F r s rs n S rs n ⨯⨯-=----. (4*) 否定域的结构形式跟无交互效应情形的设计一样;(5) 方差分析表( 重复观测n 次的情形)有交互效应的双因素方差分析表在进行判决时,首先选取(0,1)α∈,然后由下列方程确定临界值a ,b ,c :01(|)A P F a H α=>; 02(|)B P F b H α=>; 03(|)A B P F c H α⨯=>.注:A S 2A E F S S a =B S2B E F S Sb =A B S ⨯ A B E F S S ⨯1c αχ-=E S(1*) 当重复试验次数1n =时,不能考虑“有交互效应的双因素”方差分析问题.(2*) 双因素方差分析的统一数学模型应该以有交互效应的模型为准.(3*) 如果ij μ为常数,即,(1,1)ij i r j s μμ=∀≤≤≤≤,则相应的0ij γ=。