高考数学选择题秒杀技巧

合集下载

数学高考秒杀技巧

数学高考秒杀技巧

数学高考秒杀技巧
在数学高考中,一些秒杀技巧可以帮助学生更快地解决问题和提高得分。

以下是一些常见的技巧:
1. 打破固有思维:高考数学题目往往有多种解法,学生应该尝试用不同的方法解决问题。

这有助于提高思维的灵活性和解决问题的能力。

2. 抓住关键信息:在题目中,有些关键信息可以直接给出答案。

学生应该学会识别并利用这些信息,避免陷入繁琐的计算中。

3. 运用近似值:高考数学中有时会涉及到复杂的计算,而近似值可以帮助学生快速得出答案。

通过将数值调整到更容易计算的近似值,避免长时间的计算过程。

4. 利用选项:在选择题中,选项往往会给出一些线索。

学生可以将选项代入问题,验证哪个选项满足题目给出的条件,从而快速得出答案。

5. 注意解答要求:高考试卷上通常会明确要求答案的形式,如化简、写成分数形式等。

学生在解题时应该注意这些要求,以免白白损失分数。

6. 简化复杂问题:对于一些看似复杂的问题,学生可以尝试简化它们,将其转化为更简单的形式。

这有助于提高解题的效率和准确性。

7. 制定学习计划:在备考阶段,学生应该合理制定学习计划,重点攻克自己相对薄弱的知识点。

同时,要注重练习,通过做更多的题目来强化记忆和提高解题能力。

以上是一些数学高考秒杀技巧,希望能对学生备考和应试有所帮助。

高考数学选择题方法速解七大方法巧解选择题

高考数学选择题方法速解七大方法巧解选择题

第一讲选择题速解方法——七大方法巧解选择题题型解读题型地位选择题是高考数学试卷的三大题型之一.选择题的分数一般占全卷的40%左右.解选择题的快慢和成功率的高低对于能否进入做题的最佳状态以及整个考试的成败起着举足轻重的作用.如果选择题做得比较顺手,会使应试者自信心增强,有利于后续试题的解答.题型特点数学选择题属于客观性试题,是单项选择题,即给出的四个选项中只有一个是正确选项,且绝大部分数学选择题属于低中档题.一般按由易到难的顺序排列,主要的数学思想和数学方法能通过它得到充分的体现和应用,并且因为它还有相对难度如思维层次、解题方法的优劣选择,解题速度的快慢等,所以选择题已成为具有较好区分度的基本题型之一.其主要体现在以下三个方面:1知识面广,切入点多,综合性较强;2概念性强,灵活性大,技巧性较强;3立意新颖,构思精巧,迷惑性较强.由于解选择题不要求表述得出结论的过程,只要求迅速、准确作出判断,因而选择题的解法有其独特的规律和技巧.因此,我们应熟练掌握选择题的解法,以“准确、迅速”为宗旨,绝不能“小题大做”.解题策略数学选择题的求解,一般有两条思路:一是从题干出发考虑,探求结果;二是从题干和选择支联合考虑或从选择支出发探求是否满足题干条件.其解法的基本思想有以下两点:1充分利用题干和选择支提供的信息,快速、准确地作出判断,是解选择题的基本策略.2既要看到通常各类常规题的解题思想,原则上都可以指导选择题的解答,更应看到,根据选择题的特殊性,必定存在着一些特殊的解决方法.其基本做法如下:①仔细审题,领悟题意;②抓住关键,全面分析;③仔细检查,认真核对.另外,从近几年高考试题的特点来看,选择题以认识型和思维型的题目为主,减少了繁琐的运算,着力考查逻辑思维与直觉思维能力,以及观察、分析、比较、选择简捷运算方法的能力,且许多题目既可用通性通法直接求解,也可用“特殊”方法求解.所以做选择题时最忌讳:1见到题就埋头运算,按着解答题的解题思路去求解,得到结果再去和选项对照,这样做花费时间较长,有时还可能得不到正确答案;2随意“蒙”一个答案.准确率只有25%但经过筛选、淘汰,正确率就可以大幅度提高.总之,解选择题的基本策略是“不择手段”.例析方法一直接法直接对照型选择题是直接从题设条件出发,利用已知条件、相关概念、性质、公式、公理、定理、法则等基础知识,通过严谨推理、准确运算、合理验证,从而直接得出正确结论,然后对照题目所给出的选项“对号入座”,从而确定正确的选择支.这类选择题往往是由计算题、应用题或证明题改编而来,其基本求解策略是由因导果,直接求解.错误!已知{a n}为等比数列,a4+a7=2,a5a6=-8,则a1+a10等于A.7B.5C.-5 D.-7思维启迪利用基本量和等比数列的性质,通过解方程求出a4,a7,继而求出q3.答案 D解析解法一:由题意得错误!∴错误!或错误!∴a1+a10=a11+q9=-7.解法二:由错误!解得错误!或错误!∴错误!或错误!∴a1+a10=a11+q9=-7.探究提高直接法是解答选择题最常用的基本方法.直接法适用的范围很广,只要运算正确必能得出正确的答案.平时练习中应不断提高用直接法解选择题的能力,准确把握题目的特点.一般来说,涉及概念、性质的辨析或简单的运算题目多采用直接法.跟踪训练12015·浙江高考如图,设抛物线y2=4x的焦点为F,不经过焦点的直线上有三个不同的点A,B,C,其中点A,B在抛物线上,点C在y轴上,则△BCF与△ACF的面积之比是答案 A解析由题可知抛物线的准线方程为x=-1.如图所示,过A作AA2⊥y轴于点A2,过B作BB2⊥y轴于点B2,则错误!=错误!=错误!=错误!.方法二概念辨析法概念辨析是从题设条件出发,通过对数学概念的辨析,进行少量运算或推理,直接选择出正确结论的方法.这类题目常涉及一些似是而非、很容易混淆的概念或性质,这需要平时注意辨析有关概念,准确区分相应概念的内涵与外延,同时在审题时要多加小心,准确审题以保证正确选择.一般说来,这类题目运算量小,侧重判断,下笔容易,但稍不留意则易误入命题者设置的“陷阱”.错误!已知非零向量a=x1,y1,b=x2,y2,给出下列条件,①a=k b k ∈R;②x1x2+y1y2=0;③a+3b∥2a-b;④a·b=|a||b|;⑤x错误!y错误!+x错误!y错误!≤2x1x2y1y2.其中能够使得a∥b的个数是B.2D.4思维启迪本题考查两个向量共线的定义,可根据两向量共线的条件来判断,注意零向量的特殊性.答案 D解析显然①是正确的,这是共线向量的基本定理;②是错误的,这是两个向量垂直的条件;③是正确的,因为由a+3b∥2a-b,可得a+3b=λ2a-b,当λ≠错误!时,整理得a=错误!b,故a∥b;当λ=错误!时,易知b=0,a∥b;④是正确的,若设两个向量的夹角为θ,则由a·b=|a||b|cosθ,可知cosθ=1,从而θ=0,所以a∥b;⑤是正确的,由x错误!y错误!+x错误!y错误!≤2x1x2y1y2,可得x1y2-x2y12≤0,从而x1y2-x2y1=0,于是a ∥b.探究提高平行向量(共线向量)是一个非常重要和有用的概念,应熟练掌握共线向量的定义以及判断方法,同时要将共线向量与向量中的其他知识(例如向量的数量积、向量的模以及夹角等)有机地联系起来,能够从不同的角度来理解共线向量.跟踪训练2设a,b,c是空间任意的非零向量,且相互不共线,则以下命题中:①a·b·c-c·a·b=0;②|a|+|b|>|a-b|;③若存在唯一实数组λ,μ,γ,使γc=λa+μb,则a,b,c共面;④|a+b|·|c|=|a·c+b·c|.真命题的个数是B.1D.3答案 B解析由向量数量积运算不满足结合律可知①错误;由向量的加减法三角形法则可知,当a,b非零且不共线时,|a|+|b|>|a-b|,故②正确;当γ=λ=μ=0时,γc=λa+μb成立,但a,b,c不一定共面,故③错误;因为|a·c+b·c|=|a+b·c|=|a+b||c|cos〈a+b,c〉≤|a+b|·|c|,故④错误.答案为B.方法三特例检验法特例检验也称特例法或特殊值法是用特殊值或特殊图形、特殊位置代替题设普遍条件,得出特殊结论,再对各个选项进行检验,从而做出正确的选择.常用的特例有特殊数值、特殊数列、特殊函数、特殊图形、特殊角、特殊位置等.特例检验是解答选择题的最佳方法之一,适用于解答“对某一集合的所有元素、某种关系恒成立”,这样以全称判断形式出现的题目,其原理是“结论若在某种特殊情况下不真,则它在一般情况下也不真”,利用“小题小做”或“小题巧做”的解题策略.错误!设椭圆C:错误!+错误!=1的长轴的两端点分别是M,N,P是C上异于M,N的任意一点,则PM与PN的斜率之积等于B.-错误!D.-错误!思维启迪本题直接求解较难,运算量较大,可利用特殊位置进行求解,由P为C上异于M,N的任一点,故可令P为椭圆短轴的一个端点.答案 B解析取特殊点,设P为椭圆的短轴的一个端点0,错误!,又取M-2,0,N2,0,所以k PM·k PN=错误!·错误!=-错误!,故选B.探究提高用特殊值法解题时要注意:(1)所选取的特例一定要简单,且符合题设条件;,(2)特殊只能否定一般,不能肯定一般;,(3)当选取某一特例出现两个或两个以上的选项都正确时,要根据题设要求选择另外的特例代入检验,直到找到正确选项为止.跟踪训练3如图,在棱柱的侧棱A1A和B1B上各有一动点P、Q 满足A1P=BQ,过P、Q、C三点的截面把棱柱分成两部分,则其体积之比为∶1 B.2∶1∶1 ∶1答案 B解析将P、Q置于特殊位置:P→A1,Q→B,此时仍满足条件A1P =BQ=0,则有V C-AA1B=V A1-ABC=错误!.故选B.方法四排除法数学选择题的解题本质就是去伪存真,舍弃不符合题目要求的选项,找到符合题意的正确结论.筛选法又叫排除法就是通过观察分析或推理运算各项提供的信息或通过特例对于错误的选项,逐一剔除,从而获得正确的结论.错误!2016·山东潍坊模拟已知函数y=fx的定义域为{x|x∈R 且x≠0},且满足fx+f-x=0,当x>0时,fx=ln x-x+1,则函数y=fx的大致图象为思维启迪结合函数的奇偶性、单调性、定义域、特殊自变量所对应函数值与零的大小等对选项进行验证排除.答案 A解析因为函数y=fx的定义域为{x|x∈R且x≠0},且满足fx+f -x=0,所以fx为奇函数,故排除C、D,又f e=1-e+1<0,所以e,f e在第四象限,排除B,故选A.探究提高(1)对于干扰项易于淘汰的选择题,可采用筛选法,能剔除几个就先剔除几个,如本例的图象问题.(2)允许使用题干中的部分条件淘汰选项.(3)如果选项中存在等效命题,那么根据规定——答案唯一,等效命题应该同时排除.(4)如果选项中存在两个相反的或互不相容的判断,那么其中至少有一个是假的.(5)如果选项之间存在包含关系,要根据题意才能判断.跟踪训练4函数fx=错误!0≤x≤2π的值域是B.-1,0C.-错误!,-1 错误!答案 B解析令sin x=0,cos x=1,则fx=错误!=-1,排除A、D;令sin x=1,cos x=0,则fx=错误!=0,排除C,故选B.方法五数形结合法根据题设条件作出所研究问题的曲线或有关图形,借助几何图形的直观性作出正确的判断,这种方法叫数形结合法,有的选择题可通过命题条件的函数关系或几何意义,作出函数的图象或几何图形,借助于图象或图形的作法、形状、位置、性质,得出结论,图形化策略是以数形结合的数学思想为指导的一种解题策略.错误!已知函数fx=错误!若函数y=fx-a|x|恰有4个零点,则实数a的取值范围为________.思维启迪研究函数零点的个数问题可转化为图象交点的个数,进而考虑数形结合法求解.答案1,2解析作出函数fx的图象,根据图象观察出函数fx的图象与函数y1=a|x|的图象交点的情况,然后利用判别式等知识求解.画出函数fx的图象如图所示.函数y=fx-a|x|有4个零点,即函数y1=a|x|的图象与函数fx的图象有4个交点根据图象知需a>0.当a=2时,函数fx的图象与函数y1=a|x|的图象有3个交点.故a<2.当y=a|x|x≤0与y=|x2+5x+4|相切时,在整个定义域内,fx的图象与y1=a|x|的图象有5个交点,此时,由错误!得x2+5-ax+4=0.当Δ=0得5-a2-16=0,解得a=1,或a=9舍去,则当1<a<2时,两个函数图象有4个交点.故实数a的取值范围是1<a<2.探究提高数形结合就是通过数与形之间的对应和转化来解决数学问题.它包含以形助数和以数解形两个方面.一般来说,涉及函数、不等式、确定参数取值范围、方程等问题时,可考虑数形结合法.运用数形结合法解题一定要对有关函数图象、方程曲线、几何图形较熟悉,否则,错误的图象反而会导致错误的选择.跟踪训练52016·山东济南模拟若至少存在一个xx≥0,使得关于x的不等式x2≤4-|2x-m|成立,则实数m的取值范围为A.-4,5 B.-5,5C.4,5 D.-5,4答案 A解析由x2≤4-|2x-m|可得4-x2≥|2x-m|,在同一坐标系中画出函数y=4-x2x≥0,y=|2x-m|的图象如图所示.①当y=|2x-m|位于图中实折线部分时,由CD:y=-2x+m与y =4-x2相切可得m=5,显然要使得至少存在一个xx≥0,使得原不等式成立,需满足m≤5;②当y=|2x-m|位于图中虚折线部分时,由AB:y=2x-m过点0,4可得-m=4,显然要使得至少存在一个xx≥0,使得原不等式成立,需满足-m≤4,即m≥-4.综上可知,实数m的取值范围为-4,5.方法六构造法构造法是一种创造性思维,是综合运用各种知识和方法,依据问题给出的条件和结论给出的信息,把问题作适当的加工处理,构造与问题相关的数学模式,揭示问题的本质,从而沟通解题思路的方法.错误!已知函数fx是定义在R上的可导函数,且对于∀x∈R,均有fx>f′x,则有2016f-2016<f0,f2016>e2016f02016f-2016<f0,f2016<e2016f02016f-2016>f0,f2016>e2016f02016f-2016>f0,f2016<e2016f0思维启迪根据选项的结构特征,构造函数,由函数的单调性进行求解.答案 D解析构造函数gx=错误!,则g′x=错误!=错误!,因为∀x∈R,均有fx>f′x,并且e x>0,所以g′x<0,故函数gx=错误!在R上单调递减,所以g-2016>g0,g2016<g0,即错误!>f0,错误!<f0,也就是e2016f-2016>f0,f2016<e2016f0.探究提高构造法求解时需要分析待求问题的结构形式,特别是研究整个问题复杂时,单独摘出其中的部分进行研究或者构造新的情景进行研究.跟踪训练6若四面体ABCD的三组对棱分别相等,即AB=CD,AC=BD,AD=BC,给出下列五个命题:①四面体ABCD每组对棱相互垂直;②四面体ABCD每个面的面积相等;③从四面体ABCD每个顶点出发的三条棱两两夹角之和大于90°而小于180°;④连接四面体ABCD每组对棱中点的线段相互垂直平分;⑤从四面体ABCD每个顶点出发的三条棱的长可作为一个三角形的三边长.其中正确命题的个数是B.3D.5答案 B解析构造长方体,使三组对棱恰好是长方体的三组平行面中异面的对角线,在此背最下,长方体的长、宽、高分别为x,y,z.对于①,需要满足x=y=z,才能成立;因为各个面都是全等的三角形由对棱相等易证,则四面体的同一顶点处对应三个角之和一定恒等于180°,故②正确,③显然不成立;对于④,由长方体相对面的中心连线相互垂直平分判断④正确;每个顶点出发的三条棱的长恰好分别等于各个面的三角形的三边长,⑤显然成立.故正确命题有②④⑤.方法七估算法由于选择题提供了唯一正确的选择支,解答又无需过程.因此,有些题目不必进行准确的计算,只需对其数值特点和取值界限作出适当的估计,便能作出正确的判断,这就是估算法.估算法往往可以减少运算量,但是加强了思维的层次.错误!已知点P是双曲线错误!-错误!=1上的动点,F1、F2分别是此双曲线的左、右焦点,O为坐标原点.则错误!的取值范围是A.0,6 B.2,错误!思维启迪利用动点P的位置进行估算即可轻松求解.答案 B解析当点P趋于双曲线右支上的无穷远处时,|PF1|,|PF2|,|OP|趋于相等,从而原式的值趋于2.当点P位于右支的顶点处时,|PF1|+|PF2|=4错误!,|OP|=2错误!.从而原式的值为错误!,排除C、D选项,又易知原式的值不可能为0,排除A,故选B.探究提高估算省去了很多推导过程和比较复杂的计算,节省了时间.它是人们发现问题、研究问题、解决问题的一种重要的运算方法.从考试的角度来看,解选择题只要选对就行,但平时做题时要尽量弄清每一个选择支正确与错误的原因,另外,在解答一道选择题时,往往需要同时采用几种方法进行分析、推理,只有这样,才会在高考时充分利用题目自身提供的信息,做到准确快速地解题.跟踪训练7如图,在多面体ABCDEF中,四边形ABCD是边长为3的正方形,EF∥AB,EF=错误!,EF与平面ABCD的距离为2,则该多面体的体积为B.5答案 D解析该多面体的体积比较难求,可连接BE、CE,问题转化为四棱锥E-ABCD与三棱锥E-BCF的体积之和,而V E-ABCD=错误!S·h=错误!×9×2=6,所以只能选D.。

高考数学选择题解题技巧

高考数学选择题解题技巧

高考数学选择题解题技巧高考数学选择题分值比较大,而且题目小巧灵活,有一定深度与综合性,所以迅速、准确地选出答案才是得分的关键。

下面给大家分享一些关于高考数学选择题解题技巧,希望对大家有所帮助。

高考数学选择题解题技巧1.估值选择法有些问题,由于题目条件限制,无法(或没有必要)进行精准的运算和判断,此时只能借助估算,通过观察、分析、比较、推算,从面得出正确判断的方法。

2.正难则反法从题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,或从反面出发得出结论。

3.特征分析法对题设和选择支的特点进行分析,发现规律,归纳得出正确判断的方法。

4.逆推验证法(代答案入题干验证法)将选择支代入题干进行验证,从而否定错误选择支而得出正确选择支的方法。

5.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

6.递推归纳法:通过题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破-解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出结果的方法。

7.数形结合法由题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

8.特值检验法对于具有一般性的数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

9.极端性原则将所要研究的问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那么就能瞬间解决问题。

10对比归谬法对于一些选项间有相互关联的高考选择题,有时可能会出现如果选项A正确即会有选项B正确或选项C也正确的情况,对于答案应为单选或双选的选择题可用此方法进行排除错误选项。

高考数学选择题快速解题技巧

高考数学选择题快速解题技巧

高考数学选择题快速解题技巧高考数学中,选择题占据了相当一部分的分值。

掌握快速而准确的解题技巧对于在有限的考试时间内取得高分至关重要。

以下为大家详细介绍一些实用的高考数学选择题快速解题技巧。

一、直接法直接法是从题设条件出发,通过正确的运算、推理或判断,直接得出结论再与选择支对照,从而作出选择的一种方法。

运用此种方法解题需要扎实的数学基础。

例如,给出函数\(f(x) = 2x^2 3x + 1\),求\(f(2)\)的值。

直接将\(x = 2\)代入函数表达式:\(f(2) = 2×2^2 3×2 + 1 = 8 6+ 1 = 3\),然后对照选项,选出正确答案。

二、排除法从四个选项中排除掉容易判断是错误的答案,余下的一个便是正确的答案。

排除法是解选择题的间接方法,也是选择题的常用方法。

比如,一个关于二次函数对称轴的选择题,给出选项中对称轴分别为直线\(x = 1\)、\(x =-1\)、\(x = 2\)、\(x =-2\)。

如果已知该二次函数的二次项系数大于\(0\),且函数图象开口向上,又知道函数的一个零点是\(3\),那么根据二次函数的对称性,对称轴一定在零点\(3\)的左侧,所以可以直接排除选项中对称轴为\(x = 2\)和\(x =-2\)的选项。

三、特殊值法有些选择题,用常规方法直接求解比较困难,若根据答案中所提供的信息,选择某些特殊情况进行分析,或选择某些特殊值进行计算,或将字母参数换成具体数值代入,把一般形式变为特殊形式,再进行判断往往十分简单。

比如,若函数\(f(x)\)满足\(f(x + y) = f(x) + f(y)\),对于任意实数\(x\)、\(y\)都成立,判断函数\(f(x)\)的奇偶性。

可以令\(x = y = 0\),得到\(f(0) = 0\),再令\(y = x\),得到\(f(0) = f(x) + f(x)\),从而得出\(f(x)\)为奇函数。

高考数学选择题蒙题技巧秒杀选择题的方法

高考数学选择题蒙题技巧秒杀选择题的方法

高考数学选择题蒙题技巧秒杀选择题的方法有很多的同学是非常的想知道,高考数学选择题的蒙题技巧有哪些的,怎幺才能秒杀数学选择题呢,小编整理了相关信息,希望会对大家有所帮助!1高考数学怎幺蒙题1、圆锥曲线中最后题往往联立起来很复杂导致算不出,这时你可以取特殊值法强行算出过程就是先联立,后算代尔塔,用下韦达定理,列出题目要求解的表达式,就ok了。

2、高考数学必考题型之空间几何,证明过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的考生建议先随便建立个空间坐标系,如果做错了,至少还可以得几分,这是一个投机取巧的技巧,但好比过一分不得!3、空间几何过程中有一步实在想不出把没用过的条件直接写上然后得出想不出的那个结论即可。

如果第一题真心不会做直接写结论成立则第二题可以直接用!用常规法的同学建议先随便建立个空间坐标系,做错了还有2分可以得!4、立体几何中,求二面角b-oa-c的新方法。

利用三面角余弦定理。

设二面角b-oa-c是∠oa,∠aob是α,∠boc是β,∠aoc是γ,这个定理就是:cos∠oa=(cosβ-cosαcosγ)/sinαsinγ。

知道这个定理,如果考试中遇到立体几何求二面角的题,套一下公式就出来了,还来得及,试试?小编推荐:高考数学选择题五分钟秒杀法1高考数学选择题应该怎幺秒杀一:直选法——简单直观这种方法一般适用于基本不需要“转变”或推理的简单题目.这些题目主要考查考生对物理识记内容的记忆和理解程度,属常识性知识题目.常见考纲中的Ⅰ级要求内容。

二:比较排除法——排除异己这种方法要在读懂题意的基础上,根据题目的要求,先将明显的错误或不合理的备选答案一个一个地排除掉,最后只剩下正确的答案。

如果选项是完全肯定或否定的判断,可通过举反例的方式排除;如果选项中有相互矛盾或者是相互排斥的选项,则两个选项中可能有一种说法是正确的,当然,也可能两者都错,但绝不可能两者都正确。

高考数学选择题秒杀法 迅速提高数学成绩

高考数学选择题秒杀法 迅速提高数学成绩

高考数学选择题秒杀法迅速提高数学成绩
对于一些学生来说高考数学选择题往往是具有一定的难度的,那幺我们
如何解答数学选择题,提高数学成绩呢?下面小编为大家整理了高考数学选
择题秒杀法,供参考!
 高考数学选择题有哪些秒杀方法1.排除法:利用已知条件和选项所提供的
信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。


是一种常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入
验证即可排除。

 如下题,y=x为奇函数,y=sin|x|为偶函数,奇函数+偶函数为非奇非偶函数,四个选项中,只有B选项为非奇非偶函数,凭此一点排除ACD。

 2.特殊值检验法:对于具有一般性的数学问题,在解题过程中,可以将问
题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

值得注意的是,特殊值法常常也与排除法同时使用。

 3.极端性原则:将所要研究的问题向极端状态进行分析,使因果关系变得
更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值
范围、解析几何、立体几何上面,很多计算步骤繁琐、计算量大的题,采用
极端性去分析,就能瞬间解决问题。

 秒杀高考数学选择题答题技巧
 1)有选项。

利用选项之间的关系,我们可以判断答案是选或不选。

如两个
选项意思完全相反,则必有正确答案。

 2)答案只有一个。

大家都有这个经验,当时不明白什幺道理,但是看到答。

高考数学选题必备高分秒杀技巧

高考数学选题必备高分秒杀技巧

高考数学选题必备高分秒杀技巧
高考数学是令很多高考考生很头疼的问题,高考数学选择题也是很容易失分的题型,下面小编跟大家说说高考数学选择题秒杀法,希望对你有帮助。

 高考数学选择题秒杀法 1.特值检验法对于具有一般性的高考数学问题,我们在解题过程中,可以将问题特殊化,利用问题在某一特殊情况下不真,则它在一般情况下不真这一原理,达到去伪存真的目的。

2.极端性原则将所要研究的高考数学问题向极端状态进行分析,使因果关系变得更加明显,从而达到迅速解决问题的目的。

极端性多数应用在求极值、取值范围、解析几何上面,很多计算步骤繁琐、计算量大的题,一但采用极端性去分析,那幺就能瞬间解决高考数学问题。

小编推荐:2017高考数学爆强秒杀公式3.剔除法利用已知条件和选择支所提供的信息,从四个选项中剔除掉三个错误的答案,从而达到正确选择的目的。

这是一种高考数学选择题解题常用的方法,尤其是答案为定值,或者有数值范围时,取特殊点代入验证即可排除。

4.数形结合法由高考数学题目条件,作出符合题意的图形或图象,借助图形或图象的直观性,经过简单的推理或计算,从而得出答案的方法。

数形结合的好处就是直观,甚至可以用量角尺直接量出结果来。

5.递推归纳法通过高考数学题目条件进行推理,寻找规律,从而归纳出正确答案的方法。

6.顺推破解法利用数学定理、公式、法则、定义和题意,通过直接演算推理得出高考数学选择题结果的方法。

7.逆推验证法将选择支代入题干进行验证,从而否定错误选择支而得出高考数学选择题正确选择的方法。

8.正难则反法从高考数学题的正面解决比较难时,可从选择支出发逐步逆推找出符合条件的结论,。

高考数学选择题秒杀法

高考数学选择题秒杀法

高考数学选择题秒杀法对很多视数学为弱项的高三学生来说,数学无疑是一个难以攻克的难关,数学不仅所占分值高,而且难度也相对较大,每个题之间的关联很紧密,所以要想数学取得好的成绩,方法是关键,小编整理了高考数学选择题秒杀法,希望对您有所帮助。

高考数学选择题秒杀法1、以本为本,把握通性通法近几年高考数学试题坚持新题不难、难题不怪的命题方向,强调“注意通性通法,淡化特殊技巧”。

就是说高考最重视的是具有普遍意义的方法和相关的知识。

例如,将直线方程代入圆锥曲线方程,整理成一元二次方程,再利用根的判别式、求根方式、韦达定理、两点间距离公式等可以编制出很多精彩的试题。

尽管复习时间紧张,但我们仍然要注意回归课本。

回归课本,不是要强记题型、死背结论,而是要抓纲悟本,对着课本目录回忆和梳理知识,把重点放在掌握例题涵盖的知识及解题方法上,选择一些针对性极强的题目进行强化训练、复习才有实效。

2、以“错”纠错,查漏补缺这里说的“错”,是指把平时做作业中的错误收集起来。

高三复习数学,各类试题要做几十套,甚至上百套。

如果平时做题出错较多,就只需在试卷上把错题做上标记,在旁边写上评析,然后把试卷保存好,每过一段时间,就把“错题笔记”或标记错题的试卷看一看。

在看参考书时,也可以把精彩之处或做错的题目做上标记,以后再看这本书时就会有所侧重。

查漏补缺的过程就是反思的过程。

高考数学选择题秒杀法3、以考学考,提高应试技能考试是一门学问,高考数学要想取得好成绩,不仅取决于扎实的基础知识、熟练的基本技能和过硬的解题能力,而且取决于临场的发挥。

我们要把平常的考试看成是积累考试经验的重要途径,把平时考试当做高考,从心理调节、时间分配、节奏的掌握以及整个考试的运筹等诸。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【解析】∵ 是椭圆 的左、右焦点,∴ 。∵ 是底角为 的等腰三角形,∴ 。∵ 为直线 上一点,∴ 。∴ 。又∵ ,即 。∴ 。故选
例2.( )函数f(x)=2sin(ωx+φ)(ω>0,- <φ< )的部分图象如图所示,则ω,φ的值分别是()
A.2,- B.2,- C.4,- D.4,
【解析】由图可知, T= + = ,T=π,ω= =2.∵点 在图象上,∴2· +φ= +2kπ,φ=- +2kπ,k∈Z.又- <φ< ,∴φ=- .故选A
例1.设函数 定义在实数集上,它的图象关于直线 对称,且当 时, ,则有()。
A、 B、 C、 D.
【解析】、当 时, , 的图象关于直线 对称,则图象如图所示。这个图象是个示意图,事实上,就算画出 的图象代替它也可以。由图知,符合要求的选项是B,
例2.曲线 与直线 有两个公共点时, 的取值范围是()
(A) (B) , 且 ≠0
(C) (D)
【答案】B
【解析】利用函数奇偶性的定义可排除C,D,再由“在区间(1,2)内是增函数”可排除A,从而可得答案B
例3.对于抛物线 上任意一点Q,点P(a,0)都满足 ,则 的取值范围是()
A、 B、 C、 D、
【答案】B
【解析】逻辑排除法。画出草图,知a<0符合条件,则排除C、D;又取 ,则P是焦点,记点Q到准线的距离为d,则由抛物线定义知道,此时a<d<|PQ|,即表明 符合条件,排除A,选B
【解析】 比P到准线的距离(即|PF|)少1,∴|PA|+d=|PA|+|PF|-1,而A点在抛物线外,∴|PA|+d的最小值为|AF|-1= ,选D
趋势估计法:
趋势判断法,包括极限判断法,估值法,大致可以归于直觉判断法一类。具体来讲,趋势判断法的要义是根据变化趋势来发现结果,要求化静为动,在运动中寻找规律,并且要熟记一些常见的结论。
例1.用长度分别为2、3、4、5、6(单位:cm)的5根细木棍围成一个三角形(允许连接,但不允许折断),能够得到的三角形的最大面积为多少?
带入检验法:
当题目是求值以及计算范围相关题目时,如果直接计算比较复杂,可以将四个选项一一代入进行检验,从而得到正确的答案。
例1(2015江西)函数 图象的一条对称轴的方程为()
A. B. C. D.
【解析】把选项逐次带入,当 时,y=-1,因此 是对称轴,又因为正确选项只有一个,故选A.
例2.双曲线方程为 ,则 的取值范围是()
A、1 B、 C、 D、-1
【解析】进行极限分析, 时,点 ,此时高 ,那么 ,所以 ,选A
例3.双曲线 的左焦点为F,点P为左支下半支异于顶点的任意一点,则直
线PF的斜率的变化范围是()
A、 B、
C、 D、
【解析】进行极限分析,当P 时,PF的斜率 ;当 时,斜率不存在,即 或 ;当P在无穷远处时,PF的斜率 。选C
例3.若函数 Leabharlann 偶函数,则 的对称轴是()A、 B、 C、 D、
【解析】:因为若函数 是偶函数,作一个特殊函数 ,则 变为 ,即知 的对称轴是 ,选C
例4.△ABC的外接圆的圆心为O,两条边上的高的交点为H, ,则实数m=
【答案】1
【解析】取特殊的直角三角形△ABC,点O为斜边的中点,点H与三角形直角顶点C重合,这时候有 ,所以m=1
A、圆B、椭圆C、圆或线段D、线段
【解析】设⊙P的半径为R,P、M为两定点,那么|QP|+|QM|=|QA|+|QP|=R=常数,∴由椭圆定义知圆心Q的轨迹是椭圆,选B
例3.已知P为抛物线 上任一动点,记点P到 轴的距离为 ,对于给定点A(4,5),|PA|+d的最小值是()
A、4 B、 C、 D、
A、8 cm2B、6 cm2C、3 cm2D、20 cm2
【解析】此三角形的周长是定值20,当其高或底趋向于零时其形状趋向于一条直线,其面积趋向于零,可知,只有当三角形的形状趋向于最“饱满”时也就是形状接近于正三角形时面积最大,故三边长应该为7、7、6,因此易知最大面积为 cm2,选B。
例2.在△ABC中,角A、B、C所对边长分别为a、b、c,若c-a等于AC边上的高,那么 的值是()
10分钟秒杀高考数学选择题——老师不会教你的技巧
特值法:
从题干(或选项)出发,通过选取特殊情况代入,将问题特殊化或构造满足题设条件的特殊函数或图形位置,进行判断.特殊化法是“小题小做”的重要策略,要注意在怎样的情况下才可使用,特殊情况可能是:特殊值、特殊点、特殊位置、特殊函数等
例1 (2017·山东卷)若a>b>0,且ab=1,则下列不等式成立的是( )
A.a+ < <log2(a+b)B. <log2(a+b)<a+
C.a+ <log2(a+b)< D.log2(a+b)<a+ <
例2.设 ,则 ( )
A、 B、 C、 D、
【解析】思路一(特值法):令 ,则 ,对照选项,只有D成立。
思路二:f(n)是以2为首项,8为公比的等比数列的前 项的和,所以 ,选D。这属于直接法。
A、 B、 C、 D、 或
【解析】观察选项,C、D可以取1,带入曲线得满足题意,又因为D选项可以取6而C不可以,将6带入得满足题意,因此选D
【解析】观察选项,C、D可以取特别大,取x=8满足题意,因此,A、B错误。再取x=0满足题意,因此选D
数形结合法:
画出图形或者图象能够使问题提供的信息更直观地呈现,从而大大降低思维难度,是解决数学问题的有力策略,这种方法使用得非常之多。常用于解决解析几何,零点问题以及与函数相关的题目。
排除法:
当选择题从正面突破比较复杂时,可以根据一些性质从反面排除一些错误的选项,常用于解不等式,集合,选项为范围的题目。
例1.不等式 的解集是()
A、 B、 C、 D、
【答案】A
【解析】如果直接解,差不多相当于一道大题!取 ,代入原不等式,成立,排除B、C;取 ,排除D,选A
例2.下列函数中,既是偶函数,又在 区间(1,2)内是增函数的为()
例3.抛物线 上的点到直线 的距离的最小值是()
A、 B、 C、 D、3
【解析】设直线 与 相切,则联立方程知 ,令 ,有 ,∴两平行线之间的距离 ,选A
定义法:
定义是知识的生长点,因此回归定义是解决问题的一种重要策略。要熟知圆锥曲线、函数的性质、数列、导数等的基本定义。
例1.在一组样本数 据(x1,y1),(x2,y2),…,(xn,yn)(n≥2,x1,x2,…,xn不全相等)的散点图中,若 所有样本点(xi,yi)(i=1,2,…,n)都在直线y= x+1上,则这组样本数据的样本相关系数为()
A、 B、 C、 D、
【解析】:易知 的图象为 ,表示以(1,0)为圆心,2为半径的上半圆,如图。直线 过定点(2,4),那么斜率的范围就清楚了,选D
例3.方程cosx=lgx的实根的个数是()
A、1 B、2 C、3 D、4
【解析】:在同一坐标系中分别画出函数cosx与lgx的图象,如图,由两个函数图象的交点的个数为3,知应选C
(A)-1(B)0(C) (D)1
【解析】根据样本相关系数的定义,因为所有样本点(xi,yi)(i=1,2,…,n)都在直线y= x+1上,即两变量为完全线性相关,且完全正相关,因此这 组样本数据的样本相关系数为1。故选D。
例2.点M为圆P内不同于圆心的定点,过点M作圆Q与圆P相切,则圆心Q的轨迹是()
直接法:
并不是所有的选择题都要用间接法求解,一般来讲,高考卷的前5、6道选择题本身就属于容易题,用直接法求解往往更容易;另外,有些选择题也许没有间接解答的方法,你别无选择;或者虽然存在间接解法,但你一下子找不到。
例1:设 是椭圆 的左、右 焦点, 为直线 上一点, 是底角为 的等腰三角形,则 的离心率为【】
相关文档
最新文档