动态规划简介
动态规划

=MIN(3+12,4+10)=14
最短路线: A—— B2 ——C2——D2——E2——F 最优解: d1*(A)= B2,最短用时14
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
最优解: d2*(B1)= C1
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S2=B2,则下一步能取C2或C3,故
f2(B2)=MIN r(B2,C2)+ f3(C2)
r(B2,C3)+ f3(C3) =MIN(2+8,1+11)=10
最短路线: B2 ——C2——D2——E2——F
1
B2
C3
4 2
D3
5
E2
4
A
2
C2
3 3 3
D2
2
F
3
B1
5 4
C1
4
2
E1
4
3
D1
A
B
C
D
E
F
如果S4=D3,则下一步只能取E2,故
动态规划

多阶段决策问题中,各个阶段采取的决策,一般来说是与时间有关的,决策依赖于当前状态,又随即引起状 态的转移,一个决策序列就是在变化的状态中产生出来的,故有“动态”的含义,称这种解决多阶段决策最优化 问题的方法为动态规划方法 。
任何思想方法都有一定的局限性,超出了特定条件,它就失去了作用。同样,动态规划也并不是万能的。适 用动态规划的问题必须满足最优化原理和无后效性 。
动态规划
运筹学的分支
01 原理
03 局限性
目录
02 分类
动态规划(Dynamic Programming,DP)是运筹学的一个分支,是求解决策过程最优化的过程。20世纪50年 代初,美国数学家贝尔曼(R.Bellman)等人在研究多阶段决策过程的优化问题时,提出了著名的最优化原理, 从而创立了动态规划。动态规划的应用极其广泛,包括工程技术、经济、工业生产、军事以及自动化控制等领域, 并在背包问题、生产经营问题、资金管理问题、资源分配问题、最短路径问题和复杂系统可靠性问题等中取得了 显著的效果 。
最优化原理可这样阐述:一个最优化策略具有这样的性质,不论过去状态和决策如何,对前面的决策所形成 的状态而言,余下的诸决策必须构成最优策略。简而言之,一个最优化策略的子策略总是最优的。一个问题满足 最优化原理又称其具有最优子结构性质 。
将各阶段按照一定的次序排列好之后,对于某个给定的阶段状态,它以前各阶段的状态无法直接影响它未来 的决策,而只能通过当前的这个状态。换句话说,每个状态都是过去历史的一个完整总结。这就是无后向性,又 称为无后效性 。
状态:状态表示每个阶段开始面临的自然状况或客观条件,它不以人们的主观意志为转移,也称为不可控因 素。在上面的例子中状态就是某阶段的出发位置,它既是该阶段某路的起点,同时又是前一阶段某支路的终点 。
动态规划.pdf

第三章:动态规划3.1 动态规划的基本概念一、动态决策问题:决策过程具有阶段性和时序性(与时间有关)的决策问题。
即决策过程可划分为明显的阶段。
二、什么叫动态规划(D.P.–Dynamic Program):多阶段决策问题最优化的一种方法。
广泛应用于工业技术、生产管理、企业管理、经济、军事等领域。
三、动态规划(D.P.)的起源:1951年,(美)数学家R.Bellman等提出最优化原理,从而建立动态规划,名著《动态规划》于1957年出版。
四、动态决策问题分类:1、按数据给出的形式分为:•离散型动态决策问题。
•连续型动态决策问题。
2、按决策过程演变的性质分为:•确定型动态决策问题。
•随机型动态决策问题。
五1、阶段(stage)n :作出决策的若干轮次。
n = 1、2、3、4、5。
2、状态(state)S n :每一阶段的出发位置。
构成状态集,记为S nS 1={A},S 2={B 1,B 2,B 3},S 3={C 1,C 2,C 3},S 4={D 1,D 2,D 3},S 5={E 1,E 2}。
阶段的起点。
3、决策(decision)X n :从一个阶段某状态演变到下一个阶段某状态的选择。
构成决策集,记为D n (S n )。
阶段的终点。
D 1(S 1)={X 1(A)}={B 1,B 2,B 3}= S 2,D 2(S 2)={X 2(B 1),X 2(B 2),X 2(B 3)}={C 1,C 2,C 3}=S 3,D 3(S 3)={X 3(C 1),X 3(C 2),X 3(C 3)}={D 1,D 2,D 3}=S 4,D 4(S 4)={X 4(D 1),X 4(D 2),X 4(D 3)}={E 1,E 2}=S 5D 5(S 5)={X 5(E 1),X 5(E 2)}={F;F}={F}。
4、策略(policy):全过程中各个阶段的决策Xn 组成的有序总体{Xn }。
如 A àB2àC1àD1àE2àF5、子策略(sub-policy):剩下的n个阶段构成n子过程,相应的决策系列叫n子策略。
动态规划的基本思想

动态规划的基本思想动态规划是一种常见的解决问题的算法思想,它通过将复杂的问题分解成一个个子问题,逐步求解并记录下每个子问题的解,最终得到原问题的解。
这种思想在很多领域都有广泛的应用,例如计算机科学、经济学、物理学等。
一、动态规划的定义与特点动态规划是一种分治法的改进方法,它主要用于解决具有重叠子问题和最优子结构性质的问题。
它的基本思想可以概括为“记住中间结果,以便在需要的时候直接使用”。
动态规划算法的特点包括:1. 问题可以分解为若干个重叠的子问题;2. 子问题的解可以通过已知的子问题解来求解,且子问题的解可以重复使用;3. 需要使用一个数据结构(通常是一个矩阵)来存储子问题的解,以便在需要时直接取出。
二、动态规划的基本步骤动态规划算法通常可以分为以下几个基本步骤:1. 确定问题的状态:将原问题转化为一个或多个子问题,并定义清楚每个子问题的状态是什么。
2. 定义问题的状态转移方程:找出子问题之间的关系,即如何通过已知的子问题解来解决当前问题。
3. 设置边界条件:确定最简单的子问题的解,即边界条件。
4. 计算子问题的解并记录:按顺序计算子问题的解,并将每个子问题的解记录下来,以便在需要时直接使用。
5. 由子问题的解得到原问题的解:根据子问题的解和状态转移方程,计算得到原问题的解。
三、动态规划的实例分析为了更好地理解动态规划的基本思想,我们以求解斐波那契数列为例进行分析。
问题描述:斐波那契数列是一个经典的数学问题,它由以下递推关系定义:F(n) = F(n-1) + F(n-2),其中F(0) = 0,F(1) = 1。
解决思路:根据递推关系,可以将问题分解为求解F(n-1)和F(n-2)两个子问题,并将子问题的解累加得到原问题的解。
根据以上思路,可以得到以下的动态规划算法实现:1. 确定问题的状态:将第n个斐波那契数定义为一个状态,记为F(n)。
2. 定义问题的状态转移方程:由递推关系F(n) = F(n-1) + F(n-2)可得,F(n)的值等于前两个斐波那契数之和。
动态规划的基本原理和基本应用

动态规划的基本原理和基本应用动态规划(Dynamic Programming)是一种通过将一个问题分解为较小的子问题并存储子问题的解来解决复杂问题的方法。
动态规划的基本原理是通过记忆化或自底向上的迭代方式来求解问题,以减少不必要的重复计算。
它在计算机科学和数学中具有广泛的应用,尤其是在优化、组合数学和操作研究等领域。
1.确定最优子结构:将原问题分解为较小的子问题,并且子问题的最优解能够推导出原问题的最优解。
2.定义状态:确定存储子问题解的状态变量和状态方程。
3.确定边界条件:确定初始子问题的解,也称为边界状态。
4.递推计算:利用状态方程将子问题的解计算出来,并存储在状态变量中。
5.求解最优解:通过遍历状态变量找到最优解。
1.背包问题:背包问题是动态规划的经典应用之一、它有多种变体,其中最基本的是0/1背包问题,即在限定容量的背包中选择物品,使得所选物品的总价值最大。
可以使用动态规划的思想来解决背包问题,确定状态为背包容量和可选物品,递推计算每个状态下的最优解。
2. 最长递增子序列:最长递增子序列(Longest Increasing Subsequence)是一种常见的子序列问题。
给定一个序列,找到其中最长的递增子序列。
可以使用动态规划来解决这个问题,状态可以定义为以第i个元素为结尾的最长递增子序列的长度,并递推计算每个状态的解。
3.矩阵链乘法:矩阵链乘法是一种优化矩阵连乘计算的方法。
给定一系列矩阵,求解它们相乘的最小计算次数。
可以使用动态规划解决矩阵链乘法问题,状态可以定义为矩阵链的起始和结束位置,递推计算每个状态下最小计算次数。
4.最短路径问题:最短路径问题是在有向图或无向图中找到两个节点之间最短路径的问题。
可以使用动态规划解决最短路径问题,状态可以定义为起始节点到一些节点的最短距离,递推计算每个状态的最优解。
动态规划算法的详细原理及使用案例

动态规划算法的详细原理及使用案例一、引言动态规划是一种求解最优化问题的算法,它具有广泛的应用领域,如机器学习、图像处理、自然语言处理等。
本文将详细介绍动态规划算法的原理,并提供一些使用案例,以帮助读者理解和应用这一算法的具体过程。
二、动态规划的基本原理动态规划算法通过将问题分解为多个子问题,并利用已解决子问题的解来求解更大规模的问题。
其核心思想是利用存储技术来避免重复计算,从而大大提高计算效率。
具体来说,动态规划算法通常包含以下步骤:1. 定义子问题:将原问题分解为若干个子问题,这些子问题具有相同的结构,但规模更小。
这种分解可以通过递归的方式进行。
2. 定义状态:确定每个子问题的独立变量,即问题的状态。
状态具有明确的定义和可计算的表达式。
3. 确定状态转移方程:根据子问题之间的关系,建立状态之间的转移方程。
这个方程可以是简单的递推关系式、递归方程或其他形式的方程。
4. 解决问题:使用递推或其他方法,根据状态转移方程求解每个子问题,直到获得最终解。
三、动态规划的使用案例1. 背包问题背包问题是动态规划算法的经典案例之一。
假设有一个背包,它能容纳一定重量的物品,每个物品有对应的价值。
目的是在不超过背包总重量的前提下,选取最有价值的物品装入背包。
这个问题可以通过动态规划算法来求解。
具体步骤如下:(1)定义问题:在不超过背包容量的限制下,选取物品使得总价值最大化。
(2)定义状态:令dp[i][j]表示将前i个物品放入容量为j的背包中所能获得的最大价值。
(3)状态转移方程:dp[i][j] = max(dp[i-1][j-w[i]]+v[i], dp[i-1][j]),其中w[i]为第i个物品的重量,v[i]为第i个物品的价值。
(4)解决问题:根据状态转移方程依次计算每个子问题的解,并记录最优解,直到获得最终答案。
2. 最长公共子序列最长公共子序列(Longest Common Subsequence,简称LCS)是一种经典的动态规划问题,它用于确定两个字符串中最长的共同子序列。
动态规划-动态规划-美国数学家贝尔曼-动态规划领域

物品
1 2 … j …n
重量(公斤/件) a1 a2 … aj … an
每件使用价值 c1 c2 … cj … cn
类似问题:工厂里的下料问题、运输中的 货物装载问题、人造卫星内的物品装载问题等。
生产决策问题:企业在生产过程中,由于需求 是随时间变化的,因此企业为了获得全年的最佳 生产效益,就要在整个生产过程中逐月或逐季度 地根据库存和需求决定生产计划。
描述状态的变量称为状态变量,它可用一个数、 一组数或一向量(多维情形)来描述,第k阶段 的状态变量常用sk表示,通常一个阶段有若干个 状态。
第k阶段的状态就是该阶段所有始点的集合, 用Sk表示。在第1阶段状态变量s1是确定的,称初 始状态。如引例中:
S1 A,S2 B1, B2, B3,S3 C1,C2,C3,S4 D1, D2
min
4
9
12
决策点为B3
AB3
f2
B3
3 9*
f1(A)=12说明从A到E的最短距离为12,最短路 线的确定可按计算顺序反推而得。即
A→B3→C2→D2→E 上述最短路线问题的计算过程,也可借助于图
形直观的表示出来:
12 2 A4
3
11
B1
7 4
6
93
B2 2
4
96
B3
2 5
6
C1 3
多阶段决策过程特点:
(1)根据过程的特性可以将过程按空 间、时间等标志分为若干个互相联系又互相 区别的阶段。
(2)在每一个阶段都需要做出决策,从 而使整个过程达到最好的效果。
(3)在处理各阶段决策的选取上,不仅只 依赖于当前面临的状态,而且还要注意对以后 的发展。即是从全局考虑解决局部(阶段)的 问题。
动态规划中的状态转移方程与最优子结构

动态规划中的状态转移方程与最优子结构动态规划是一种常用的优化问题求解方法,它的核心思想是将一个大问题拆解成若干个子问题,并通过找到最优子结构来求解整个问题。
在动态规划中,状态转移方程和最优子结构是两个重要的概念,它们在问题求解过程中起到了关键的作用。
一、动态规划简介动态规划是一种通过拆解问题,将其转化为若干个子问题,并利用子问题之间的关系,通过求解子问题的最优解来求解整个问题的方法。
通常,我们将原始问题划分为多个阶段,每个阶段都有多个决策可供选择。
通过记录和利用中间结果,我们可以自底向上地求解问题,最终得到整个问题的最优解。
在动态规划的求解过程中,状态转移方程和最优子结构是两个核心概念。
二、状态转移方程状态转移方程描述了原始问题与子问题之间的关系,它表达了问题从一个阶段转移到下一个阶段时的状态变化过程。
通过状态转移方程,我们可以将问题的规模逐步缩小,直到最终求解出问题的最优解。
对于一个动态规划问题,通常需要确定以下几个要素:1. 状态:描述问题的规模和特征,是问题求解的关键。
2. 状态转移方程:描述问题的状态变化过程,反映问题的子问题之间的关系。
3. 初始状态:问题的起始状态,也即问题的边界条件,可以作为递推的初始值。
4. 目标状态:问题的最终状态,也即问题的最优解所处的状态。
通过构建状态转移方程,我们可以从初始状态逐步推导出目标状态,完成问题的求解。
在构建状态转移方程时,通常需要分析问题的特征和规律,找到问题规模的变化关系,从而确定状态之间的转移方式。
具体来说,状态转移方程通常通过递推的方式来构建。
假设dp[i]表示问题的第i个阶段的状态,那么dp[i]与前一个阶段的状态之间的关系可以表示为:dp[i] = f(dp[i-1]),其中f()为状态转移函数,即描述状态之间转移关系的函数。
三、最优子结构最优子结构是指原始问题的最优解可以由子问题的最优解推导出来。
在很多问题中,如果原始问题的最优解可以通过求解子问题的最优解得到,那么该问题就具有最优子结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
计算步骤(程序框图)见P212. 分两步:逆推确定各状态的最优值函数及 最优决策规则,顺推确定最优过程及最 优策略。 动态规划的主要缺点是所谓的“维数灾”。
课程总结及要求
一、线性规划
1.三种形式及相互转化 2.解的概念:可行解、基解、基可行解和最优解 3.基本定理:若有最优解,则存在最优的基可行解 4.单纯形法:列单纯形表,最优性判断,进、出 基变量的选择,旋转变换
四、无约束优化方法
1.最速下降法 2.共轭梯度法 3. Newton法、拟Newton法
五、约束优化方法
1.二次规划 2.罚函数法,障碍函数法
六、动态规划方法
1.概念:阶段、状态、决策、策略、最优值函数, 状态转移方程、递推方程 2.Bellman最优性原理 3.用动态规划方法解多阶段决策问题
最短路求解过程
13 C1 13 B1 3 5 18 A 3 8 16 7 B2 6 6 1 6 8 10 3 C2 5 9 3 C3 3 8 12 C4 4 7 D1 2 6 D2 2 8 D3 3 3 9 6 6 1 5 E2 2 7 E1 5 5 2 3 F2 3 3 4 F1 4 G
E3
动态规划法减少了计算量,丰富了计算结果
动态规划法简介
多阶段决策过程
最短路问题
1 B1 3 5 A 3 8 B2 6 7 C3 3 8 C4 4 D3 6 C2 5 3 D2 2 3 3 6 E3 6 1 E2 2 F2 3 C1 6 8 D1 2 2 E1 5 5 3 3 F1 4 G
特点:若O-H-P-D是最短路,则H-P-D是从H到D 的最短路。
二、对偶理论
1.写给定问题的对偶问题 2.对偶理论:弱对偶定理,对偶定理,互补松弛定理 3.对偶单纯形法、改进的单纯形法
三、非线性规划
1.非线性函数分析:梯度,Hesse阵 2.解的概念:可行解, (严格)局部、全局最优解、值 3.下降、可行方向,(不)起作用约束 4.最优性条件:必要条件,K—T条件 5.凸规划:凸集、凸函数的概念和性质,凸函数的 判定,凸规划及解的性质 6.一维搜索:性质,算法
dk sk k rk sk+1
6.最优值函数 fk(sk ); 递推方程 fk(sk )=opt{rk(sk ,dk)+fk+1(sk+1)};
动态规划最优性原理
Bellman最优性原理:作为整个过程的最优 策略具有这样的性质:无论过去的状态和 决策如何,对前面的决策所形成的状态 而言,余下的决策必定构成一个最优策 略。 换言之,最优策略的子策略总是最优的。 同样,最优轨线的子轨线也是最优的。
动态规划的基本概念
1.阶段:反映问题时间或空间的自然特性k; 2.状态:表示在某阶段开始所处的自然状态 或客观条件sk; 3.决策:可作出的选择dk,允许决策集合; 4.策略:决策序列(子策略); 过程:状态序列(子过程); 对状态要求具有无后效性,允许决策集合只 与当时的状态有关;
5.状态转移方程:决策对下一阶段状态的影 响sk+1 =Tk(sk ,dk); 收益或支出函数r=rk(sk ,dk);
用动态规划方态变量的选择:能描述过程的演变,满 足无后效性; 3)确定决策变量及允许决策集合; 4)写出状态转移方程和阶段效益式; 5)最优值函数:是定义在全过程和所有后部 子过程的函数,具有可分离性,与原问 题目标相关,写出递推方程及初始条件。
例 用动态规划方法求如下优化问题的最优 2 2 解: min z = x12 + 3 x2 + x3