3.1.2函数的表示法-【新教材】人教A版(2019)高中数学必修第一册课件
合集下载
3.函数的表示法【新教材】人教A版高中数学必修第一册PPT课件

(2)求分段函数的函数值时,自变量的取值范围在哪 一段,就用哪一段的解析式。
0 例:已知f
(
x)
2x 3 x
1, 1,
x x
2,则f 2
(
1 2
)
______
(3)研究分段函数时,应根据“先分后合”的原则,特
别是画图象时,应先将各段函数图象画出,从而得到
整个函数的图象。(注意端点“实心”还是“空心”)
例:y
x
x
x
, ,
x 0, x 0,
x , x 0, y | x | x , x 0,
3.函数的表示法【新教材】人教A版高 中数学 必修第 一册PP T课件
一、基础知识讲解 3.函数的表示法【新教材】人教A版高中数学必修第一册PPT课件
1、分段函数:
(1)分段函数是一个函数,其定义域是各段“x取值 范围”的并集,其值域是各段“y的取值范围”的并 集。(定义域的区间端点需不重不漏!)
二、例题分析 3.函数的表示法【新教材】人教A版高中数学必修第一册PPT课件
函数图象作图要点:
例5、画出函数 y = | x |(的1)图字象母。O, x, y
解:
(2)必要的点、值
列表 描点
由绝对值的概念可得:(3)标上函数解析式 连线
x , x 0, (4)尺规作图
y x , x 0,
变化趋向。
⑶列表法:列出表格来表示两个变量的函数关系。
➢优点:不需要计算就可以直接看出与自变量相对应的函数值。
二、例题分析 例3、某种笔记本的单价是5元,买x(x∈{1,2,3,4, 5})个笔记本需要y元;试用函数的三种表示法表示函 数 y=f (x) .
分析: “y=f (x)”可以用哪三种方法表示?.
3.1.2函数的表示法-【新教材】人教A版(2019)高中数学必修第一册课件

f(x)+2f(-x)=x2+2x
令x=-x得
方程的思想
f(-x)+2f(x)=x2 - 2x
f(x)+2f(-x)=x2+2x
联立两式
f(-x)+2f(x)=x2
-
2x
得f(x)= 1 x2 2x
3
知识点二求函数的解析式
1求下列函数的解析式: (1)已知函数f( x+1)=x+2 x,求f(x);
互转化,
③便于研究函数性质.
面对实际
图 直观形象地表示出函数 像 的变化情况,有利于通过 法 图象研究函数的某些性质.
只能近似地求出 自变量的值所对应 的函数值,而且有 时误差太大.
情景时, 我们要根 据不同的 需要选择 恰当的表
列 不通过计算就可以直
只能表示自变量 示法表示
表 接看出与自变量对应的 取值较少的有限的 函数.
做函数的定义域;与x的值相对应的 y值 叫做函数值,
所有函数值组成的集合 叫做函数的值域。
任意性
函数值的集合{f(x)| x∈A}
唯一性
函数的三要素:定义域、值域、对应关系
我们初中已经接触函数几种常用的表示法
1、解析法:用数学表达式表示两个变量之间的对应关系; 2、图象法:用图象表示两个变量之间的对应关系; 3、列表法:用表格表示两个变量之间的对应关系.
(1) 函数的表示法 图 象 法 列表法
(2)注意分段函数的表示方法及其图象的画法. (3)函数解析式的求法.
2.本节课运用了什么数学思想方法? 数形结合
(2)已知函数f(x)是二次函数,且f(0)=1,f(x+1)- f(x)=2x,求f(x).
知识点三 画函数图像
函数的表示法【新教材】人教A版高中数学必修第一册精品ppt课件

[-1,8].
方法规律 描点法作函数图象的三个步骤
【跟踪训练】
2.作出下列函数图象: (1)y=1-x(|x|≤2,x∈Z); (2)y=2x2-4x-3(0≤x<3). 解:(1)因为|x|≤2,x∈Z, 所以x∈{-2,-1,0,1,2}. 所以函数的图象为直 线y=1-x上的孤立点. 如图所示.
所以f(g(x))>g(f(x))的解为x=2.
x f(g(x)) g(f(x))
1 23 1 31 3 13
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
探索点二 作函数的图象 【例 2】作出下列函数的图象并求出其值域. (1)y=2x+1,x∈[0,2]; (2)y= ,x∈[2,+∞); (3)y=x2+2x,x∈[-2,2]
方法规律 描点法作函数图象的三个步骤
【跟踪训练】
2.作出下列函数图象: (1)y=1-x(|x|≤2,x∈Z); (2)y=2x2-4x-3(0≤x<3). 解:(1)因为|x|≤2,x∈Z, 所以x∈{-2,-1,0,1,2}. 所以函数的图象为直 线y=1-x上的孤立点. 如图所示.
所以f(g(x))>g(f(x))的解为x=2.
x f(g(x)) g(f(x))
1 23 1 31 3 13
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
3函.1数.2的第表1课示时法【新函教数材的】表人示教法A-版【高新中教数材学】必人修教第A版一(册2课01件9 )2高 优中 秀p数pt学课必件修第一 册课件( 共33张 PPT)
探索点二 作函数的图象 【例 2】作出下列函数的图象并求出其值域. (1)y=2x+1,x∈[0,2]; (2)y= ,x∈[2,+∞); (3)y=x2+2x,x∈[-2,2]
数学人教A版(2019)必修第一册3.1.2函数的表示法(共40张ppt)

搁了一些时间;
(3)我从家出发后,心情轻松,一路缓缓加速行进.
习题演练
[练习1]某教师将其一周课时节次列表如下:
x/星期
1
2
3
4
5
f(x)/节次
3
5
4
3
1
从上表可看出,这个关于x的函数的定义域为
{1,2,3,4,5}
{1,3,4,5}
1
____________;值域为___________,f(f(2))=_____.
(2)
1
f(x+ )=
x2
+
1
2
(3)f(x)+2f(-x)=x2+2x
(1)解:由题意,设 f(x)=ax+b(a≠0).
即a2=4,且ab+b=-3;
则 f [f(x)]=a(ax+b)+b=4x-3,
解得:a=2,b=-1; 或 a=-2,b=3
所以 f(x)=2x-1; 或
1
(2)解:因为f(x+ )=
x
函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等等.
习题演练
1、下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个
图象写出一件事.
(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了
作业本再上学;
(2)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽
用解析法可将函数y=ƒ(x)表示为 ƒ(x)=5x,
x∈{1,2,3,4,5}
用列表法可将函数y=ƒ(x)表示为 笔记本数x(个) 1 2 3 4 5
总价 y(元)
用图象法可将函数y=ƒ(x)表示为
(3)我从家出发后,心情轻松,一路缓缓加速行进.
习题演练
[练习1]某教师将其一周课时节次列表如下:
x/星期
1
2
3
4
5
f(x)/节次
3
5
4
3
1
从上表可看出,这个关于x的函数的定义域为
{1,2,3,4,5}
{1,3,4,5}
1
____________;值域为___________,f(f(2))=_____.
(2)
1
f(x+ )=
x2
+
1
2
(3)f(x)+2f(-x)=x2+2x
(1)解:由题意,设 f(x)=ax+b(a≠0).
即a2=4,且ab+b=-3;
则 f [f(x)]=a(ax+b)+b=4x-3,
解得:a=2,b=-1; 或 a=-2,b=3
所以 f(x)=2x-1; 或
1
(2)解:因为f(x+ )=
x
函数的图象既可以是连续的曲线,也可以是直线、折线、离散的点等等.
习题演练
1、下图中哪几个图象与下述三件事分别吻合得最好?请你为剩下的那个
图象写出一件事.
(1)我离开家不久,发现自己把作业本忘在家里了,于是返回家里找到了
作业本再上学;
(2)我骑着车离开家后一路匀速行驶,只是在途中遇到一次交通堵塞,耽
用解析法可将函数y=ƒ(x)表示为 ƒ(x)=5x,
x∈{1,2,3,4,5}
用列表法可将函数y=ƒ(x)表示为 笔记本数x(个) 1 2 3 4 5
总价 y(元)
用图象法可将函数y=ƒ(x)表示为
3.1.2 函数的表示法(一)课件- 高一上学期数学人教A版(2019)必修第一册

解:∵ 2f x +
∴ 2f
消去f
1
x
1
x
+f x
1
x
1
f
x
1
=
x
解得 = −2 + 1 .
= x x ≠ 0 ,求f x 的解析式.
=x x≠0 ,
Байду номын сангаас
x≠0 ,
,解得f x =
2x
3
−
1
,x
3x
≠ 0.
知识梳理·自主探究
师生互动·合作探究
方法总结
当同一个对应关系f 中的两个变量之间有互为相反数
1
(或互为倒数)关系时,可以用−x(或 )代替原式中的x
x
所得方程与原方程联立构造方程组求解.
,
知识梳理·自主探究
师生互动·合作探究
角度3 赋值法求函数解析式
例6:已知对任意实数x,y都有f x + y − 2f y = x 2 + 2xy − y 2 + 3x − 3y,
求函数f x 的解析式.
2
x
x
x
1
2
1
+ +1 −2 +1 +3
x2
x
x
2
1
1
+ 1 − 2 + 1 + 3,
x
x
1
1 2
1
f 1+ = 1+
− 2 1 + + 3,
x
x
x
1
2
f x = x − 2x + 3. 又∵ 1 + ≠ 1,
x
∴ 2f
消去f
1
x
1
x
+f x
1
x
1
f
x
1
=
x
解得 = −2 + 1 .
= x x ≠ 0 ,求f x 的解析式.
=x x≠0 ,
Байду номын сангаас
x≠0 ,
,解得f x =
2x
3
−
1
,x
3x
≠ 0.
知识梳理·自主探究
师生互动·合作探究
方法总结
当同一个对应关系f 中的两个变量之间有互为相反数
1
(或互为倒数)关系时,可以用−x(或 )代替原式中的x
x
所得方程与原方程联立构造方程组求解.
,
知识梳理·自主探究
师生互动·合作探究
角度3 赋值法求函数解析式
例6:已知对任意实数x,y都有f x + y − 2f y = x 2 + 2xy − y 2 + 3x − 3y,
求函数f x 的解析式.
2
x
x
x
1
2
1
+ +1 −2 +1 +3
x2
x
x
2
1
1
+ 1 − 2 + 1 + 3,
x
x
1
1 2
1
f 1+ = 1+
− 2 1 + + 3,
x
x
x
1
2
f x = x − 2x + 3. 又∵ 1 + ≠ 1,
x
高中数学必修第一册人教A版3.1.2_函数的表示法_课件

4.解方程组法或消元法:在已知式子中,含有关于两个不同变量的函数,而这两个变量
有着某种关系,这时就要根据两个变量的关系,建立一个新的关于两个变量的式子,
由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种
方法叫做解方程组法或消元法.
跟踪训练三
1.已知f(x)是一次函数,且f(f(x))=2x-1,求f(x)的解析式;
1,-2≤x≤0,
=
x,0<x≤3,
其“段”是不等长的.
小试身手
1.判断(正确的打“√”,错误的打“×”)
(1)任何一个函数都可以同上述三种方法表示.
( ×)
(2)函数 f(x)=2x+1 不能用列表法表示.
( √ )
(3)函数的图象一定是定义区间上一条连续不断的曲线. ( × )
(4)分段函数由几个函数构成.
∴ቊ
= 1,
∴所求二次函数为f(x)=x2-x+1.
= −1.
(3)∵对于任意的x都有f(x)+2f(-x)=3x-2,
2
∴将x替换为-x,得f(-x)+2f(x)=-3x-2,联立方程组消去f(-x),可得f(x)=-3x-3 .
解题方法(求函数解析式的四种常用方法)
1.直接法(代入法):已知f(x)的解析式,求f(g(x))的解析式,直接将g(x)代入即可.
76
88
75
86
80
赵 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三们同学在高一学年度的数学学习情况做一个分析.
有着某种关系,这时就要根据两个变量的关系,建立一个新的关于两个变量的式子,
由两个式子建立方程组,通过解方程组消去一个变量,得到目标变量的解析式,这种
方法叫做解方程组法或消元法.
跟踪训练三
1.已知f(x)是一次函数,且f(f(x))=2x-1,求f(x)的解析式;
1,-2≤x≤0,
=
x,0<x≤3,
其“段”是不等长的.
小试身手
1.判断(正确的打“√”,错误的打“×”)
(1)任何一个函数都可以同上述三种方法表示.
( ×)
(2)函数 f(x)=2x+1 不能用列表法表示.
( √ )
(3)函数的图象一定是定义区间上一条连续不断的曲线. ( × )
(4)分段函数由几个函数构成.
∴ቊ
= 1,
∴所求二次函数为f(x)=x2-x+1.
= −1.
(3)∵对于任意的x都有f(x)+2f(-x)=3x-2,
2
∴将x替换为-x,得f(-x)+2f(x)=-3x-2,联立方程组消去f(-x),可得f(x)=-3x-3 .
解题方法(求函数解析式的四种常用方法)
1.直接法(代入法):已知f(x)的解析式,求f(g(x))的解析式,直接将g(x)代入即可.
76
88
75
86
80
赵 磊
68
65
73
72
75
82
班平均分
88.2
78.3
85.4
80.3
75.7
82.6
请你对这三们同学在高一学年度的数学学习情况做一个分析.
3.1.2 函数的表示法课件新教材】人教A版(2019)高一数学必修第一册

解析:选 C.设 y=k,由题意得 1=k,
x
2
解得 k=2,所以 y=2x.
3.1 函 数 的 概 念
随堂练习
3、已知f(x+1)=x2+2x+2,求f(x)
解: 法一:配凑法 f(x+1)=x2+2x+2=(x+1)2+1, ∴f(x)=x2+1.
法二:换元法 令t=x+1 则x=t-1 f(t)=(t-1)²+2(t-1) =t²-2t+1+2t-2 =t²-1 ∴f(x)=x2+1
3.1 函 数 的 概 念
随堂练习
1、函数的基本表示法(列表法、图象法、解析法) 2、描点法画一些简单函数的图象。 3、求函数解析式 4、求函数解析式的配凑法、换元法
谢谢您的聆听
y
4
•
2
2 1 O 1 2
x
2
• 4
f(x)=2x,x∈R,且|x|≤2
3.1 函 数 的 概 念
典型例题
例2. 画出下列函数的图象: (2)f(x)=x+2,(x∈N,且|x|≤3)
f(x)=x+2,(x∈N,且|x|≤3)
3.1 函 数 的 概 念
变式训练
1、画出下列函数的图象:(1)y=x+1(x≤0);(2)y =x2-2x(x>1,或x<-1)
3
3.1 函 数 的 概 念
温故知新
知识点一 区间的概念及表示
1.一般区间的表示:设a,b是两个实数,而且a<b,我们规定:
定义 {x|a≤x≤b} {x|a<x<b} {x|a≤x<b} {x|a<x≤b}
3.1.2 函数的表示(第一课时)课件-高一上学期数学人教A版(2019)必修第一册

只可能是 ( B )
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
03
拓展提升
Expansion And Promotion
函数的表示
解析式的求法 - 代入法
题型一. 由f(x)的解析式求f[g(x)]的解析式.
例1.已知f(x)=x2 +x -1,则f(x+1)=________.
【解析】因为f (x) x2 x 1, 所以f (x 1) (x 1)2 (x 1) 1
函数的表示
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张 城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同学的成绩基本上 都大幅领先于班级平均水平.
函数的表示
【练习1】已知f (x) x 1,则f ( f (2)) _______. x
【解析】因为f (2)
【解析】令t x 1 1, 则 x t 1, x (t 1)2 所以f (t) (t 1)2 2(t 1) t 2 1 所以f (t) t 2 1,t 1 所以f (x) x2 1,x 1
换元法:已知f(g(x))=h(x),求f(x)时,往往可设g(x)=t,从中解出x,代入h(x)
代入法:已知f (x)求f(g(x)),只需把f (x)中的x用g(x)代入即可; 配凑法:已知f (g(x))=h(x),求f (x)的问题,往往把右边的h(x)整理或配凑成只
含g(x)的式子, 再用x将g(x)替换即可得f(x); 换元法:已知f(g(x))=h(x),求f (x)时,往往可设g(x)=t,从中解出x,代入h(x) 进行
【解析法】y=5x,x∈{1,2,3,4,5} 【图像法】函数图像可以表示如图:
y
【列表法】函数可以表示如下表:
笔记本数x 1 2 3 4 5 钱数y 5 10 15 20 25
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
笔记本数m 1 2 3 4 5
5
钱数y 5 10 15 20 25
0 1 2 34 5
m
在用三种方法表示函数时要注意:
【1】解析法必须标明函数的定义域 【2】列表法必须罗列出所有的自变量与函数值之间的对应关系 【3】图像法必须搞清楚函数图像是“点”还是“线”
(1)比较函数的三种表示法,它们各有什么特点? (2)所有函数都能用解析法吗?列表法与图像法 呢?请你举出实例加以说明
-1 -2
-3
y=x+1
1 2 3x
y
5 4 3 2 1
–5 –4 –3 –2 –1 o 1 2 3 4 5 x
–1 –2
概念辨析 几种常见的分段函数:
(1)符号函数: (2)含绝对值符号的函数: (3)自定义函数: (4)取整函数:
典例讲解 分段函数定义域、值域、求值问题
1.练习册(三维设计)P42 2.练习册(三维设计)P43 3.练习册(三维设计)P43
2 1
1 234
所以函数的图像如图所示: 【解法二】(翻折法)先画出函数y=x-2的图像
然后把图像中位于横轴下方的部分翻转到上方即可.
变式2:画函数y=|x²-1|的图像.
y
3
2
y = x2 1
1-3 -2 -1 oFra bibliotek-1 -2
1 2 3x
-3
y
3
2 1
y = x2 1
-3 -2 -1 o
-1 -2
解析法,对应关 系清楚、简明、 全面,通过解析 式可求出任意自 变量对应的函数 值,便于研究函 数性质.
列表法,不用计 算,看表就知道 函数值,但当自 变量较多时,列 表不易实现
图像法能形象、直观 地表示出函数的变化 情况,但求函数值比 较困难,只能求近似 值,且误差较大
例题讲解
【例7】下表是卢老师所在的初中某班三名同学在初三学年度6次历史测试的成 绩及班级平均分表.请你对这三位同学在初三学年的历史学习情况做一个分析.
例题讲解 【例5】画出函数y=|x|的图像
{-x,x<0,
【解】由绝对值的概念,有y= x,x≥0.
画出图像如图:
分段函数:在自 变量的不同取值区间, 有不同对应关系的函数
(翻折法)先画出函数y=x的图像 然后把图像中位于横轴下方的部分翻转到上方即可.
概念辨析
(1)分段函数是一个函数,而不是几个函数,处理分段函数的问题 时,首先要明确自变量的取值在哪个区间,从而选取相应的对应关系.
【解】设票价为W元,里程为t 千米,由题意可写出解析式为:
图像 如图:
5 4 3 2 1
·····
5 10 15 20
谢谢
3.1.2函数的表示法
温故知新
函数的概念
定义域 函数定义域的求法
函数的三要素 值域
对应法则f
函数的符号表示 y=f(x)
特殊函数的定义域、值域
同一函数的判断
区间的表示
新课导入
回想函数的表示方法有哪几种?
解析法,列表法,图象法.
用图象表示两个变量之 间的对应关系
列出表格来表示两个变量之间的对应关系
(2)分段函数在书写的时候左边用大括号把几个对应关系括在一起, 在每段对应关系表达式的后面用小括号写上相应的取值范围.
(3)分段函数的定义域是所有自变量取值区间的并集,只能写成一个 集合的形式;值域是各段函数在对应自变量取值范围内值域的并集.
变式1:画出函数y=|x-2|的图像. 【解法一】由绝对值的概念可知,
用数学表达式表示两个变量之间的对应关系
例题讲解
【例4】某种笔记本的单价是5元,买m(m∈{1,2,3,4,5})个笔记本需要y
元.试用函数的三种表示法来表示函数y=f(m).
【图像法】函数图像可以表示如图:
【解析法】y=5m,m∈{1,2,3,4,5}
y
25
20
【列表法】函数可以表示如下表:
15
10
1 2 3x
-3
例题讲解
例6 给定函数f(x)=x+1,g(x)=(x+1)2,x∈R, (1)在同一个坐标系中画出函数f(x),g(x)的图像; (2)∀x∈R,用M(x)表示f(x),g(x)中的较大者,记为M(x)=max{f(x),g(x)}.
y
y = (x + 1)2 3
2
1
-3 -2 -1 o
典例1(2) 典例2 对点练清2
随堂练习 P71 1 2
【例题】某市“招手即停”公共汽车的票价按下列规则制定 (1)5km以内(含5km),票价2元; (2)5km以上,每增加5km,票价增加1元(不足5km按5km算)
如果某条线路的总里程为20km,请写出票价与里程之间的函数解析式, 并画出图像.
【分析】从表中可以知道每位同学在每次测试中的成绩,但不太容易分析每位 同学的成绩变化情况.如果将每位同学的成绩和测试序号之间的函数关系分别用 图像表示出来,就可以直观的看到他们成绩变化的情况.
【分析】从图像中我们可以直观地看到:王伟同学的成绩一直稳定在班级的前茅, 张城同学的成绩波动较大,赵磊同学的成绩整体有下降趋势,但三位同 学的成绩基本上都大幅领先于班级平均水平.