大学物理 理想气体的状态方程与内能

合集下载

大学物理化学知识点总结归纳

大学物理化学知识点总结归纳

大学物理化学知识点总结归纳第一章气体的pvT关系一、理想气体状态方程pV=(m/M)RT=nRT(1.1)或pVm=p(V/n)=RT(1.2)式p、V、T及n的单位分别为P a 、m3、K及mol。

Vm=V/n称为气体的摩尔体积,其单位为m3·mol。

R=8.314510J·mol-1·K-1称为摩尔气体常数。

此式适用于理想,近似于地适用于低压下的真实气体。

二、理想气体混合物1.理想气体混合物的状态方程(1.3)pV=nRT=(∑Bn)RTpV=mRT/Mmix(1.4)式Mmix为混合物的摩尔质量,其可表示为Mmix def ∑BBy M B(1.5)Mmix=m/n=∑BBm/∑Bn(1.6)式MB为混合物某一种组分B的摩尔质量。

以上两式既适用于各种混合气体,也适用于液态或固态等均匀相混合系统平均摩尔质量的计算。

2.道尔顿定律pB=nBRT/V=yBp(1.7)P=∑Bp(1.8)理想气体混合物某一种组分B的分压等于该组分单独存在于混合气体的温度T及总体积V的条件下所具有的压力。

而混合气体的总压即等于各组分单独存在于混合气体的温度、体积条件下产生压力的总和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

3.阿马加定律V B *=nBRT/p=yBV(1.9)V=∑V*(1.10)VB*表示理想气体混合物物质B 的分体积,等于纯气体B在混合物的温度及总压条件下所占有的体积。

理想气体混合物的体积具有加和性,在相同温度、压力下,混合后的总体积等于混合前各组分的体积之和。

以上两式适用于理想气体混合系统,也近似适用于低压混合系统。

三、临界参数每种液体都存在有一个特殊的温度,在该温度以上,无论加多大压力,都不可能使气体液化,我们把这个温度称为临界温度,以Tc 或tc表示。

我们将临界温度Tc时的饱和蒸气压称为临界压力,以p表示。

在临界温度和临界压力下,物质的摩尔体积称为临界摩尔体积,以Vm,c 表示。

大学物理化学公式大全

大学物理化学公式大全

此方程适用于纯物质的 相和 相的两相平衡。
19.
克劳修斯-克拉佩龙方程
d ln( p /[ p]) ( vap H / RT 2 )dT ln( p2 / p1 ) ( vap H m / R)(1/ T1 1/ T2 )
式中 Q1 和 Q 2 分别为工质在循环过程中从高温热源 T1 吸收的热量和向低温热源 T2 放出的热。W 为在循环过程中热机中的工质对环境所作的功。此式适用于在任意两个不同温度的热源之间一 切可逆循环过程。
2. 卡诺定理的重要结论
0, 可逆循环 Q1 / T1 Q2 / T2
0, 不可逆循环
任意可逆循环的热温商之和为零,不可逆循环的热温商之和必小于零。
3. 熵的定义
dS δQr / T
4. 克劳修斯不等式
dS δQ / T , 不可逆
δQ / T , 可逆

5. 熵判据
S i s o S s y s S a m b 0 ,不可逆 0 ,可逆
式中 iso, sys 和 amb 分别代表隔离系统、系统和环境。在隔离系统中,不可逆过程即自发过程。 可逆,即系统内部及系统与环境之间皆处于平衡态。在隔离系统中,一切自动进行的过程,都 是向熵增大的方向进行,这称之为熵增原理。此式只适用于隔离系统。
H nC p ,m d T
1
2
此式适用于理想气体单纯 pVT 变化的一切过程,或真实气体的恒压变温过程,或纯的液体、固 体物质压力变化不大的变温过程。
4. 热力学能(又称内能)变
U nCV ,m d T 1 此式适用于理想气体单纯 pVT 变化的一切过程。
2
5. 恒容热和恒压热
QV U

大学物理第二十三讲 气体温度 压强 能均分 内能

大学物理第二十三讲 气体温度 压强 能均分 内能

(i t r )
(t 3, r 0, i 3) (t 3, r 2, i 5) (t 3, r 3, i 6)
16
5 刚性双原子分子: k kT 2 6 刚性多原子分子: k kT 2
三、理想气体的热力学能(内能)
气体内能—气体分子各种形式的动能、原子间振动 势能、分子间的相互作势能之总和。
p p p
p nkT n n
kT n kT n kT

9
p p p
例:容器内有温度27C、压强为0.01mmHg的一定量 理想气体。问容器内1cm3中有多少个气体分子?这些 分子平动动能之总和为多少? 解: p 0.010mmHg 1.33Pa, T 300K
实际气体—非刚性,还有原子间振动的自由度。
13
二、能量按自由度均分定理
1 ___ 3 2 平均平动动能 t m v kT 2 2 1 ___ v v v v2 3 ___ __ 1 ___ 1 1 1 1 2 1 2 2 2 m v x m v y m v z ( mv ) kT 2 2 2 3 2 2 1 tx ty tz kT 2
3 2 t kT , p n t 2 3
p nkT 理想气体状态方程
8
道尔顿分压定律 ◎混合气体的压强等于同一平衡态下各组分气体单 独存在时的压强之和,即 证明: 混合气体各组分处于热平衡,因而温度相同。 各分压强 p n kT , p n kT , 混合气体分子数密度 n n n
决定其空间位置需要三个独立坐标 (x, y, z),有三个自由度。
y

o z

大学物理理想气体的状态方程与内能

大学物理理想气体的状态方程与内能


A1
x
分子a动量的增量 mvixmv ix2mvix
A1面给分 子a的冲量

2mvix
分子a给A1 面的冲量
2mv ix
演示:分子运动 返13
分子a连续两次与A1
y
面 碰 撞 的 时 间 间 隔
Δ ti
2 l1
v ix
单位时间内,分子a 对A1面的碰撞次数
A2
o
Z
v
m vix
热运动的过程以及 揭 示 热 现 象 的
过程进行的方向 微 观 本 质
演示:内燃机 演示:电冰箱 演示:卫星回收 演示:无规则运动
麦 克 斯 韦
玻耳兹曼
7.1 理想气体的状态方程与内能
一、热力学平衡态 二、理想气体的状态方程 三、压强和温度的微观解释 四、理想气体的内能
一、热力学平衡态
1.平衡态 (1)热力学系统
1 L 13c 03 m 1 3 0 m 3
气 体 作 用 在 器 壁 单 帕斯卡
单位面积 上的正压力

(Pa)
P
1 at 1 m . 0 15 1 P 03 a
1 mm 1H . 3 1g 2 3 P 0 a
演示:分子运动 演示:平衡态
(3)温度 T 温 热力学温标 T 单 (K)
第三篇
热学
热学 研 究 与 热 现 象 有 关 规 律 的 学 科
从 能 量 观 点 出 发 从微观结构出发
以实验事实为基础 统 以每个分子遵循
热 用归纳和分析方法 计 力学规律为基础

总 与
结出自然 热现象有关
界 的

运用统计方法 找出宏观量和相

大学物理第五版 热力学习题课

大学物理第五版 热力学习题课
3 2 R 定压摩尔热容 ,定压摩尔热容C
3 ,定
p,m=
5
2
R 。
9、一定量的理想气体,从相同状态开始分别经过等压、 、一定量的理想气体,从相同状态开始分别经过等压、
等体及等温过程, 等体及等温过程,若气体在上述各过程中吸收的热量 等温 相同,则气体对外界作功最多的过程为____________ 相同,则气体对外界作功最多的过程为____________。
热 力 学
习 题 课
第12章 提要
掌握两方面内容: 掌握两方面内容: 理想气体状态方程; 理想气体的压强、 一、理想气体状态方程;二、理想气体的压强、能量计算 1、气态方程; 、气态方程;
m′ pV = RT M R ( K=N A
)
N n= V
1 2 2 p = nmv = nεk 3 3
2、气体的压强 、
5 5 ∆E2 = R(T3 −T2 ) = ( pV3 − p2V2 ) 3 2 2 5 2 2 = ×(1.01×32×10 − 4.04×2×10 ) J 2 3 = 6.06×10 J
过程II气体吸热 过程II气体吸热 II
Ι
( p1 , V1 )
ΙΙ
p3 = p1
O
V
Q2 = W2 +∆E2 = 4.85×103 J+ 6.06×103 J =1.09×104 J
;
P = P =100Pa ; B c
VA =Vc =1m3
VB = 3m
3
(1)C—A为等容过程: A为等容过程:
PA TA PTA = ∴Tc = c =100K P Tc c P
A
C—B为等压过程: B为等压过程:
VB TB = Vc Tc

大学物理热学部分复习资料

大学物理热学部分复习资料

W净= 曲线所围的面积 = Q1 + Q2 + ⋯ + Qn
20122012-1-3
20
热学习题课
1. 热机循环
p a O Q 1 A Q 2 V
W = Q1 − Q2
高温热源 T1 Q1 热机 W Q2 低温热源 T2 逆循环: 逆循环: 逆时针 热机效率
W = 1 − Q2 η= Q1 Q1
正循环: 正循环: 顺时针
dN :v − v + dv区间内的分子 N 数占 总分 子数 的百 分比 dN = f ( v ) dv N
四、麦克斯韦速率分布律
f (v)
dS
1.速率分布函数: 速率分布函数: 速率分布函数
dN f (v) = Ndv
o
d S = f ( v ) dv
内的分子数占总分子数
的百分比
v v + dv

3.麦氏分布函数 麦氏分布函数
8kT 8RT v= = πM πm
平方平均速率
v = ∫ v2 f ( v) dv
2 0 ∞
m f ( v ) = 4π 2kT f (v) f max
3/ 2
e
mv 2 − 2 kT
v2
方均根速率
vrms 3kT 3RT = v = = m M
平均自由程
λ =
1 = 2 2πd n
kT 2 πd2p
20122012-1-3
15
热学习题课
热力学基础 一、热力学第一定律 系统对外做功 ∆V > 0,W > 0 外界对系统做功 ∆V < 0,W < 0 系统从外界吸收的热量 从外界吸收的热量, 系统从外界吸收的热量, 内能增量 i ∆E = ν ⋅ R∆T = ν CV ∆T 一部分使系统的内能增加, 一部分使系统的内能增加,另 2 i 一部分使系统对外界做功. 一部分使系统对外界做功. 定体摩尔热容 CV = R 2 其中 定压摩尔热容 C p = CV + R dW = pdV

大学物理 热力学基础详解

大学物理 热力学基础详解

§ 3 气体的摩尔热容量
热容量:
(简称热容) 表示升高1K所吸收的热量
dQ C dT
(JK-1)
摩尔热容Cm :当物质的量为1 mol 时的热容。 单位: (Jmol -1 K-1) 比热C比:当物质的量为 1 kg 时的热容。
C MC比
M C Cm M mol
单位: (J kg-1 K-1 )
(1)
理想气体状态方程 对其微分得:
M RdT PdV VdP M mol
M PV RT M mol
(2)
联立(1)、(2),得:
M PV const 将 与 PV RT 联立得: M mol

dP dV 0 P V
-1
PV const. ( 3)
(4)
V
T=const .
√ (C) -700J
(D) 1000J
1
e
c b
思路: Ta =Tb
Vb Va Vb Va
0 1 4 Eab 0
Va
V(10-3m3)
Qab Aab PdV
Vd
Eacbda 0
Qacbda Aacbda PdV PdV 500 - 1200( J )
-
P
-1
T =const . ( 5 )
(3)、(4)、(5)式称为绝热方程 (或泊松公式)。
注意:式中的各常数不相同!!!
绝热线比等温线陡 (1)、等温:PV=const
0 (2)、绝热: PV const
PA dp A点的斜率: dV VA a
PA dp A点的斜率: VA dV T
i2 Q A 2

大学物理公式总结(全面_易懂)

大学物理公式总结(全面_易懂)
1.单缝的夫琅禾费衍射 1.单缝的夫琅禾费衍射
E
B

2 k = 1, 2 ,3 ..... 暗条纹衍射角条件
a sin θ = ± 2 k
λ
a
P
C
A
x
θ
λ
f
2
a sin θ = ± ( 2 k + 1) 2 k = 1, 2 ,3 ..... 明条纹衍射角条件
λ
2 k = 1, 2 ,3 ..... 暗条纹衍射角条件
同时又满足单缝衍射暗纹条件, 同时又满足单缝衍射暗纹条件, 这样的主极大是不存在的把这一现象称作缺级 这样的主极大是不存在的把这一现象称作缺级
d 所缺级次 k = k′ a k ′ = ± 1 , ± 2 , ± 3 ,... 光栅光谱 d sin θ = k λ k = 0 , ± 1 , ± 2 , ± 3 ,...
机械振动总结
简谐振动的基本规律 1、动力学特征: 2、运动学特征:
{
v v F = −kx x = Acos(ω +ϕ) t v = − A ω sin( ω t + ϕ )
a = − A ω 2 cos( ω t + ϕ )
1 2 E p = kA cos 2 (ωt + ϕ ) 2
3.能量特征: 1 2 2 Ek = kA sin (ωt + ϕ ) 2 1 2 E = kA 2
合成
x = A cos(ωt + ϕ )
{
{
2 A = A12 + A2 + 2 A1 A2 cos(ϕ 2 − ϕ1 ) A1 sin ϕ1 + A2 sin ϕ 2 tgϕ = A1 cos ϕ1 + A2 cos ϕ 2
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档