煤化工工艺
煤化工产业工艺路线与技术水平

煤化工产业工艺路线与技术水平煤化工产业是指以煤为原料,经过一系列化学反应制成化工产品的产业领域,主要包括煤焦化、煤炭气化、炼焦化学、煤制气、煤制甲醇、煤制合成氨、煤炭加氢制油、煤基新材料等多个分支。
自20世纪50年代开始,我国煤化工产业发展进入了高速发展的阶段,煤化工产品的种类也逐渐增多。
本文将就煤化工产业工艺路线与技术水平进行简要介绍。
1、煤焦化煤焦化是将煤在高温下分解成焦炭、煤气和煤焦油的过程。
煤焦化是冶金工业中生产高质量焦炭的主要途径之一。
随着石油和天然气资源的逐渐枯竭,煤焦化除了冶金工业外,也逐渐在化工、能源领域得到了广泛应用。
2、煤炭气化煤炭气化是以煤为原料,在氧气和水蒸气的存在下进行的化学反应,产生的气体主要成分是一氧化碳和氢气,包括氮气、二氧化碳等。
煤炭气化在我国的实践中主要用于煤制氢、煤制甲醇和煤制合成氨等领域。
煤炭气化技术的成熟和发展,不仅可以增加煤的利用率,同时也可以减少煤炭的消耗。
3、炼焦化学炼焦是将煤炭在高温下进行反应而得到的高质量固态碳基材料。
炼焦是煤焦化行业中最基本和原始的工艺,可分为手工炼焦、半机械化炼焦和全自动化炼焦三种类型。
炼焦化学产物主要是焦炭、焦炭气和焦油等。
4、煤制气煤制气是将煤炭在高温下和适量氧气或蒸汽在气化炉内反应,产生一氧化碳和氢气,再经过净化、调质等工艺制成高质量的合成气。
合成气中含有一氧化碳、二氧化碳、氢气、氮气、一氯甲烷等气体成分。
煤制气技术在工业、能源和化工领域中有着广泛的应用,如制备合成氨、甲醇、合成烃等。
5、煤制甲醇煤制甲醇是通过煤炭、天然气、石油、生物质材料等作为原料,通过现代化技术路线,经过气化、合成、精制等多环节的反应,生产出高纯度的甲醇。
煤制甲醇可以用于工业、化工、能源等各个领域,也是目前较为成熟和广泛发展的煤化工领域。
6、煤制合成氨煤制合成氨是将一氧化碳、二氧化碳、氢气等气体经过高压、高温的反应,制得氨气的过程。
煤制氨广泛应用于农业、化工和能源领域,是我国工业发展中非常重要的领域之一。
煤化工工艺流程

煤化工工艺流程煤化工是一种将煤炭转化为化学品的工艺,通过对煤炭进行热解、加氢、裂解、合成等一系列化学和物理变化,将煤炭转化为液体燃料、化工原料和高附加值的化学品。
下面将介绍一种常用的煤化工工艺流程。
该工艺流程主要包括煤炭热解、煤浆制备、固体分离、煤气处理、液体燃料制备和化工品合成等几个主要步骤。
首先,将煤炭进行热解处理。
煤炭热解是将煤炭在高温下分解为煤焦油、煤气和焦炭的过程。
这一步骤通常在高温条件下进行,可以使用干馏炉或流化床炉等设备进行煤炭热解。
接下来,对热解产物进行固体分离。
煤焦油、煤气和焦炭经过冷却、洗涤等处理,将其中的固体、液体和气体分离,并分别进行处理和利用。
固体分离主要是通过密度差异、物理性质等,将固体颗粒从液体或气体中分离出来。
然后,对煤气进行处理。
煤气处理包括除尘、除硫、除苯等工艺,将采集到的煤气中的杂质和有害物质去除,保证煤气的纯净程度。
这一步骤通常使用除尘器、洗涤塔、吸附剂等设备进行处理。
随后,将煤气进行液体燃料制备。
煤气通过气体合成工艺,主要采用费托合成、甲醇合成等方式,将煤气中的一氧化碳和氢气等成分合成为液体燃料,如合成气、合成油等。
最后,进行化工品合成。
将液体燃料和其他化学原料进行反应,通过催化剂等作用,合成出各种有机化学品,如甲醇、苯乙烯、丙烯酸等。
这一步骤通常需要经过多道反应和分离工艺,最终获得纯净的化学品。
整个煤化工工艺流程包括煤炭热解、固体分离、煤气处理、液体燃料制备和化工品合成等步骤,每个步骤都是互相关联的,需要精细的控制和操作。
通过这个工艺流程,煤炭可以充分利用,并转化成为高附加值的化学品和液体燃料,实现煤炭的资源化利用,提高能源的利用效率,并减少对环境的影响。
煤化工在能源和化工领域具有广阔的应用前景。
煤化工各工艺路线图汇总,值得收藏!

煤化工各工艺路线图汇总,值得收藏!煤化工是指以煤为原料,经化学加工使煤转化为气体、液体和固体燃料以及化学品的过程。
主要包括煤的气化、液化、干馏,以及焦油加工和电石乙炔化工等。
新型煤化工以生产洁净能源和可替代石油化工的产品为主,通常指煤制油、煤制甲醇、煤制二甲醚、煤制烯烃、煤制乙二醇、煤制天然气等等。
点击图片查看大图煤化工工艺路线图煤制甲醇已经是相对成熟的工艺路线,煤制甲醇工艺路线的主要差异是造气工序的不同。
目前,世界上采用煤为原料的造气技术有鲁奇(Lurgi)的固定床加压气化技术、德士古(Texaco)、道化学(DOWChemical)的水煤浆气化技术和西门子(GSP)、壳牌(Shell)的粉煤气化技术。
鲁奇的固定床加压气化技术工业化时间最长,但是由于该技术气化温度较低,生成气中甲烷含量大,不宜用作制甲醇用合成气。
德士古炉在我国已有多台使用经验,且90%以上的材料和部件可国产化,因此投资较省。
1、合成甲醇的化学反应方程式:(1)主反应:CO+2H2=CH3OH+102.5KJ/mol(2)副反应2CO+4H2=CH3OCH3+H2O+200.2 KJ/molCO+3H2=CH4+H2O+115.6 KJ/mol4CO+8H2=C4H9OH+3H2O+49.62 KJ/molCO2+H2=CO+H2O-42.9 KJ/mol2、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于煤炭气化所得到的水煤气CO含量较高,H2含量较低,因此水煤气须经脱硫、变换、脱碳调整气体组成,以达到甲醇合成气的要求。
3、CO变换反应CO+H2O(g)=CO2+H2 (放热反应)4、水煤气组分与甲醇合成气组分对比1、合成甲醇的化学反应方程式:CH4+H2O=CH3OH+H22、甲醇合成气要求氢碳比f=(H2-CO2)/(CO+CO2)≈2.05~2.10,由于天然气甲烷含量较高,因此要对天然气进行蒸汽转化,生成以H2、CO和CO2位主要成分的转化气。
煤化工工艺

煤化工工艺煤化工是利用煤炭的特性,将其加工成丰富多样的产品,从而获取它们的有价值成分,用于燃料、化肥和某些有机物(如烯烃、醇、醚、醛、芳香族化合物、树脂等)的生产。
煤化工工艺发展到今天,已经发展出了多种形式,从用于原料的成型工艺、加工技术,到高精度的分析技术,以及改性和利用煤炭副产品的技术,这些技术的深入发展,极大地促进了煤的加工和利用,给国家的经济和社会带来了良好的效益。
煤的加工可以分为几个主要的工艺步骤,这些步骤包括热解、杂质分离、碳氢化反应、液态提取、分离精馏和控制。
其中热解技术是煤化工的主要技术,是最基本的工艺步骤,利用空气、氧化物或卤素作为热解剂,将煤的难燃组分转化为可消耗的气态或液态燃料,从而获得更多的可利用的能量。
煤的杂质分离是将煤中的杂质和有害物质从煤中精确分离出来,以减少空气污染物排放量,同时也可以减少热解煤时产生的烟气污染。
碳氢化反应是指在变温环境中,将煤中的烷烃和烯烃加氢转化反应,使其可以更容易利用,用来生产化肥和燃料等产品。
液态提取是指将煤中的金属酸盐以及其他有机物用溶剂提取的过程,使其可以为更具合成价值的物质所利用。
最后,分离精馏是指将煤中的各种化合物和有机物按其物理和化学特性,从而获得不同的有用物质的过程。
煤的加工和利用,不仅仅是一个技术性的问题,还需要考虑它的经济性和社会性。
在经济性方面,需要考虑加工和利用煤炭的成本问题,包括燃料和原料的成本,以及各种成本组成,包括加工煤炭的能源、设备、人工等,掌握各种成本组成,有助于减少它们,提高利润。
同时,煤的加工和利用还要考虑它的社会性,例如加工煤炭产生的污染物会给环境造成损害,从而影响人们的生活和职业。
因此,在加工和利用煤炭的过程中,要采取有效的防护措施,减少煤炭加工带来的污染,提高生产的安全性和效率,节约能源,保护环境,维护人们的身心健康。
综上所述,煤化工工艺是煤炭加工利用的重要组成部分,其发展催生了煤的经济性和社会性的有效利用,为现代社会的发展和发展带去了积极的经济效益。
煤化工工艺学

煤化工工艺学煤化工工艺学是研究将煤及其副产品进行化学加工转换的一门学科。
煤是一种重要的能源资源,而煤化工工艺学则是利用化学方法对煤进行处理,分离出有用的化学物质,从而提高煤的综合利用价值。
煤化工工艺学的发展可以追溯到20世纪初。
在那个时候,煤在生活和工业生产中扮演着重要角色,但人们面临着煤资源的枯竭和环境污染等问题。
为了解决这些问题,煤化工工艺学崭露头角。
研究者通过在实验室中进行煤的热解、气化和液化等反应,成功地开发出了一系列煤化工工艺,并实现了工业化应用。
煤化工工艺主要包括煤气化技术、煤直接液化技术、煤间接液化技术和煤聚合物材料技术等。
其中,煤气化技术是将煤在高温和缺氧条件下进行气化反应,生成合成气体(CO和H2),然后制取液体燃料或化学原料。
煤直接液化技术是通过直接在高温和高压条件下将煤转化为液体燃料,如柴油和重质油。
煤间接液化技术是指先将煤进行气化反应,然后将合成气体转化为液体燃料。
煤聚合物材料技术是将煤的分子结构进行改变,生成新型的聚合物材料,用于制备高性能的材料。
煤化工工艺学的研究内容非常广泛,涉及到的知识领域包括煤的地质学、热学、动力学、催化学、工程学等。
研究者需要掌握煤的基本性质,如煤的组成、结构和性质,以及煤在不同条件下的热解、气化和液化反应规律。
此外,研究者还需要了解催化剂的性质和应用,以及各种反应器的设计和操作。
煤化工工艺学的研究意义重大。
一方面,煤化工工艺可以将煤转化为液体或气体燃料,解决能源供给问题。
另一方面,煤化工工艺可以从煤中提取出有机化学原料,制备化学产品,满足人们对化学品的需求。
此外,煤化工工艺还可以减少煤燃烧所产生的污染物排放,提高煤的利用效率,促进能源的可持续发展。
然而,煤化工工艺学也面临一些挑战和难题。
一方面,煤的性质复杂多样,不同种类的煤在热解、气化和液化过程中表现出不同的反应规律,因此需要深入研究煤的基本性质和反应机理。
另一方面,煤化工工艺需要大量的能源输入,而且涉及到高温、高压和有毒物质等工艺条件,对设备和催化剂的要求较高。
煤化工工艺流程图

煤化工工艺流程图煤化工是利用煤炭作为原料进行加工生产的工艺,主要包括煤炭的煤气化、气体净化、合成气制备、气体加氢、合成油制备和产品精制等环节。
下面是一个简要的煤化工工艺流程图。
一、煤气化煤气化是将煤炭在高温高压条件下进行裂解反应,产生煤气的过程。
煤炭首先经过粉碎、煤气化剂的预处理后,进入煤气化炉,煤与煤气化剂发生反应,生成煤气和煤渣。
煤气经过煤渣分离后进入下一步的气体净化。
二、气体净化煤气中含有大量的杂质,需要进行气体净化处理。
首先进行除尘,去除煤气中的固体颗粒物;然后进行脱硫,去除煤气中的硫化物;接着进行脱氮,去除煤气中的氮氧化物。
经过气体净化后得到纯净的合成气。
三、合成气制备合成气制备是将煤气中的一氧化碳和氢气按照一定比例配制,得到合成气。
合成气是煤化工的核心产品,可以用于制造合成油、化学品和燃料等。
制备合成气的主要反应是水煤气变换反应和乙炔合成反应。
经过合成气制备后得到合成气。
四、气体加氢合成气经过水煤气变换反应后,得到的合成气中还含有少量的一氧化碳,需要进一步进行气体加氢。
气体加氢是将一氧化碳和一氧化碳与氢气在催化剂的作用下发生反应生成甲醇和一碳酸酯等有机物。
经过气体加氢后得到富氢气体。
五、合成油制备煤化工的最终目标是制备合成油。
将富氢气体与催化剂一起在合成油装置中进行反应,生成合成油和尾气。
合成油是类似于石油的液体燃料,可以用于发电、燃料和化学原料等领域。
六、产品精制合成油中还含有一定量的杂质,需要经过产品精制处理。
产品精制主要包括精制塔、蒸馏塔和泵等设备,通过物理和化学方法去除杂质,提高产品纯度和质量。
综上所述,煤化工的工艺流程包括煤气化、气体净化、合成气制备、气体加氢、合成油制备和产品精制等六个环节。
这是一个简要的工艺流程,实际操作中可能还会包括其他环节和设备。
煤化工是一种重要的煤炭加工技术,可以实现煤炭资源的高效利用,减少能源排放,具有重要的经济和环境意义。
煤化工工艺流程

煤化工工艺流程煤化工是一种利用煤炭资源进行化学加工的工艺,通过一系列的工艺流程将煤炭转化为有价值的化学品和能源产品。
下面介绍一种常见的煤化工工艺流程。
该工艺流程的主要目标是将煤炭转化为合成气和合成油,然后再将合成气用于制备合成甲醇和其他化学品,同时将合成油用于制备石油产品。
首先,原料煤炭经过干燥处理,去除其中的水分,以提高后续反应的效率。
然后,将煤炭粉碎成细粉,以增加煤炭与反应剂的接触面积。
接下来,采用气化反应将煤炭转化为合成气。
气化反应是将煤炭与氧气、水蒸汽等反应剂在高温和高压下进行的化学反应。
在气化反应中,煤炭中的有机物质被分解为气体,形成合成气,主要包括一氧化碳和氢气。
然后,合成气进入合成甲醇装置,进行合成甲醇反应。
合成甲醇反应是利用铜基催化剂将一氧化碳和氢气进行反应,得到甲醇。
合成甲醇是一种重要的工业化学品,广泛应用于化工、医药和能源等领域。
在合成甲醇反应的同时,还可采用煤焦油加氢装置将合成气转化为合成油。
煤焦油加氢是一种利用金属催化剂将合成气进行加氢反应,生成液体烃类化合物的过程。
合成油主要包括汽油、柴油和润滑油等石油产品。
最后,对合成甲醇和合成油进行精炼处理,去除其中的杂质和不纯物质,提高其纯度和质量。
精炼处理包括脱硫、脱氮、脱氧等步骤,以确保最终产品的质量符合要求。
整个煤化工工艺流程中,需要注意的是设备的选型和设计。
由于反应需要高温和高压环境,因此需要使用耐高温和耐压的材料,并采用先进的反应器和换热设备,以提高反应的效率和产物的质量。
总之,煤化工工艺流程将煤炭转化为合成气和合成油,进而制备合成甲醇和其他化学品,以及石油产品。
这种工艺具有资源有效利用、环境友好以及能源多样化等优点,为煤炭资源的综合利用提供了新的途径。
同时,随着煤化工技术的不断发展,将有更多的煤炭转化工艺应用于实际生产中,为能源结构的转型升级做出贡献。
煤化工工艺流程

煤化工工艺流程
煤化工是利用煤炭资源进行化工加工的一种重要方式,其工艺
流程主要包括煤气化、合成氨、甲醇、合成油等环节。
煤化工工艺
流程的设计和运行对于提高煤炭资源的利用率、促进能源结构调整
和保障国家能源安全具有重要意义。
煤气化是煤化工的第一道工艺环节,通过高温和催化剂的作用,将煤炭转化为合成气,主要成分为一氧化碳和氢气。
合成氨是煤化
工的重要产品,合成氨工艺流程主要包括空气分离、制氢、合成氨
等环节。
甲醇是一种重要的有机化工产品,其生产工艺主要包括合
成气制备、甲醇合成等环节。
合成油是煤化工的重要产品之一,其
生产工艺主要包括煤液化、合成油加工等环节。
在煤化工工艺流程中,要注重提高产品质量,降低能耗,减少
环境污染。
在煤气化工艺中,要选择合适的煤种和气化工艺,提高
合成气的质量,提高气化效率。
在合成氨工艺中,要优化空气分离
工艺,提高氢气纯度,减少能源消耗。
在甲醇工艺中,要选择合适
的催化剂和工艺条件,提高甲醇的纯度和产率。
在合成油工艺中,
要优化煤液化工艺,提高合成油的转化率和选择性。
煤化工工艺流程的设计和运行需要综合考虑原料性质、工艺条件、设备选型、能源消耗、环境排放等因素,注重技术创新和工艺优化,提高工艺流程的稳定性和经济性。
同时,还需要加强安全管理,确保生产安全,防止事故发生,保障生产稳定。
总的来说,煤化工工艺流程的设计和运行是一个复杂而又关键的工作,需要多方面的专业知识和经验积累。
随着科技的不断发展和进步,相信煤化工工艺流程将会不断完善和提高,为我国能源结构调整和可持续发展做出更大的贡献。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
• 煤的燃烧、煤与硝酸、双氧水等氧化剂的反应是典型的氧化反应。 煤的加氢液化则是重要的加氢反应
• 煤的化学性质研究为煤的结构分析提供了依据,也为煤的加工利 用提供了实验基础
一、概述
1、煤炭资源与煤的性质
煤的性质
主要包括物理性质、化学性质和工艺性质。物理性质是对煤质进行初步 评价的基础,化学性质则为煤炭转化和直接化学加工技术的发展提供指 导,工艺性质决定煤的工业转化技术的重要参数
20世纪80年代,煤化工有了新的突破,实现 煤制乙酐(合成气合成乙酸甲酯,再羰基化制乙酐)
✓ 重要的乙酰化试剂,用于制造纤维素乙酸酯、乙 酸塑料、不燃性电影胶片、咖啡因和阿丝匹林等
一、概述
3、煤化工发展历史 我国煤化工发展历史
1925年,石家庄建立了第一座炼焦化学厂
1934年,上海建成立式炉和增热水煤气炉的煤气厂,城市煤气 1940s,南京、大连建成了以煤为原料的化工基地,生产合成
✓ 工艺 性质
• 包括煤的黏结性和结焦性、发热量、反应性和煤灰熔融性等
• 黏结性是指煤粒(d < 0.2 mm)在隔绝空气受热后能否黏结其本 身或惰性物质(即无黏结力的物质)成焦块的性质。结焦性是煤 粒隔绝空气受热后能否生成优质焦炭的性质
• 煤灰是由煤中矿物质燃烧生成的各种金属和非金属氧化物以及硫 酸盐等组成的复杂混合物,没有固定的熔点,只有一个相当宽的 融化温度,采用角锥法测定
的反应活性,含量随煤化度的升高而减小
氧
主要以含氧官能团存在,含量随煤化度的加深而减小,反 应活性很高,在煤的加工利用过程中起较大的作用
氮和硫 含量少,但对环境污染严重,是评价煤质的重要指标之一
一、概述
1、煤炭资源与煤的性质
煤的性质
主要包括物理性质、化学性质和工艺性质。物理性质是对煤质进行初步 评价的基础,化学性质则为煤炭转化和直接化学加工技术的发展提供指 导,工艺性质决定煤的工业转化技术的重要参数
一、概述
1、煤炭资源与煤的性质
煤的性质
主要包括物理性质、化学性质和工艺性质。物理性质是对煤质进行初步 评价的基础,化学性质则为煤炭转化和直接化学加工技术的发展提供指 导,工艺性质决定煤的工业转化技术的重要参数
✓ 化学 • 煤在一定条件下与其他化学物质发生反应的性能。煤发生的化学
性质
反应主要包括氧化、加氢、卤化、磺化和水解等反应
二战前夕和战期,煤化工全面发展。
✓ 间接液化(1932年发明费托合成法,1933年实现工业化, 1938年年产达59万吨)
✓ 直接液化(1913年Bergius发明褐煤加氢专利,1919年实现 工业化,1931年因高压化学反应研究与Bosch分享诺贝尔化 学奖。1939年110万吨)
一、概述
3、煤化工发展历史
一、概述
1、煤炭资源与煤的性质
煤的分类
成因分类 按照成煤的原始物料和堆积环境分类
科学分类 按照煤的元素组成等基本性质分类
实用分类 按照煤的工艺性质和用途分类,煤的工业分类
按煤化程度将煤炭划分为无烟煤、烟煤和褐煤;再根据干燥无灰 基挥发分及黏结指数等指标,将烟煤划分为贫煤、贫瘦煤、瘦煤、 焦煤、肥煤、1/3焦煤、气肥煤、气煤、1/2中黏煤、弱黏煤、不 黏煤及长焰煤12种。名称以汉语拼音字母为代号。
二战后,大量廉价石油、天然气的开产,除了炼焦化学工业随 钢铁工业不断发展外,工业上大规模由煤制取液体燃料的生产 暂时中断。
✓ 南非煤间接液化:1955年SASOL-I,1982年SASOL-II,SASOL-III,年产160万吨
1973年,中东战争带来石油危机,使得由煤生产液体燃料和化 学品的方法受到重视。合成气制甲醇、甲醇制汽油工业化。
一、概述
1、煤炭资源与煤的性质
煤的组成
煤主要由有机质、矿物质和水组成。有机质主要包括碳、氢、氧、氮和 硫等元素,其中碳、氢和氧元素的总和占煤中有机质的95%以上
碳
有机质中最主要组成元素,大芳环和稠环的骨架主要是由 碳元素构成的,含量随煤化度的升高而增大
氢
组成煤大芳环和稠环骨架以及侧链的重要元素,具有更强 Nhomakorabea煤化工工艺
内容提要
一、概述 二、煤的热分解 三、煤的干馏 四、煤的气化 五、煤的液化 六、煤化工发展趋势
10课时
一、概述
1、煤炭资源与煤的性质 2、煤化工分类及其主要产品 3、煤化工发展历史
一、概述
1、煤炭资源与煤的性质
煤是植物遗体在覆盖地层下,经复杂的生物化学和物理化学作 用,转化而成的固体有机可燃沉积岩,也叫煤炭(coal) (GB/T 3715-2007) 。
煤是地球上能得到的最丰富的化石燃料。煤的使用年限估计在 109年,它将是替代不断下降的石油资源( 53年)的可靠资源。 因此煤化学工业的发展将替代石油化学工业。中国31年、12年
2012年,全球煤炭探明储量为8009亿吨。中国位居全球第三, 煤炭探明储量为1145亿吨占总量的13.3%。前两位:美国2372 亿吨,27.6%;俄罗斯1570亿吨,18.2%。澳大利亚、印度、 乌克兰和哈萨克斯坦、南非 。
一、概述
1、煤炭资源与煤的性质
煤的形成
✓ 物质条件(成煤的原始植物) ✓ 沉积条件(植物死亡后的沉积环境) ✓ 温度和压力条件(埋藏深度) ✓ 时间条件(漫长,2.9-3.6亿年前) ✓ 地质条件(地壳运动)
植物遗体与氧气呈半隔绝状 态,经生物化学作用形成泥 炭。泥炭在地热和地质压力 作用下逐渐硬化成煤炭,这 一变化过程称为“煤化过程”
✓ 物理 • 具体为颜色、光泽、密度、导电性、硬度、脆度等,颜色和光泽
性质
可以通过肉眼观察,其他物理性质则需要通过科学实验测定
• 根据研究和应用需要,密度分为真密度、视密度(或假密度)和 堆密度。真密度和视密度主要受煤岩组成、煤化度、煤中矿物质 的组成和含量等因素影响,堆密度还受煤的堆积方式影响
• 学术上一般使用绝对密度,而工业上习惯使用相对密度
2、煤化工
煤工煤 化实化 学现工 工煤是 业综以 。合煤 从利为 煤用原 加的料 工工经 过业过 程,化 区又学 分称加
一、概述
一、概述
3、煤化工发展历史
18世纪中叶,工业革命炼铁使用焦炭,焦炭化工应运而生。
18世纪末,开始由煤生产民用煤气。街道照明、炼铁、城市煤 气。
1920-1930期间,低温干馏,半焦作无烟燃料,焦油加氢为液 体燃料。