实验十 数字通信系统误码率仿真分析
西南交通大学_通信工程实验_MATLAB实验_OFDM误码率仿真(衰落)

一、实验目的:
1、 了解瑞利信道产生的原因及其特征。 。 2、 用 MATLAB 进行 OFDM 系统在瑞利信道下误码率分析。
二、实验原理: 1、OFDM 基本原理
OFDM ( Orthogonal Frequency Division Multiplexing )正交频分复用,它是由多载波 调制技术发展而来 。其基本思想是把一路高速的数据流串并变换为 N 路的低速数据流再 并行传输, 因此数据流速度降为原来的 1/N, 具有很强的抗多径衰落和抗脉冲干扰的能力 , 特别适合高速无线数据传输。OFDM 是一种子载波相混叠的多载波技术,但由于 OFDM 选择 时域相互正交的子载波 , 他们在频域虽然相互混叠 , 却能在接收端被分离出来 。 OFDM 信 号频谱实际满足奈奎斯特准则即多个子载波之间不存在相互干扰。 OFDM 信号的基带形式
Ts=Tsym/N
x(t ) X [k ]exp j 2 f k (t Tsym
k 0
Nபைடு நூலகம்1
由于 OFDM 子载波之间满足正交性,因此可以采用离散傅立叶变换(DFT)表示信号。直接进 行 IDFT/DFT 变换,算法复杂度为 O(N2) ,计算量非常大,但如果采用 IFFT/FFT 来实现, 则算法复杂度降低为 O(N/2) (基 2 算法),极大降低了 OFDM 系统的实现难度。 图 1 为基带 OFDM 系统框图。
四、实验报告要求
1. 所有程序完整的源代码(.m 文件)以及注释。 2. 仿真结果。对于所有的图形结果(包括波形与仿真曲线等) ,将图形保存成.tif 或者.emf 的格式并插入 word 文档。
二进制 信息
映射
s/p
4G-OFDM系统的仿真及其误码率性能分析d

4G OFDM系统的仿真及其误码率性能分析摘要:本文主要研究分析了OFDM系统的误码率性能,并在此基础上进行系统仿真。
并通过信噪比,多普勒效应和保护间隔测量并计算误码率。
在仿真过程中,使用BPSK、QPSK和16PSK 调制技术,信道采用高斯白噪声信道。
OFDM信号加入信噪比,多普勒效应和保护间隔的效果能改善系统性能。
索引词:高斯白噪声、误码率(BER)、多普勒效应、保护间隔、OFDM系统、信噪比(SNR)1. 简介下一代移动通信系统的目标是要像声音信号那样做到高速数据、图像及多媒体无线通信等通信服务的无缝接合。
而能够应付这种挑战的便是4G OFDM系统。
虽然OFDM调制原理早在1960年就已经存在,但在最近几年才在商用的高速通信系统中作为关键调制技术崭露头角。
其最主要原因在于它能方便得实现高速数据传输率,并有效抑制离散信道的符号间干扰。
所以,OFDM调制被广泛应用于有线和无线通信系统,例如欧洲的数字音频、视频广播,还有局域网等。
本文第二章是OFDM系统的文献综述,第三章讲述了OFDM系统的数字工具和技术。
第四章设计了OFDM系统并在第五章给出仿真结果,最后,第六章作为结论。
OFDM技术是由多载波调制发送技术发展而来的。
多载波传输MCM把发送比特流分解成若干具有低比特率的并行子比特流,然后用这样低比特率形成的低速率的多状态符号再去调制相应载波。
第一个使用MCM技术的是50年代末60年代初的高频军用系统,例如:Kineplex, Andeft和Kathryn系统。
OFDM是一种特殊的MCM技术,具有大规模子载波和可重叠频谱的特点,于1966年在BELL实验室由Chang提出发表并获得专利。
OFDM彻底抛弃了采用带通滤波器将各个子载波频谱完全分离的方式,而前者被广泛应用于频分多址(FDMA)。
而作为替代的,OFDM采用各子载波保持互相正交的方式以保证时域波形上载波频谱能够有部分重叠。
其中发送数据流的正交可通过傅里叶变换(或者快速傅里叶变换FFT)得到。
基于MATLAB的2FSK数字通信系统的误码率分析

摘要FSK是信息传输中使用得较早的一种调制方式,它的主要优点是: 实现起来较容易,抗噪声与抗衰减的性能较好。
在中低速数据传输中得到了广泛的应用。
数字频率调制又称为频移键控,记作FSK(Frequency Shift Keying),二进制频移键控记作2FSK。
数字频移键控是用载波的频率来传送数字信息的,即用所传送的数字消息控制载波的频率,由于数字只有有限个取值。
那么,2FSK信号对应与载波,而符号"0"对应于载频 (与不同的另一个载频)的便是符号"1"已调波形,而且 1与 0之间的改变是瞬间来完成的。
从原理上讲调频可用模拟调频来实现,也可用键控法来实现,后者较为简便。
调制后可以可以相干解调也可以非相干解调。
基于MATLAB仿真可用于分析FSK调制在AWGN信道中的误码性能。
并通过与理论分析值进行比较,验证模型的准确性。
关键字:2FSK,调制解调 ,MATLAB,误码率,BER2目录1绪论 ..................................................................... .. 4 1.1.通信技术的历史与发展 ..................................................... 4 1.1.1通信的概念 ............................................................. 5 1.2.模拟通信系统 ............................................................. 6 1. 2.1模拟通信系统概述 ...................................................... 6 1.2.2模拟通信系统的模型 ..................................................... 7 1.2.3模拟通信系统的调制方式 ................................................ 7 1.2.4模拟通信系统的应用 ..................................................... 8 1.2.5模拟通信系统的优点与缺点 (8)1.3.数字通信系统 ............................................................. 9 1.3.1 数字通信系统的概述 .....................................................9 1.3.3数字通信系统的模型 ..................................................... 9 1.3.3 数字通信系统优点与缺点 (10)1.3.4数字通信的发展概况 .................................................... 10 1.3.5数字通信系统发展的主要技术 (11)1.3.6数字通信系统的调制方式 ................................................ 12 2. 二进制频移键控(2FSK) ..................................................... 13 2.1.2FSK的概念 ............................................................13 2.2 .2FSK产生方法 .......................................................... 14 2.32FSK信号的调制方式 .....................................................14 2.4 2FSK的解调方式与抗噪性能 ............................................... 15 3.2FSK的仿真 (16)3.1 MATLAB软件的介绍 ....................................................... 16 3.2 MATLAB 产生的历史背景 (16)3.3仿真思路 (17)3.4 MATLAB程序实现 ......................................................... 18 3.5 MATLAB仿真结果 .........................................................21 结论...................................................................... .. 25 参考文献....................................................................2631绪论1.1.通信技术的历史与发展远古时代,远距离的传递消息是以书信的形式来完成的,这种通信方式明显具有传递时间长的缺点。
AWGN信道中BPSK误码率仿真分析

窑26窑
微处理机
2021 年
图 11 整体仿真模型
4结束语
利用数字信号载波传输系统中存在的信道噪声 误码,借助于 AWGN 信道模块和高斯噪声器模块, 在适当参数下得出了相同的仿真结果。随着仿真时 间增加,统计样本随之增加,将使得误码率仿真结果 更加接近理论分析值。基于蒙特卡罗统计方法得到 的仿真结果与理论计算之间具有较好的一致性,而 在实际工程中,要获得通信系统的理论性能往往比 较困难,因此,仿真手段几乎成为通信系统性能评估 的最佳选择。
第3期 2021 年 6 月
微处理机 MICROPROCESSORS
No. 3 Jun.,2021
·微机网络与通信·
AWGN 信道中 BPSK 误码率仿真分析
丁凯
(海军 92785 部队,辽宁 绥中 125208)
摘 要: 针对加性高斯白噪声使数据出现差错对数字通信系统中信号接受端带来的负面效应,
对加性高斯白噪声对信道中误码率性能的影响展开研究。通过介绍 BPSK 的扩频调制解调原理及信
图 3 BPSK 调制信号
实际信道中存在着各种干扰,会对通信系统造 成影响。在加性高斯白噪声信道中,信道的输入信 号将与信号内的高斯白噪声相叠加,导致如图 4 所 示的波形。
图 4 BPSK 叠加高斯白噪声
信号接收机接收到经过调制和叠加了高斯白
图 7 抽样判决后的信号
在实际通信系统中,由于受所处环境、仪器精密 度、电磁干扰等的影响,导致了调制解调存在一定的 误差,此误差即被称为误码率。 2.3 BPSK 调制 BER 的理论性能
2.26伊10-3
在 BPSK 调制与解调模块中增加 AWGN 模块, AWGN 信道中设置 Mode 参数,仿真结果如图 10 所 示。当 Eb/ N0 设置为 100 dB、信噪比取值很大时[6], AWGN 模块不会引入传输错误,如图 10(a)所示,输 入发送信号序列和接收解调输出的信号序列都是由 一连串收发相互一致的双精度随机整数值(1 或 0) 组成。把 Eb/N0 的值修改为-10 dB 后[7],产生了不少错 误,收发数据序列波形变得不一致,如图 10(b)所示。
数字通信原理课程设计 误码性能仿真报告

SER 的一半,这与理论结果契合。此外,BER、SER 的 仿真值都与其理论值基本一致。
(a)
(b)
图 3.(a)QPSK 星座图,(b)SNR=14dB 时的星座图
图 2.BPSK 的误码率仿真值与理论值,仿真 100 次取平均值
尽管 BPSK 两星座点的正交分量均为 0,星座点 相似于 2ASK,但 BPSK 的误码性能优于 2ASK。BPSK 是二维调制,而 ASK 是一维,对于同一 SNR,在平均 信号功率、平均噪声功率均相同的情况下,BPSK 的 噪声被分散在两个维度中,因而 BPSK 的抗噪声性能 比 2ASK 更强。 (2)QPSK 在 AWGN 信道下的误码性能 QPSK 的误码率可由 BPSK 推导得到, QPSK 可以视 为两个正交的 BPSK,且两者相互独立。于是有如下 推导过程:
s(t ) Bk e j 2π f k t k
k 0
N 1
式中:Bk 为之前 16QAM 调制所得的第 k 路子信 道中的复输入数据。 由于 OFDM 信号表达形式如同逆离散傅里叶变换 (IDFT),所以可以用计算 IDFT 和 DFT 的方法进行 OFDM 调制和解调。OFDM 信号的实现基于快速傅里叶 变换(FFT),其调制原理[1]如图 11 所示:
图 5.Gray-16QAM 星座图
图 6.Gray-16QAM 与普通 16QAM 的 BER 对比
图 7.SNR=[5dB,10dB,15dB,20dB]时的 16QAM 星座图
判决时比较 r1 和 r2,如果 r1>r2,则判决为 1, 接收正确,反之则误码。此算法与 2FSK 比较判决的 调制解调原理相契合。仿真程序据此设计。 2FSK 误码性能的仿真 2000 次的仿真结果如图 8 所示。从图 8 中可以看出,SNR 达到 13dB 时,基本 可实现无差错数据传输。
数字通信系统误码率仿真分析报告

3G移动通信实验报告实验名称:数字通信系统误码率仿真分析学生:学生学号:学生班级:所学专业:实验日期:1. 实验目的1. 掌握几种典型数字通信系统误码率分析方法。
2. 掌握误码率对数字通信系统的影响与改良方法。
2. 实验原理1、数字通信系统的主要性能指标通信的任务是传递信息,因此信息传输的有效性和可靠性是通信系统的最主要的质量指标。
有效性是指在给定信道能传输的信息容的多少,而可靠性是指接收信息的准确程度。
为了提高有效性,需要提高传输速率,但是可靠性随之降低。
因此有效性和可靠性是相互矛盾的,又是可交换的。
可以用降低有效性的方法提高可靠性,也可以用降低可靠性的方法提高有效性。
数字通信系统的有效性通常用信息传输速率来衡量。
当信道一定时,传输速率越高,有效性就越好。
传输速率有三种定义:码元速率〔s R 〕:单位时间传输的码元数目,单位是波特〔Baud 〕,因此又称为波特率;信息速率〔bR 〕:单位时间传输的信息量〔比特数〕,单位是比特/秒〔b/s 〕,因此又称为比特率;消息速率〔M R 〕:单位时间传输的消息数目。
对于M 进制通信系统,码元速率与信息速率的关系为:()s b M R R s b /log 2=()baud MR R bs 2log =特别说明的是,在二进制数字通信系统源的各种可能消息的出现概率相等时,码元速率和信息速率相等。
在实际应用中,通常都默认这两个速率相等,所以常常简单地把一个二进制码元称为一个比特。
数字通信系统的可靠性的衡量指标是错误率。
它也有三种不同定义:误码率〔eP 〕:指错误接收码元数目在传输码元总数中所占的比例,即传输总码元数错误接收码元数=e P误比特率〔bP 〕:指错误接收比特数目在传输比特总数中所占的比例,即传输总比特数错误接收比特数=b P误字率〔WP 〕:指错误接收字数在传输总字数中所占的比例。
假如一个字由k 比特组成,每比特用一码元传输,如此误字率等于()ke W P P --=11对于二进制系统而言,误码率和误比特率显然相等。
数字通信系统的误码率性能仿真与实现
数字通信系统的误码率性能仿真与
实现
数字通信系统的误码率性能仿真与实现,是指使用计算机来进行数字通信系统的性能测试,其中包括误码率、带宽分配、延迟时间等。
通常而言,在使用数字通信系统前,采取性能仿真技术,即使用计算机模拟实际环境,并对系统进行性能测试,以确保系统的正常工作。
这种方法不仅可以减少实际实施系统时可能遇到的风险,而且可以提高系统的性能水平。
误码率(BER)是指在进行数字通信时,传输的数据信息中出现的错误率。
误码率的测定是一种标准的数字通信系统测试,用于衡量系统的质量和可靠性。
为了测试误码率性能,需要使用计算机模拟系统的操作环境,并设置所需的参数,以测量系统在特定情况下的误码率。
当系统的性能符合要求时,可以实施系统。
因此,数字通信系统的误码率性能仿真和实现是一种重要的测试手段,可以帮助系统开发者检测系统的性能,并确保系统的功能和安全。
SystemVue仿真法估算二进制基带传输系统误码率 实验报告 跳频(FH)扩频通信系统仿真实验报告
实验名称仿真法估算二进制基带传输系统误码率实验环境SystemVue仿真平台实验目的1、完成典型通信系统的仿真,并对结果进行分析。
2、锻炼运用知识,独立分析问题、解决问题的综合能力。
3、充分理解无马间干扰传输条件等基本概念。
设计要求1、首先,设计的系统必须是基带传输系统。
2、基带传输系统的码元要有单极性码和双极性码。
3、循环的次数要控制在5次左右。
设计方案一、实验设计方案及设计中注意的问题:1、基带传输系统码型的选择:PN码,1是单极性码,0是双极性码。
、2、误码率和抽样判决器的电平:单极性码是峰值的一半,双极性码的判决门限是0。
3、噪声源是加性高斯噪声。
4、仿真的过程一般分如下几步:(1)信源(单极性和双极性)——加性高斯噪——低通虑波器(滤出带外噪声)——采样——判决—比较得出(2)信源——采样——延时—误码率二、仿真图结构如下:说明:1、PN码,OFFSET设制为1的时候是单极性的,0时候是双极性的。
2、两个采样的频率都要是一样的值。
3、循环次数要尽可能的多(最好在5次左右)。
4、信号源的频率是(50HZ,幅度1V)、采样器频率是(50HZ)、数字延迟器(延迟=1)、高斯白噪声(功率密度=0.007W/HZ)、采样频率20000HZ、循环次数是5个、低通滤波器的截止频率是225HZ、运行时间是3秒、误码率和抽样判决器的电平:单极性码是峰值的一半(0.5V)双极性码的判决门限是(0V)。
华北电力大学实验报告三、实验步骤如下:1、按要求建立基带传输系统的原图如上图所示:2、设置相应的参数:信号源的频率是(50HZ,幅度1V)、采样器频率是(50HZ)、数字延迟器(延迟=1)、高斯白噪声(功率密度=0.007W/HZ)、采样频率20000HZ、循环次数是5个、低通滤波器的截止频率是225HZ、运行时间是3秒、误码率和抽样判决器的电平:单极性码是峰值的一半(0.5V)双极性码的判决门限是(0V)。
PAM、PSK、QAM数字调制解调系统误码性能仿真
数字通信系统传输误码性能仿真(一)摘要:脉冲幅度调制(PAM)、频移键控(PSK)、正交振幅调制(QAM)等数字信号调制解调模式在经典和现代通信中得到广泛应用。
不同调制方式在不同的条件下传输可靠性能不尽相同。
Matlab/Simulink包含多种仿真模块库,可以对各种通信调制方式的调制解调进行仿真,并验证其传输可靠性能。
关键字:通信系统、仿真、PAM、PSK、QAMAbstract:Digital signal modulation and demodulation modes such as pulse amplitude modulation (PAM), frequency shift keying (PSK), quadrature amplitude modulation (QAM)are widely used in classical and modern communication. The transmission reliability of different modulation are different under different conditions. Matlab/Simulink contains a variety of library of simulation modules for various communications modem modulation to simulate and verify its transmission reliability.Keywords: communication systems, simulation, PAM,PSK,QAM0 引言系统仿真是进行协议标准制定、算法分析优化和产品总体设计的重要步骤,对验证算法和理论的设计性能、缩减设计开发时间、降低总体成本具有重要意义。
传统的系统仿真方法主要使用基于C语言等计算机编程语言的方法,工作量大,效率低,仿真程序的可读性、可靠性、可移植性无法达到现代大中型系统的要求。
QPSK误码率仿真分析
[键入文字]通信工程专业《通信原理》课程设计题目 QPSK的误码率仿真分析学生姓名谭夕林学号 **********所在院(系)陕西理工学院物理与电信工程学院专业班级通信工程专业 1102 班指导教师魏瑞完成地点陕西理工学院物理与电信工程学院实验室2014年 3 月 12 日通信工程专业课程设计任务书院(系) 物理与电信工程学院专业班级通信工程专业1102班学生姓名谭夕林一、课程设计题目 QPSK的误码率仿真分析二、课程设计工作自 2014 年 2 月 24 日起至 2014 年 3 月 16 日止三、课程设计进行地点: 物理与电信工程学院实验室四、课程设计的内容要求:利用仿真软件等工具,结合所学知识和各渠道资料,对QPSK在高斯通道下的误码率进行研究分析指导教师魏瑞系(教研室)通信工程系接受任务开始执行日期2014年2月24日学生签名谭夕林QPSK的误码率仿真分析谭夕林陕西理工学院物理与电信工程学院通信1102班,陕西汉中723003)指导教师:魏瑞【摘要】为实现QPSK应用到无线通信中,该文对QPSK系统性能进行了理论研究。
介绍了QPSK调制解调原理,对高斯白噪声信道的系统性能进行了研究,分析对比了在高斯白噪声信道下的系统误码性能。
为基于副载波QPSK无线激光通信系统的研究奠定了理论基础。
使用MATLAB中M语言完成QPSK的蒙特卡罗仿真,得出在加性高斯白噪声的信道下,传输比特错误率以及符号错误率。
并将比特错误率与理论值相比较,并得出关系曲线。
使用simulink搭建在加性高斯白噪声信道下的QPSK调制解调系统,其中解调器使用相关器接收机。
并计算传输序列的比特错误率。
通过多次运行仿真得到比特错误率与信噪比之间的关系。
【关键词】: QPSK,误码率,仿真,星座图【中图分类号】 TN702 [文献标志码] AQPSK BER simulation analysisTan Xilin(Grade11,Class2,Major of Communication Engineering,School of Physics and telecommunication Engineering of Shaanxi University of Technology, Hanzhong 723003,China)Tutor:Wei Rui[Abstract]For the application of the QPSK (Phase-Shift-Keying) to the wireless laser communication, this paper emphasizes the system of QPSK's performance, theoretically. In the paper, the principle of the QPSK's modulation and demodulation were introduced in brief and the performance of the system at white Gaussian noise (AWGN) channel was also analyzed carefully. The above results provide the theoretical foundation for the wireless laser communication system based on the QPSK with e the MATLAB language to complete Monte Carlo simulation of QPSK, and to obtain the transmission sequence bit error rate and symbol error rate in the additive white Gaussian noise channel, comparing it with the theoretical value, then get curve. The second aspect is to learn how to use Simulink and the functions and principles of various modules. Then we use Simulink to create the model of QPSK through additive white Gaussian noise channel. And take the advantage of the Correlator receiver to complete the operation of demodulation. Then calculate the transmission sequence bit error rate. By running the simulation repeatedly, we can get the relationship between the bit error rate and SNR.Keywords: QPSK, BER, simulation, constellation目录摘要 (3)Abstract (4)一绪论 (6)1.1 课题背景及仿真 (6)1.1.1QPSK系统的应用背景简介 (6)1.1.2QPSK实验仿真的意义 (6)1.1.3仿真平台和仿真内容 (6)二系统实现框图和分析 (7)2.1QPSK调制部分 (7)2.2QPSK解调部分 (8)三QPSK特点及应用领域 (9)3.1QPSK特点 (9)3.2误码率 (10)3.3QPSK时域信号 (10)3.4扩充认知QPSK-OQPSK (10)3.5QPSK的应用领域 (11)四使用simulink搭建QPSK调制解调系统 (12)4.1信源产生 (12)4.2QPSK系统理论搭建 (13)五仿真模型参数设置及结果 (15)5.1仿真附图及参数设置 (15)5.2仿真结果 (16)5.3误码率曲线程序及其仿真结果 (17)六仿真结果分析 (19)七总结与展望 (20)致谢 (21)参考文献 (21)一.绪论1.1课题背景及仿真:1.1.1QPSK系统的应用背景简介QPSK是英文Quadrature Phase Shift Keying的缩略语简称,意为正交相移键控,是一种数字调制方式。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实验十数字通信系统误码率仿真分析
一、实验目的
1.掌握几种数字系统误码率分析方法。
2.掌握误码率对数字通信系统的影响。
二、实验内容
1.编写MATLAB程序,以QAM系统为例进行误码率的仿真。
2.观察不同噪声及噪声大小对误码率的影响。
三、实验代码
1)程序主代码
clear;
clc;
snr=1:1:11;
error_theory=(1-(1-(2*(1-
1/sqrt(16))*1/2*erfc(1/sqrt(2)*sqrt(3*4*10.^(snr/10)/(16-1))))).^2)/4;
N=floor(1./error_theory)*100+100;
N(find(N<5000))=5000;
p=0.5;
for i=1:length(N);
source=randsrc(1,N(i),[1,0;p,1-p]);
[source1,source2]=Qam_modulation(source);
sig_insert1=insert_value(source1,8);
sig_insert2=insert_value(source2,8);
[source1,source2]=rise_cos(sig_insert1,sig_insert2,0.25,2); [x1,x2]=generate_noise(source1',source2',snr(i));
sig_noise1=x1';
sig_noise2=x2';
[sig_noise1,sig_noise2]=rise_cos(sig_noise1,sig_noise2,0.25,2)
;
[x1,x2]=pick_sig(sig_noise1,sig_noise2,8);
sig_noise1=x1;
sig_noise2=x2;
signal=demodulate_sig(sig_noise1,sig_noise2);
error_bit(i)=length(find(signal-source)~=0)/N(i); end;
semilogy(snr,error_bit,'-*b');
hold on
semilogy(snr,error_theory,'-+r');
grid on
legend('实际值','理论值','location','NorthEast');
2)QAM调制函数
%QAM调制函数
function [yy1,yy2]=Qam_modulation(x)
N=length(x);
a=1:2:N;
y1=x(a);
y2=x(a+1);
a=1:2:N/2;
temp11=y1(a);
temp12=y1(a+1);
y11=temp11*2+temp12;
temp21=y2(a);
temp22=y2(a+1);
y22=temp21*2+temp22;
yy1(find(y11==0))=-3;
yy1(find(y11==1))=-1;
yy1(find(y11==3))=1;
yy1(find(y11==2))=3;
yy2(find(y22==0))=-3;
yy2(find(y22==1))=-1;
yy2(find(y22==3))=1;
yy2(find(y22==2))=3;
3)QAM解调函数
%QAM解调函数
function y=demodulate_sig(x1,x2)
%x1=[3 -1 -3 1;
%x2=[-3 1 3 -1];
xx1(find(x1>=2))=3;
xx1(find((x1<2)&(x1>=0)))=1;
xx1(find((x1>=-2)&(x1<0)))=-1;
xx1(find(x1<-2))=-3;
xx2(find(x2>=2))=3;
xx2(find((x2<2)&(x2>=0)))=1;
xx2(find((x2>=-2)&(x2<0)))=-1;
xx2(find(x2<-2))=-3;
%xxx1=xx1
%xxx2=xx2
temp1=zeros(1,length(xx1)*2);
temp1(find(xx1==-1)*2)=1;
temp1(find(xx1==1)*2-1)=1;
temp1(find(xx1==1)*2)=1;
temp1(find(xx1==3)*2-1)=1;
temp2=zeros(1,length(xx2)*2);
temp2(find(xx2==-1)*2)=1;
temp2(find(xx2==1)*2-1)=1;
temp2(find(xx2==1)*2)=1;
temp2(find(xx2==3)*2-1)=1;
%x11=temp1
%x22=temp2
n=length(temp1);
for i=1:2:2*n-1
y(i)=temp1((i+1)/2);
y(i+1)=temp2((i+1)/2);
end
4)叠加高斯噪声函数
function [y1,y2]=generate_noise(x1,x2,snr)
%叠加高斯噪声
snr1=snr+10*log10(4);
ss=var(x1+i*x2,1);
y=awgn([x1+j*x2],snr1+10*log10(ss/10),'measured'); y1=real(y);
y2=imag(y);
5)对两路信号进行插值函数
function y=insert_value(x,ratio)
%对两路信号进行插值
y=zeros(1,ratio*length(x));
a=1:ratio:length(y);
y(a)=x;
6)采样函数
function [y1,y2]=pick_sig(x1,x2,ratio)
%采样
y1=x1(ratio*3*2+1:ratio:(length(x1)-ratio*3*2)); y2=x2(ratio*3*2+1:ratio:(length(x2)-ratio*3*2)); 7)升余弦滤波函数
function [y1,y2]=rise_cos(x1,x2,fd,fs)
%升余弦滤波
[yf,tf]=rcosine(fd,fs,'fir/sqrt');
[yo1,to1]=rcosflt(x1,fd,fs,'filter/Fs',yf);
[yo2,to2]=rcosflt(x2,fd,fs,'filter/Fs',yf);
y1=yo1;
y2=yo2;
四、实验结果
实验结果如图一所示:
图一
五、实验结论
1.由图一可知,实际值与理论值大致吻合。
2.通信系统的传输误码率由调制方式和信道信噪比共同决定
的。