判断矩阵的最大特征值复习过程

合集下载

判断矩阵的最大特征值

判断矩阵的最大特征值

项目六 矩阵的特征值与特征向量实验1 求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量;能利用软件计算方阵的特征值和特征向量及求二次型的标准形.求方阵的特征值与特征向量.例1.1 (教材 例1.1) 求矩阵.031121201⎪⎪⎪⎭⎫ ⎝⎛--=A 的特征值与特值向量.(1) 求矩阵A 的特征值. 输入 A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A] Eigenvalues[A]则输出A 的特征值{-1,1,1}(2) 求矩阵A 的特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigenvectors[A]则输出 {{-3,1,0},{1,0,1},{0,0,0}}即A 的特征向量为.101,013⎪⎪⎪⎭⎫⎝⎛⎪⎪⎪⎭⎫ ⎝⎛-(3) 利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量. 输入A={{-1,0,2},{1,2,-1},{1,3,0}} MatrixForm[A] Eigensystem[A]则输出矩阵A 的特征值及其对应的特征向量.例1.2 求矩阵⎪⎪⎪⎭⎫ ⎝⎛=654543432A 的特征值与特征向量.输入A=T able[i+j,{i,3},{j,3}] MatrixForm[A](1) 计算矩阵A 的全部(准确解)特征值, 输入Eigenvalues[A]则输出{0, 426-,426+}(2) 计算矩阵A 的全部(数值解)特征值, 输入Eigenvalues[N[A]]则输出{12.4807, -0.480741, -1.34831610-⨯}(3) 计算矩阵A 的全部(准确解)特征向量, 输入Eigenvectors[A]//MatrixForm则输出121172422344220342234421172422344220342234421(4) 计算矩阵A 的全部(数值解)特征向量, 输入Eigenvectors[N[A]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248(5) 同时计算矩阵A 的全部(准确解)特征值和特征向量, 输入 OutputForm[Eigensystem[A]] 则输出所求结果(6) 计算同时矩阵A 的零空间, 输入NullSpace[A]则输出{{1,-2,1}}(7) 调入程序包<<LinearAlgebra`Orthogonalization`后,还可以做以下的运算:GramSchmidt[ ]:用Gram-Schmidt 过程将向量组单位正交化; Normalize[ ]:将向量组单位化;Projection[vect1,vect2]:求从向量组vect1到vect2的正交映射.输入<<LinearAlgebra ’Orthogonalization ’ GramSchmidt[Eigenvectors[N[A]]]//MatrixForm则输出0.4303620.5665420.7027220.805060.111190.5826790.4082480.8164970.408248例1.3 求方阵⎪⎪⎪⎭⎫ ⎝⎛=633312321M 的特征值和特征向量.输入Clear[M];M={{1,2,3,},{2,1,3}{3,3,6}}; Eigenvalues[M] Eigenvectors[M] Eigensystem[M]则分别输出{-1,0,9}{{-1,1,0},{-1,-1,1}{1,1,2}}{{-1,0,9},{{-1,1,0},{-1,-1,1}{1,1,2}}}例1.4 (教材 例1.2) 求矩阵⎪⎪⎪⎭⎫⎝⎛---=2163/115/12/13/13/1A 的特征值和特征向量的近似值.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6,1,-2}}; Eigensystem[A]则屏幕输出的结果很复杂,原因是矩阵A 的特征值中有复数且其精确解太复杂.此时,可采用 近似形式输入矩阵A ,则输出结果也采用近似形式来表达.输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6.0,1,-2}}; Eigensystem[A]则输出{{-0.748989+1.27186i,-0.748989-1.27186i,0.831311}, {{0.179905+0.192168i,0.116133+0.062477I,0.955675+0.i}, {0.179905-0.192168i,0.116133-0.062477i,0.955675+0.i}, {-0.0872248,-0.866789,-0.490987}}}从中可以看到A 有两个复特征值与一个实特征值.属于复特征值的特征向量也是复的;属于实 特征值的特征向量是实的.例1.5 (教材 例1.3) 已知2是方阵⎪⎪⎪⎭⎫ ⎝⎛=32131003t A 的特征值,求t .输入Clear[A,q];A={{2-3,0,0},{-1,2-t,-3},{-1,-2,2-3}}; q=Det[A] Solve[q==0,t]则输出{{t →8}}即当8=t 时,2是方阵A 的特征值.例1.6 (教材 例1.4) 已知)1,1,1(-=x 是方阵⎪⎪⎪⎭⎫⎝⎛---=2135212b a A 的一个特征向量,求参数b a ,及特征向量x 所属的特征值. 设所求特征值为t ,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}}; v={1,1,-1}; B=A.v;Solve[{B[[1]]==0,B[[2]]==0,B[[3]]==0},{a,b,t}]则输出{{a →-3, b →0, t →-1}}即0,3=-=b a 时,向量)1,1,1(-=x 是方阵A 的属于特征值-1和特征向量.矩阵的相似变换例1.7 (教材 例1.5) 设矩阵⎪⎪⎪⎭⎫ ⎝⎛=222222114A ,求一可逆矩阵P ,使AP P 1-为对角矩阵.方法1 输入Clear[A,P];A={{4,1,1},{2,2,2},{2,2,2}}; Eigenvalues[A]P=Eigenvectors[A]//Transpose则输出{0,2,6}{{0,-1,1},{-1,1,1},{1,1,1}}即矩阵A 的特征值为0,2,6.特征向量为⎪⎪⎪⎭⎫ ⎝⎛-110,⎪⎪⎪⎭⎫ ⎝⎛-111与⎪⎪⎪⎭⎫ ⎝⎛111,矩阵⎪⎪⎪⎭⎫ ⎝⎛--=111111110P .可验证AP P 1-为对角阵, 事实上,输入 Inverse[P].A.P则输出{{0,0,0},{0,2,0},{0,0,6}}因此,矩阵A 在相似变换矩阵P 的作用下,可化作对角阵.方法2 直接使用JordanDecomposition 命令, 输入jor=JordanDecomposition[A]则输出{{{0,-1,1},{-1,1,1},{1,1,1}},{{0,0,0},{0,2,0},{0,0,6}}}可取出第一个矩阵S 和第二个矩阵Λ,事实上,输入jor[[1]] jor[[2]]则输出{{0,-1,1},{-1,1,1},{1,1,1}} {{0,0,0},{0,2,0},{0,0,6}}输出结果与方法1的得到的结果完全相同.例1.8 方阵⎪⎪⎭⎫⎝⎛=1201A 是否与对角阵相似?输入Clear[A]; A={{1,0},{2,1}}; Eigensystem[A]输出为{{1,1},{{0,1}{0,0}}}于是,1是二重特征值,但是只有向量{0,1}是特征向量,因此,矩阵A 不与对角阵相似.例1.9 (教材 例1.6) 已知方阵⎪⎪⎪⎭⎫ ⎝⎛-=11322002x A 与⎪⎪⎪⎭⎫⎝⎛-=y B 00020001相似, 求y x ,.注意矩阵B 是对角矩阵,特征值是y ,2,1-.又矩阵A 是分块下三角矩阵,-2是矩阵A 的特 征值.矩阵A 与B 相似,则2-=y ,且-1,2也是矩阵A 的特征值.输入Clear[c,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}}; Solve[Det[v]==0,x]则输出{{x →0}}所以,在题设条件,0=x ,2-=y .例1.10 对实对称矩阵⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A ,求一个正交阵P ,使AP P 1-为对角阵. 输入<<LinearAlgebra\Orthogonalization Clear[A,P]A={{0,1,1,0 },{1,0,1,0},{1,1,0,0},{0,0,0,2}}; Eigenvalues[A] Eigenvectors[A]输出的特征值与特征向量为{-1,-1,2,2}{{-1,0,1,0},{-1,1,0,0},{0,0,0,1},{1,1,1,0}}再输入P=GramSchmidt[Eigenvectors[A]]//Transpose输出为已经正交化和单位化的特征向量并且经转置后的矩阵P{}}{0,1,0,0,31,0,61,21,31,0,32,0,31,0,61,21⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧⎪⎭⎪⎬⎫⎪⎭⎪⎬⎫-⎪⎩⎪⎨⎧⎪⎩⎪⎨⎧-为了验证P 是正交阵,以及AP P AP p T=-1是对角阵,输入Transpose[P].PInverse[P].A.P//Simplify Transpose[P].A.P//simplify则输出{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}} {{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}}第一个结果说明E P P T =,因此P 是正交阵;第二个与第三个结果说明⎪⎪⎪⎪⎪⎭⎫ ⎝⎛--==-22111AP P AP P T例1.11 求一个正交变换,化二次型243231212222x x x x x x x f +++=为标准型.二次型的矩阵为⎪⎪⎪⎪⎪⎭⎫⎝⎛=2000001101010110A这恰好是例1.10的矩阵, 因此,用例1.10中的正交矩阵P ,作正交变换PY X =,即⎪⎪⎪⎪⎪⎭⎫ ⎝⎛⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛---=⎪⎪⎪⎪⎪⎭⎫ ⎝⎛43214321010031061213103203106121y y y y x x x x将f 化作标准型.输入f=T able[x[j],{j,4}].A.Table[x[j],{j,4}]//Simplify则输出2(x[2]x[3]+x[1](x[2]+x[3])+x[4]2)这是原来的二次型f .把上式中的x[1],x[2],x[3],x[4]用y[1],y[2],y[3],y[4]表示,输入代换命令f/.T able[x[j]→(P .T able[y[j],{j,4}])[[j]],{j,4}]// Simplify则输出-y[1]2-y[2]2 +2(y[3]2 +y[4]2)这就是二次型f 的标准型.例1.12 (教材 例1.7) 已知二次型3231212322213212422),,(x x x x x x x x x x x x f +-++-=(1)求标准形; (2)求正惯性指数; (3)判断二次型是否正定. 输入A={{1,1,-2},{1,-2,1},{-2,1,1}}Eigenvalues[A]则输出矩阵A 的特征值为{-3,0,3}所以二次型的标准形为222133y y f +=;正惯性指数为1;该二次型不是正定的. 例1.13 (教材 例1.8) 求正交变换将二次型43324121242322213212222),,(x x x x x x x x x x x x x x x f -+-++++=化为标准形.输入A={{1,1,0,-1},{1,1,1,0},{0,1,1,-1},{-1,0,-1,1}} MatrixForm[A] X={x1,x2,x3,x4}; Expand[X.A.X]<<LinearAlgebra\Orthogonalization.m P=GramSchmidt[Eigenvectors[A]] P .A.Inverse[P]//MatrixForm则输出所求的正交变换矩阵P 与二次型矩阵A 标准形. 从结果知, 所求二次型的标准型为24232221y y y y g +++-=实验2 层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次 分析法建立数学模型的基本步骤;学会用Mathematica 解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化, 并用数学 方法为分析、决策、预报或控制提供定量依据. 它特别适用于难以完全量化, 又相互关联、 相互制约的众多因素构成的复杂问题. 它把人的思维过程层次化、数量化,是系统分析的一中 新型的数学方法.运用层次分析法建立数学模型, 一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息, 搞清楚问题的范围、因素、各因素之间的相互 关系,及所要解决问题的目标. 把问题条理化、层次化, 构造出一个有层次的结构模型. 在这 个模型下,复杂问题被分解为元素的组成部分. 这些元素又按其属性及关系形成若干层次.层 次结构一般分三层:第一层为最高层, 它是分析问题的预定目标和结果, 也称目标层;第二层为中间层, 它是为了实现目标所涉及的中间环节, 如: 准则、子准则, 也称准则 层;第三层为最底层, 它包括了为实现目标可供选择的各种措施、决策方案等, 也称方案层.图2-1决策目标准则1准则2准则n方案1方案2方案m…………注:上述层次结构具有以下特点:(1) 从上到下顺序地存在支配关系, 并用直线段表示;(2) 整个层次结构中层次数不受限制.2.构造判断矩阵构造判断矩阵是建立层次分析模型的关键. 假定以上一层的某元素y 为准则,它所支配 的下一层次的元素为n x x x ,,,21 ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重. 采用成对比较法. 即每次取两个元素i x 和j x , 用ij a 表示i x 与j x 对y 的影响之比, 全部比较的结果可用矩阵A 表示,即.,,2,1,,)(n j i a A n n ij ==⨯ 称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素ij a 满足下列性质:)(,1),(1j i a j i a a ii ijji ==≠=当0>ij a 时,我们称判断矩阵A 为正互反矩阵.怎样确定判断矩阵A 的元素ij a 的取值呢? 当某层的元素n x x x ,,,21 对于上一层某元素y 的影响可直接定量表示时, i x 与j x 对y的影响之比可以直接确定, ij a 的值也可直接确定. 但对于大多数社会经济问题, 特别是比较 复杂的问题, 元素i x 与j x 对y 的重要性不容易直接获得, 需要通过适当的量化方法来解决. 通常取数字1~9及其倒数作为ij a 的取值范围. 这是因为在进行定性的成对比较时, 通常采用5级制(表1),在每两个等级之间各有一个中间状态, 共1~9个尺度, 另外心理学家认为进行成对比较的因素太多, 将超出人们的判断比较能力, 降低精确. 实践证明, 成对比较的尺度以27±为宜, 故ij a 的取值范围是9,,2,1 及其倒数.表1 比较尺度ij a 的取值97531/ijj i a x x 绝对强很强强较强相等3.计算层次单排序权重并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序. 具体做法是: 根据同一层n 个元素n x x x ,,,21 对上一层某元素y 的判断矩阵A ,求出它们对 于元素y 的相对排序权重,记为n w w w ,,,21 ,写成向量形式T n w w w w ),,,(21 =, 称其为A 的层次单排序权重向量, 其中i w 表示第i 个元素对上一层中某元素y 所占的比重, 从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵A 的特征值与特征向 量来计算排序权重向量w .关于正互反矩阵A ,我们不加证明地给出下列结果. (1) 如果一个正互反矩阵n n ij a A ⨯=)(满足),,2,1,,(n k j i a a a ik jk ij ==⨯则称矩阵A 具有一致性, 称元素k j i x x x ,,的成对比较是一致的; 并且称A 为一致矩阵.(2) n 阶正互反矩阵A 的最大特征根n ≥max λ, 当n =λ时, A 是一致的. (3) n 阶正互反矩阵是一致矩阵的充分必要条件是最大特征值 n =max λ.计算排序权重向量的方法和步骤设T n w ),,,(21ωωω =是n 阶判断矩阵的排序权重向量, 当A 为一致矩阵时, 根据n阶判断矩阵构成的定义,有⎪⎪⎪⎪⎪⎪⎪⎪⎭⎫ ⎝⎛=n n n n nn A ωωωωωωωωωωωωωωωωωω212221212111 (2.1) 因而满足,nw Aw = 这里n 是矩阵A 的最大特征根, w 是相应的特征向量; 当A 为一般的 判断矩阵时w Aw max λ=, 其中max λ是A 的最大特征值(也称主特征根), w 是相应的特征向 量(也称主特征向量). 经归一化(即11=∑=ni iω)后, 可近似作为排序权重向量, 这种方法称为特征根法.一致性检验在构造判断矩阵时, 我们并没有要求判断矩阵具有一致性, 这是由客观事物的复杂性与人的认识的多样性所决定的. 特别是在规模大、因素多的情况下, 对于判断矩阵的每个元 素来说,不可能求出精确的j i ωω/, 但要求判断矩阵大体上应该是一致的. 一个经不起推敲 的判断矩阵有可能导致决策的失误. 利用上述方法计算排序权重向量, 当判断矩阵过于偏离 一致性时, 其可靠性也有问题. 因此,需要对判断矩阵的一致性进行检验, 检验可按如下步骤 进行: (1) 计算一致性指标CI1max --=n nCI λ (2.2)当,0=CI 即n =max λ时, 判断矩阵A 是一致的. 当CI 的值越大, 判断矩阵A 的不一致的程 度就越严重. (2) 查找相应的平均随机一致性指标RI表2给出了n )11~1(阶正互反矩阵的平均随机一致性指标RI , 其中数据采用了 100~150个随机样本矩阵A 计算得到.(3) 计算一致性比例CRRICICR =(2.3)当10.0<CR 时, 认为判断矩阵的一致性是可以接受的; 否则应对判断矩阵作适当修正.4. 计算层次总排序权重并做一致性检验计算出某层元素对其上一层中某元素的排序权重向量后, 还需要得到各层元素, 特别 是最底层中各方案对于目标层的排序权重, 即层次总排序权重向量, 再进行方案选择. 层次 总排序权重通过自上而下地将层次单排序的权重进行合成而得到. 考虑3个层次的决策问题: 第一层只有1个元素, 第二层有n 个元素, 第三层有m 个元 素.设第二层对第一层的层次单排序的权重向量为 Tn w ),,,()2()2(2)2(1)2(ωωω = 第三层对第二层的层次单排序的权重向量为n k w w w w Tkn k k k ,,2,1,),,,()3()3(2)3(1)3( ==以)3(k w 为列向量构成矩阵:n m nm m mn n n w w w w w w w w w w w w W ⨯⎪⎪⎪⎪⎪⎭⎫ ⎝⎛==)3()3(2)3(1)3(2)3(22)3(12)3(1)3(21)3(11)3()3(2)3(1)3(,,,,,,,,,,,),,,( (2.4)则第三层对第一层的层次总排序权重向量为)2()3()3(w W w =(2.5) 一般地, 若层次模型共有s 层, 则第k 层对第一层的总排序权重向量为s k w W w k k k ,,4,3,)1()()( ==-(2.6)其中)(k W 是以第k 层对第1-k 层的排序权向量为列向量组成的矩阵,)1(-k w 是第1-k 层对第 一层的总排序权重向量. 按照上述递推公式, 可得到最下层(第s 层)对第一层的总排序权重 向量为)2()3()1()()(w W W W w s s s -=(2.7)对层次总排序权重向量也要进行一致性检验. 具体方法是从最高层到最低层逐层进行 检验.如果所考虑的层次分析模型共有s 层. 设第l (s l ≤≤3)层的一致性指标与随机一致性 指标分别为)()(2)(1,,,l n l l CI CI CI (n 是第1-l 层元素的数目)与)()(2)(1,,,l nl l RI RI RI , 令)1()(1)(1)(],,[-=l l l l w CI CI CI(2.8) )1()(1)(1)(],,[-=l l l l w RI RI RI(2.9)则第l 层对第一层的总排序权向量的一致性比率为s l RICI CRCRl l l l ,,4,3,)()()1()( =+=- (2.10)其中)2(CR 为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率.当最下层对第一层的总排序权重向量的一致性比率1.0)(<s CR 时, 就认为整个层次结构 的比较判断可通过一致性检验.应用举例问题 在选购电脑时, 人们希望花最少的钱买到最理想的电脑. 试通过层次分析法建立 数学模型,并以此确定欲选购的电脑.1. 建立选购电脑的层次结构模型选择的目标性能价格质量外观售后服务品牌1品牌2品牌3目标层准则层方案层图2-2该层次结构模型共有三层:目标层(用符号z 表示最终的选择目标); 准则层(分别用符号 521,,,y y y 表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准则); 方案层(分别用符号321,,x x x 表示品牌1, 品牌2, 品牌3三种选择方案).2.构造成对比较判断矩阵(1) 建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度, 从建模者的个人观点出发, 设准则层对目标层的成对比较判断矩阵为⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎣⎡=13123/13/113/12/19/113123/12/122/115/139351A (2.11)(2) 建立方案层对准则层的成对比较判断矩阵,113/1113/1331,123/12/115/13511252/1135/13/11,12/15/1213/1531,1252/1135/13/1154321⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=B B B B B3.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量. 输入<<Miscellaneous\RealOnly.m (*调用只求实数运算的软件包*)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1},{1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算, 可避免精确解太长、太复杂*) T=Eigensystem[A]//Chop(*输入//Chop, 把与零非常接近的数换成零*)则输出{{5.00974,Nonreal,Nonreal,0,0},{{0.88126,0.167913,0.304926,0.0960557,0.304926}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {0.742882,Nonreal,Nonreal,Nonreal,Nonreal}, {-0.993398,0,0.0673976,0.0662265,0.0650555}, {-0.65676,0,0.57431,0.043784,-0.486742}}} (输出中的Nonreal 表示复数)从中得到A 的最大特征值,00974.5max =λ及其对应的特征向量T x )304926.0,0960557.0,304926.0,167913.0,88126.0(=输入Clear[x]; x=T[[2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量T w )173739.0,0547301.0,173739.0,0956728.0,502119.0()2(=计算一致性指标1max --=n nCI λ,其中,00974.5,5max ==λn 故.002435.0=CI查表得到相应的随机一致性指标 12.1=RI 从而得到一致性比率002174.0)2(==RICICR 因,1.0)2(<CR 通过了一致性检验,即认为A 的一致性程度在容许的范围之内, 可以用归一 化后的特征向量)2(w 作为排序权重向量. 下面再求矩阵)5,,2,1( =j B j 的最大特征值及特征值所对应的特征向量, 输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}}; B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}}; B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}}; T1=Eigensystem[B1]//ChopT2=Eigensystem[B2]//Chop T3=Eigensystem[B3]//Chop T4=Eigensystem[B4]//Chop T5=Eigensystem[B5]//Chop则输出 {{3.00369,Nonreal, Nonreal}, {{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal, 0.871137}}};{{3.00369,Nonreal, Nonreal}, {{0.928119,0.328758,0.174679}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.163954,0.46286,0.871137}, { Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal,0.871137}}}{{3.00369, Nonreal, Nonreal}, {{0.928119,0.174679,0.328758}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}} {{3,0,0},{{0.904534,0.301511,0.301511}, {-0.973329,0.162221,0.162221}, {-0.170182,-0.667851,0.724578}}从上面的输出可以分别得到)5,,2,1( =j B j 的最大特征值000.3,00369.3,00369.3,00369.3,00369.354321=====λλλλλ以及上述特征值所对应的特征向量TT T TT x x x x x )301511.0,301511.0,904534.0()328758.0,174679.0,928119.0()871137.0,46286.0,163954.0()174679.0,328758.0,928119.0()871137.0,46286.0,163954.0(54321=====其中.5,,2,1),,,(321 ==i x x x x i i i i 为求出归一化后的特征向量, 输入Clear[x1,x2,x3,x4,x5]; x1=T1[[2,1]];w1=x1/Apply[Plus,x1] x2=T2[[2,1]];w2=x2/Apply[Plus,x2] x3=T3[[2,1]];w3=x3/Apply[Plus,x3] x4=T4[[2,1]];w4=x4/Apply[Plus,x4] x5=T5[[2,1]];w5=x5/Apply[Plus,x5]则输出TT T TT w w w w w )200000.0,200000.0,600000.0()229651.0,12202.0,648329.0()581552.0,308996.0,109452.0()12202.0,229651.0,648329.0()581552.0,308996.0,109452.0(54321===== 计算一致性指标)5,,2,1(1=--=i n nCI i i λ,其中,3=n 输入lamda={T1[[1,1]],T2[[1,1]],T3[[1,1]],T4[[1,1]],T5[[1,1]]} CI=(lamda-3)/(3-1)//Chop则输出0,0018473.0,0018473.0,0018473.0,0018473.054321=====CI CI CI CI CI查表得到相应的随机一致性指标)5,,2,1(58.0 ==i RI i计算一致性比率5,,2,1, ==i RI CI CR iii ,输入CR=CI/0.58则输出.0,003185.0,003185.0,003185.0,003185.054321=====CR CR CR CR CR因),5,,2,1(,1.0 =<i CR i 通过了一致性检验. 即认为)5,,2,1( =j B j 的一致性程度在容许 的范围之内, 可以用归一化后的特征向量作为其排序权重向量.4. 计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表3.以矩阵表示第三层对第二层的排序权重计算结果为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=2.0229651.0581552.012202.0581552.02.012202.0308996.0229651.0308996.06.0648329.0109452.0648329.0109452.0)3(W )3(W 即是第三层对第二层的权重向量为列向量组成的矩阵. 最下层(第三层)对最上层(第一层)的总排序权向量为)2()3()3(w W w =为了计算上式, 输入W3=Transpose[{w1,w2,w3,w4,w5}]; ww3=W3.ww2则从输出结果得到T w )452037.0,272235.0,275728.0()3(=为了对总排序权向量进行一致性检验, 计算)2(521)3().,,.,.(w I C I C I C CI =输入CI.ww2则从输出结果得到00152635.0)3(=CI 再计算)2(51)3(],,[w RI RI RI =,输入RI=T able[0.58,{j,5}]; RI.ww2则从输出结果得到 58.0.)3(=I R 最后计算 )3()3()2()3(./...I R I C R C R C +=,可得00480575.0.)3(=R C因为,1.0.)3(<R C 所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值, 品牌3的电脑是建模者对这三种品牌机的首选. 实验报告1.根据你的设想购置一台计算机, 需考虑什么样的判断准则? 利用层次分析法及数学 软件做出最佳的决策.2.根据你的经历设想如何报考大学, 需要什么样的判断准则? 利用层次分析法及数学 软件做出最佳的决策.3.假期到了, 某学生打算做一次旅游, 有四个地点可供选择, 假定他要考虑5个因素: 费用、景色、居住条件、饮食以及旅游条件. 由于该学生没有固定收入, 他对费用最为看重, 其次是旅游点的景色, 至于旅游条件、饮食, 差不多就行, 住什么地方就更无所谓了. 这四个旅游点没有一个具有明显的优势, 而是各有优劣. 该同学拿不定主意, 请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业, 正面临择业的问题, 你对工作的选择着重考虑下面几个因素: (1)单位的声誉; (2)收入; (3)专业是否对口; (4)是否有机会深造或晋升; (5)工作地点; (6)休闲时间. 对上述各种因素你可以根据自己的具体情况排序,也可以增加或减少所考虑的因素. 现在有四个单位打算你, 但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择.。

幂法求矩阵最大特征值

幂法求矩阵最大特征值

幂法求矩阵最大特征值摘要在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。

幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。

对于稀疏矩阵较合适,但有时收敛速度很慢。

用java来编写算法。

这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。

其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键词:幂法;矩阵最大特征值;j ava;迭代POWER METHOD TO CALCULATE THE MAXIMUMEIGENV ALUE MATRIXABSTRACTIn physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem.Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed.Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results.Key words: Power method; Matrix eigenvalue; Java; The iteration目录1幂法 (1)1.1 幂法基本思想 (1)1.2规范化 (2)2概要设计 (3)2.1 设计背景………………..…………………………………………………………. .32.2 运行流程 (3)2.3运行环境 (3)3 程序详细设计 (4)3.1 第一部分:矩阵转化为线性方程组……..………………………………………. .43.2 第二部分:特征向量的极大值 (4)3.3 第三部分:求幂法函数块 (5)4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5 心得体会 (7)参考文献 (8)附录:源程序 (9)1 幂法设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足|λ1| > |λ2| ≥ …≥ |λn |1.1 基本思想因为{v 1,v 2,…,v n }为C n的一组基,所以任给x (0)≠ 0,∑==ni i i v a x 1)0( —— 线性表示所以有])([)(21111111)0(∑∑∑∑====+====ni ii ki kni k k i i ni ik i n i i i kk v a v a v a v A a v a A xA λλλλ若a 1 ≠ 0,则因11<λλi 知,当k 充分大时 A (k )x (0) ≈ λ1ka 1v 1 = cv 1 属λ1的特征向量,另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,111111*********)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a x A x A k kk k k k若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。

矩阵最大特征值求法

矩阵最大特征值求法

矩阵最大特征值求法矩阵最大特征值求法矩阵最大特征值是矩阵理论中的重要概念,它在很多领域都有广泛的应用,如物理、化学、工程等。

在实际应用中,我们需要求解矩阵的最大特征值和对应的特征向量,以便对矩阵进行分析和处理。

本文将介绍两种常用的矩阵最大特征值求法:幂法和反迭代法。

一、幂法幂法是求解矩阵最大特征值和对应特征向量的一种常用方法。

其基本思想是:对于一个矩阵A,我们可以随机选择一个向量x0,然后通过不断迭代,使得向量x0趋近于矩阵A的最大特征值所对应的特征向量。

具体步骤如下:1. 随机选择一个向量x0,使其满足||x0||=1。

2. 对向量x0进行迭代,得到向量x1,即x1=Ax0。

3. 对向量x1进行归一化,得到向量x2,即x2=x1/||x1||。

4. 重复步骤2和步骤3,直到向量x收敛于矩阵A的最大特征值所对应的特征向量。

在实际应用中,为了提高计算效率,我们可以对向量x进行正交化处理,即每次迭代后,将向量x与前面所有的向量进行正交化,以避免向量的线性相关性对计算结果的影响。

二、反迭代法反迭代法是一种基于幂法的改进算法,它可以求解矩阵的任意一个特征值和对应的特征向量。

其基本思想是:对于一个矩阵A和一个已知的特征值λ,我们可以通过反迭代法,求解出矩阵A中与特征值λ最接近的特征值和对应的特征向量。

具体步骤如下:1. 随机选择一个向量x0,使其满足||x0||=1。

2. 对向量x0进行迭代,得到向量x1,即x1=(A-λI)-1x0,其中I为单位矩阵。

3. 对向量x1进行归一化,得到向量x2,即x2=x1/||x1||。

4. 重复步骤2和步骤3,直到向量x收敛于矩阵A中与特征值λ最接近的特征向量。

在实际应用中,我们可以通过多次迭代,求解出矩阵A中多个特征值和对应的特征向量,以便对矩阵进行更全面的分析和处理。

总结矩阵最大特征值求法是矩阵理论中的重要内容,幂法和反迭代法是常用的求解方法。

在实际应用中,我们需要根据具体情况选择合适的方法,并注意算法的收敛性和计算效率。

矩阵特征值问题的解法

矩阵特征值问题的解法
x 0 x 2 1
n maxR( x ) max( Ax , , x )
x 0
由于 R(x ) R( x ) ,对于任意 x ,可以取 ,使 得:||x ||2 1 . 证明: 假设 u1 , u2 ,, un 为 A 的规范正交特征向量 组,则对任何向量 x R n ,有
eigenvalueofmarix.doc
3
特征值的估计与扰动问题
特征值的估计
Di ( A) { z c :| z aii | | aij | i }, i 1,2,, n
j i
称之为Gerschgorin圆盘(盖尔圆). Gerschgorin 圆盘定理
设A (aij )nn为n阶实方阵,则 A 的任一特征值必落
18
例1 求矩阵A的按模最大的特征值
A 1 1 5 6 解 取x(0)=(1,0)T ,计算x(k)=Ax(k-1), 结果如下
1 4 1 5
k
x1(k)
x2(k)
x1(k)/x1(k-1)
x2(k)/x2(k-1)
0
1
1
0.25
0
0.2
2
3 4
0.10250
0.042292 0.017451
x1 Ax0 a1 Av1 a2 Av2 an Avn a11v1 a22v2 annvn
x2 Ax1 A x0 a v a v a v
2 2 1 1 1 2 2 2 2 2 n n n
…………..
11
xk Axk 1 Ak x0 a11k v1 a22k v2 an nk vn
12
在实际计算时,须按规范法计算,每步先 对向量xk进行“规范化”。迭代格式改 为 xk zk xk

矩阵特征值与特征向量的计算_OK

矩阵特征值与特征向量的计算_OK

n阶方阵A的特征值是特征方程 PA()=det(A-E)=0
的根.
A的特征向量是齐次线性方程组 (A-E)x=0
的非零解.
PA()是的高次的多项式,它的求根是很困难的。设法通
过数值方法是求它的根。
通常对某个特征值,可以用些针对性的方法来求其近似值。
若要求所有的特征值,则可以对A做一系列的相似变换,
“收敛”到对角阵或上(下)三角阵,
可得
n
xk
Ak x0 max(Ak x0 )
11 m ax (11
i
(
i 1
)
k
i
i2
n
i
(
i 1
)
k
i
)
7
i2
所以
8.1.1 幂法
n
xk
Ak x0 max(Ak x0 )
11
i
(
i 1
)
k
i
i2
n
max(11
i
(
i 1
)
k
i
)
lim
k
xk
11 max (11 )
i2 1
max (1 )
y=x/max(x)为向量x例的如规,范设化向向量量x=. (2,1,-5,-1)T,则max(x)=-5,y=(-0.4,-
0.2,1,0.2)T.可见规范化向量y总满足‖y‖=1.
幂法的规范化计算公式为: 任取初始向量x0=y0 0,计算
yk
Axk1
mk max(yk ) xk yk / mk , k 1,2,3,
1 1 1 1
n
n1
n2
1
对应的特征向量为ξn, ξn-1,…, ξ1.

幂法求矩阵最大特征值

幂法求矩阵最大特征值

幂法求矩阵最大特征值摘要在物理、力学和工程技术中的很多问题在数学上都归结为求矩阵特征值的问题,而在某些工程、物理问题中,通常只需要求出矩阵的最大的特征值(即主特征值)和相应的特征向量,对于解这种特征值问题,运用幂法则可以有效的解决这个问题。

幂法是一种计算实矩阵A的最大特征值的一种迭代法,它最大的优点是方法简单。

对于稀疏矩阵较合适,但有时收敛速度很慢。

用java来编写算法。

这个程序主要分成了三个大部分:第一部分为将矩阵转化为线性方程组;第二部分为求特征向量的极大值;第三部分为求幂法函数块。

其基本流程为幂法函数块通过调用将矩阵转化为线性方程组的方法,再经过一系列的验证和迭代得到结果。

关键词:幂法;矩阵最大特征值;j ava;迭代POWER METHOD TO CALCULATE THE MAXIMUMEIGENV ALUE MATRIXABSTRACTIn physics, mechanics and engineering technology of a lot of problems in math boil down to matrix eigenvalue problem, and in some engineering, physical problems, usually only the largest eigenvalue of the matrix (i.e., the main characteristics of the value) and the corresponding eigenvectors, the eigenvalue problem for solution, using the power law can effectively solve the problem.Power method is A kind of computing the largest eigenvalue of real matrix A of an iterative method, its biggest advantage is simple.For sparse matrix is right, but sometimes very slow convergence speed.Using Java to write algorithms.This program is mainly divided into three most: the first part for matrix can be converted to linear equations;The second part is the eigenvector of the maximum;The third part is the exponentiation method of function block.Its basic process as a power law function block by calling the method of matrix can be converted to linear equations, then after a series of validation and iteration to get the results.Key words: Power method; Matrix eigenvalue; Java; The iteration目录1幂法 (1)1.1 幂法基本思想 (1)1.2规范化 (2)2概要设计 (3)2.1 设计背景………………..…………………………………………………………. .32.2 运行流程 (3)2.3运行环境 (3)3 程序详细设计 (4)3.1 第一部分:矩阵转化为线性方程组……..………………………………………. .43.2 第二部分:特征向量的极大值 (4)3.3 第三部分:求幂法函数块 (5)4 运行过程及结果 (6)4.1 运行过程.........................................................………………………………………. .64.2 运行结果 (6)4.3 结果分析 (6)5 心得体会 (7)参考文献 (8)附录:源程序 (9)1 幂法设A n 有n 个线性相关的特征向量v 1,v 2,…,v n ,对应的特征值λ1,λ2,…,λn ,满足|λ1| > |λ2| ≥ …≥ |λn |1.1 基本思想因为{v 1,v 2,…,v n }为C n的一组基,所以任给x (0)≠ 0,∑==ni i i v a x 1)0( —— 线性表示所以有])([)(21111111)0(∑∑∑∑====+====ni i i ki kni k k i i ni ik i n i i i kkv a v a v a v A a v a A xA λλλλ若a 1 ≠ 0,则因11<λλi知,当k 充分大时 A (k )x (0) ≈ λ1k a 1v 1 = cv 1 属λ1的特征向量,另一方面,记max(x ) = x i ,其中|x i | = ||x ||∞,则当k 充分大时,111111*********)0(1)0()max()max()max()max()max()max(λλλλλ==≈---v a v a v a v a x A x A k kk k k k若a 1 = 0,则因舍入误差的影响,会有某次迭代向量在v 1方向上的分量不为0,迭代下去可求得λ1及对应特征向量的近似值。

矩阵的特征值与特征向量 正文

矩阵的特征值与特征向量  正文

引言众所周知,矩阵理论在历史上至少可以追溯到Sylvester与Cayley,特别是Cayley1858年的工作。

自从Cayley建立矩阵的运算以来,矩阵理论便迅速发展起来,矩阵理论已是高等代数的重要组成部分。

近代数学的一些学科,如代数结构理论与泛函分析可以在矩阵理论中寻找它们的根源。

另一方面,作为一种基本工具,矩阵理论在应用数学与工程技术学科,如微分方程、概率统计、最优化、运筹学、计算数学、控制论与系统理论等方面有着广泛的应用。

同时,这些学科的发展反过来又极大地促进了矩阵理论的发展。

特征值与特征向量是矩阵理论中既具有基本理论意义,又具有重要应用价值的知识,与矩阵理论的其它知识也有着密切的联系。

可以说,特征值与特征向量问题是矩阵理论的基本核心问题。

因此,掌握这方面的知识对于培养新的高素质科技人才来说是必备的非常重要的。

矩阵是高等代数课程的一个基本概念是研究高等代数的基本工具。

线性空间、线性变换等,都是以矩阵作为手段,由此演绎出丰富多彩的理论画卷。

求解矩阵的特征值和特征向量,是高等数学中经常碰到的问题。

一般的线性代数教材中,都是先计算特征多项式,然后求得特征值,再通过解线性方程组得到对应的特征向量。

特征多项式和特征根在整个矩阵理论体系中具有举足轻重的作用,并且在于生活现实中的应用也很广泛。

“特征”一词来自德语的eigen,由希尔伯特在1904年首先在这个意义下使用(亥尔姆霍尔兹在更早的时候也在类似意义下使用过这一概念)。

eigen一词可翻译为“自身的”,“特定于...的”,“有特征的”或者“个体的”,这强调了特征值对于定义特定的变换上是很重要的。

矩阵特征值是高等代数研究的中心问题之一,也是硕士研究生招生考试的热点.而且在自然科学(如物理学、控制论、弹性力学、图论等)和工程应用(如结构设计、振动系统、矩阵对策)的研究中也同样离不开矩阵特征值问题,因而对其研究具有重要的理论和应用价值。

随着计算机的迅速发展,现代社会的进步和科技的突飞猛进,高等代数作为一门基础的工具学科已经向一切领域渗透,它的作用越来越为世人所重视。

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量

幂法反幂法求解矩阵最大最小特征值及其对应的特征向量幂法和反幂法是求解矩阵最大最小特征值及其对应特征向量的常用方法。

在本文中,我们将详细介绍这两种方法的原理和具体实现。

一、幂法(Power Method)幂法是一种迭代算法,用于求解矩阵的最大特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A和向量b1的乘积Ab1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A和向量b的乘积Ab,得到新的向量b;7.特征值的近似值λ=,Ab,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=A*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,A*bn,/,bn;4. 特征向量的近似值vbn=bn。

幂法的优点是计算简单、迭代次数少,但对于含有多个特征值接近的矩阵,可能会收敛到次大特征值。

二、反幂法(Inverse Power Method)反幂法是幂法的拓展,用于求解矩阵的最小特征值及其对应的特征向量。

其基本思想是通过多次迭代得到矩阵的一个特征值和特征向量的近似值,并使其逼近真实值。

反幂法的原理如下:1.初始化一个非零向量b0作为初始特征向量;2.计算b0的归一化向量b0/,b0,得到新的向量b1;3.计算矩阵A的逆矩阵Ai和向量b1的乘积Ai*b1,得到新的向量b2;4.对b2进行归一化,得到新的向量b3;5.重复步骤3和步骤4,直到b的变化趋于稳定;6.计算矩阵A的逆矩阵Ai和向量b的乘积Ai*b,得到新的向量b;7.特征值的近似值λ=,Ai*b,/,b。

具体实现如下:1.初始化一个非零向量b0;2.迭代n次进行如下操作:a. 计算bn=inv(A)*bn-1;b. 将bn进行归一化,得到bn=bn/,bn;3. 计算特征值的近似值lambda=,inv(A)*bn,/,bn;4. 特征向量的近似值vbn=bn。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

判断矩阵的最大特征值项目六 矩阵的特征值与特征向量实验1求矩阵的特征值与特征向量实验目的学习利用Mathematica(4.0以上版本)命令求方阵的特征值和特征向量能利用软件计算 方阵的特征值和特征向量及求二次型的标准形 .求方阵的特征值与特征向量.(1) 求矩阵A 的特征值.输入A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A]Eigenvalues[A]则输岀A 的特征值{-1,1,1}(2) 求矩阵A 的特征向量.输入A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A]Eigenvectors[A]{{-3,1,0},{1,0,1},{0,0,0}}即A 的特征向量为 1,0.0 1⑶利用命令Eigensystem 同时矩阵A 的所有特征值与特征向量.输入A={{-1,0,2},{1,2,-1},{1,3,0}}MatrixForm[A]Eigensystem[A]例1.1 (教材例1.1)求矩阵A 21 .的特征值与特值向量则输出则输岀矩阵A的特征值及其对应的特征向量2 3 4例1.2求矩阵A 3 4 5的特征值与特征向量4 5 6输入A=Table[i+j,{i,3},{j,3}]MatrixForm[A](1)计算矩阵A 的全部(准确解)特征值,输入Eigenvalues[A]则输出{0, 6 ■. 42 , 6 ..42 }(2) 计算矩阵A 的全部(数值解)特征值,输入Eigenvalues[N[A]]则输出{12.4807,-0.480741,-1.3483 10 16}(3) 计算矩阵A 的全部(准确解)特征向量,输入Eigenvectors[A]//MatrixForm则输出2 120 3 42-------- 1 23 4 4220 3 42----- -- 123 4 42(4) 计算矩阵A 的全部(数值解)特征向量,输入Eigenvectors[N[A]]//MatrixForm则输出0.430362 0.566542 0.7027220.80506 0.11119 0.5826790.408248 0.816497 0.408248(5) 同时计算矩阵A 的全部(准确解)特征值和特征向量,输入OutputForm[Eigensystem[A]]则输岀所求结果(6) 计算同时矩阵A 的零空间,输入NullSpace[A]1 172 42 234 42 17 2 42 23 4 42仅供学习与交流,如有侵权请联系网站删除谢谢3则输出{{1,21}}(7)调入程序包vvLinearAlgebra'Orthogonalization'后,还可以做以下的运算GramSchmidt[]:用Gram-Schmidt过程将向量组单位正交化;Normalize]]:将向量组单位化;Projection[vect1,vect2]:求从向量组 vectl 到 vect2 的正交映射. 输入vvLinearAlgebra 'Orthogonalization 'GramSchmidt[Eigenvectors[N[A]]]//MatrixForm则输出0.430362 0.566542 0.7027220.80506 0.11119 0.5826790.408248 0.816497 0.4082481 2 3例1.3 求方阵M 2 1 3的特征值和特征向量3 3 6输入Clear[M];M={{1,2,3,},{2,1,3}{3,3,6}};Eigenvalues[M]Eigenvectors[M]Eigensystem[M]则分别输出{-1,0,9}{{-1,1,0},{-1,-1,1}{1,1,2}}{{-1,0,9},{{-1,1,0},{-1,-1,1}{1,1,2}}}1/3 1/3 1/2例1.4 (教材例1.2)求矩阵A 1/5 1 1/3的特征值和特征向量的近似值6 1 2输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6,1,-2}};Eigensystem[A]仅供学习与交流,如有侵权请联系网站删除谢谢4则屏幕输岀的结果很复杂,原因是矩阵A的特征值中有复数且其精确解太复杂.此时,可采用近似形式输入矩阵 A,则输岀结果也采用近似形式来表达 .输入A={{1/3,1/3,-1/2},{1/5,1,-1/3},{6.0,1,-2}};Eigensystem[A]则输出{{-0.748989+1.27186i,-0.748989-1.27186i,0.831311},{{0.179905+0.192168i,0.116133+0.062477l,0.955675+0.i},{0.179905-0.192168i,0.116133-0.062477i,0.955675+0.i},{-0.0872248,-0.866789,-0.490987}}}从中可以看到A有两个复特征值与一个实特征值.属于复特征值的特征向量也是复的;属于实特征值的特征向量是实的.3 0 0例1.5 (教材例1.3)已知2是方阵A 1 t 3的特征值,求t .1 2 3输入Clear[A,q];A={{2-3,0,0},{-1,2-t,-3},{-1,-2,2-3}};q=Det[A]Solve[q==0,t]则输出{{t 8}}即当t 8时,2是方阵A的特征值.2 12例1.6 (教材例1.4)已知x (1,1, 1)是方阵A5 a 3 的一个特征向量,求参数1 b 2a,b及特征向量x所属的特征值.设所求特征值为t,输入Clear[A,B,v,a,b,t];A={{t-2,1,-2},{-5,t-a,-3},{1,-b,t+2}};v={1,1,-1};B=A.v;Solve[{B[[1]]==0,B[[2]]==0,B[[3]]==0},{a,b,t}]则输出仅供学习与交流,如有侵权请联系网站删除谢谢5{{a -3, b 0, t -1}}即a 3,b 0时,向量x (1,1, 1)是方阵A的属于特征值-1和特征向量.矩阵的相似变换4 1 1例1.7 (教材例1.5)设矩阵A 2 2 2,求一可逆矩阵P ,使P 1AP为对角矩阵.2 2 2方法1输入Clear[A,P];A={{4,1,1},{2,2,2},{2,2,2}};Eigenvalues[A]P=Eigenvectors[A]//Transpose则输出{0,2,6}{{0,-1,1},{-1,1,1},{1,1,1}}0 1 1 0 1 1即矩阵A的特征值为0,2,6特征向量为 1 , 1与1 矩阵P 1 1 11 1 1 1 1 1可验证P 1AP为对角阵,事实上,输入Inverse[P ]. A.P则输出{{0,0,0},{0,2,0},{0,0,6}}因此,矩阵A在相似变换矩阵P的作用下,可化作对角阵.方法2 直接使用JordanDecomposition命令,输入jor=JordanDecomposition[A]则输出{{{0,-1,1},{-1,1,1},{1,1,1}},{{0,0,0},{0,2,0},{0,0,6}}}可取岀第一个矩阵S和第二个矩阵,事实上,输入jor[【1]]jor[【2]]则输出{{0,-1,1},{-1,1,1},{1,1,1}}{{0,0,0},{0,2,0},{0,0,6}}输岀结果与方法1的得到的结果完全相同. 仅供学习与交流,如有侵权请联系网站删除谢谢61 0例1.8 方阵A 是否与对角阵相似?2 1输入Clear[A];A={{1,0},{2,1}};Eigensystem[A]输岀为{{1,1},{{0,1}{0,0}}}于是,1是二重特征值,但是只有向量{0,1}是特征向量,因此,矩阵A不与对角阵相似2 0 0 1 0 0 例1.9 (教材例1.6)已知方阵A 2x2与B 0 2 0相似,求x, y .3 11 0 0 y注意矩阵B是对角矩阵,特征值是1,2, y.又矩阵A是分块下三角矩阵,-2是矩阵A的特征值矩阵A与B相似,则y 2,且-1,2也是矩阵A的特征值.输入Clear[c,v];v={{4,0,0},{-2,2-x,-2},{-3,-1,1}};Solve[Det[v]==0,x]则输出{{x 0}}所以,在题设条件,x 0, y 2.输入0 1 1 01 0 1 0 1,求一个正交阵P,使P 1AP为对角阵1 1 0 00 0 0 2例1.10 对实对称矩阵AvvLinearAlgebra'OrthogonalizationClear[A,P]A={{0,1,1,0 },{1,0,1,0},{1,1,0,0},{0,0,0,2}};Eigenvalues[A]Eigenvectors[A]仅供学习与交流,如有侵权请联系网站删除谢谢7输岀的特征值与特征向量为{-1,-122}{{-1,0,1,0},{-1,1,0,0},{0,0,0,1},{1,1,1,0}} 再输入P=GramSchmidt[Eigenvectors[A]]//Transpose输岀为已经正交化和单位化的特征向量并且经转置后的矩阵P 丄。

丄飞,,3,0,0,1,0Transpose[P].Plnverse[P].A.P//SimplifyTranspose[P].A.P//simplify则输出{{1,0,0,0},{0,1,0,0},{0,0,1,0},{0,0,0,1}}{{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}}{{-1,0,0,0},{0,-1,0,0},{0,0,2,0},{0,0,0,2}}1 T P 'AP P' AP 1122例 1.11 求一个正交变换,化二次型f22x1x2 2x1x3 2x2x32X4为标准型.二次型的矩阵为0 11010 10 A110 00 0 0 2这恰好是例1.10的矩阵,因此,用例1.10中的正交矩阵P,作正交变换X PY ,即1 0 1.6,0,,311 T为了验证P是正交阵,以及p 1AP P' AP是对角阵,输入将f 化作标准型.输入f=Table[x[j],{j,4}].A.Table[x[j],{j,4}]//Simplify则输出2(x[2]x[3]+x[1](x[2]+x[3])+x[4]2)这是原来的二次型 f .把上式中的 x[1],x[2],x[3],x[4] 用y[1],y[2],y[3],y[4] 表示,输入代换命令f/.Table[x[j] (P.Table[y[j],{j,4}])[[j]],{j,4}]//Simplify则输出-y[1] 2-y[2] 2 +2(y[3] 2 +y[4] 2)这就是二次型f 的标准型.例1.12 (教材例1.7)已知二次型2 2 2f(X 1,X 2,X 3) X 1 2X 2 X 3 2X 1X 2 4X 1X 3 2X 2X 3(1) 求标准形; ⑵求正惯性指数; (3)判断二次型是否正定.输入A={{1,1,-2},{1,-2,1},{-2,1,1}}Eigenvalues[A]则输岀矩阵A 的特征值为{-3,0,3}所以二次型的标准形为 f 3y : 3y 2 ;正惯性指数为1;该二次型不是正定的.例1.13 (教材例1.8)求正交变换将二次型22 2 2f(X 1,X 2,X 3) X 1 X 2X 3 X 4 2X 1X 2 2X 1X 4 2X 2X 3 2X 3X 4y y y y^313130o o 011 623 16 0丄' o 1 2 0化为标准形.输入A={{1,1,0,-1},{1,1,1,0},{0,1,1,-1},{-1,0,-1,1}}MatrixForm[A]X={x1,x2,x3,x4};Expand[X. A.X]vvLinearAlgebra'Orthogonalization.mP=GramSchmidt[Eigenvectors[A]]PAInverse[P]//MatrixForm则输岀所求的正交变换矩阵P与二次型矩阵A标准形.从结果知,所求二次型的标准型为2 2 2 2g y i y y3 y4实验2层次分析法实验目的通过应用层次分析法解决一个实际问题,学习层次分析法的基本原理与方法;掌握用层次分析法建立数学模型的基本步骤;学会用Mathematica解决层次分析法中的数学问题.基本原理层次分析法是系统分析的重要工具之一,其基本思想是把问题层次化、数量化,并用数学方法为分析、决策、预报或控制提供定量依据 .它特别适用于难以完全量化,又相互关联、相互制约的众多因素构成的复杂问题.它把人的思维过程层次化、数量化,是系统分析的一中新型的数学方法.运用层次分析法建立数学模型,一般可按如下四个基本步骤进行.1.建立层次结构首先对所面临的问题要掌握足够的信息,搞清楚问题的范围、因素、各因素之间的相互关系,及所要解决问题的目标.把问题条理化、层次化,构造岀一个有层次的结构模型.在这个模型下,复杂问题被分解为元素的组成部分.这些元素又按其属性及关系形成若干层次.层次结构一般分三层:第一层为最高层,它是分析问题的预定目标和结果,也称目标层;第二层为中间层,它是为了实现目标所涉及的中间环节,如:准则、子准则,也称准则仅供学习与交流,如有侵权请联系网站删除谢谢10第三层为最底层,它包括了为实现目标可供选择的各种措施、决策方案等,也称方案层.:(1)从上到下顺序地存在支配关系,并用直线段表示;(2) 整个层次结构中层次数不受限制2•构造判断矩阵构造判断矩阵是建立层次分析模型的关键 .假定以上一层的某元素 y 为准则,它所支配的下一层次的元素为 x !,x 2,,x n ,这n 个元素对上一层次的元素y 有影响,要确定它们在y 中的比重.采用成对比较法.即每次取两个元素X i 和x j ,用a ij 表示X i 与x j 对y 的影响之比,全 部比较的结果可用矩阵A 表示,即A (a ij ) n n , i ,j 1,2, ,n.称矩阵A 为判断矩阵.根据上述定义,易见判断矩阵的元素 a j 满足下列性质:1a ji(i j),a ii 1, (i j)a ij当a ij 0时,我们称判断矩阵 A 为正互反矩阵.怎样确定判断矩阵 A 的元素a j 的取值呢? 当某层的元素X 1,X 2,,X n 对于上一层某元素 y 的影响可直接定量表示时,X i 与X j 对y的影响之比可以直接确定,a ij 的值也可直接确定.但对于大多数社会经济问题,特别是比较 复杂的问题,元素X i 与 X j 对y 的重要性不容易直接获得,需要通过适当的量化方法来解决 .通常取数字1~9及其倒数作为a ij 的取值范围.这是因为在进行定性的成对比较时,通常采用5级制(表1),在每两个等级之间各有一个中间状态 ,共1~9个尺度,另外心理学家认为进行成 对比较的因素太多,将超岀人们的判断比较能力,降低精确.实践证明,成对比较的尺度以 7 2为宜,注:上述层次结构具有以下特点 图2- 1故a j的取值范围是1,2, ,9及其倒数.表1比较尺度a j的取值3. 计算层次单排序权重并做一致性检验层次单排序是指同一层次各个元素对于上一层次中的某个元素的相对重要性进行排序具体做法是:根据同一层n个元素x i,X2, ,x n对上一层某元素 y的判断矩阵A ,求出它们对于元素y的相对排序权重,记为W1,W2, ,W n ,写成向量形式w (W i,W2, ,W n)T ,称其为A 的层次单排序权重向量,其中W i表示第i个元素对上一层中某元素 y所占的比重,从而得到层次单排序.层次单排序权重向量有几种求解方法,常用的方法是利用判断矩阵 A的特征值与特征向量来计算排序权重向量W.关于正互反矩阵A,我们不加证明地给岀下列结果.(1) 如果一个正互反矩阵 A (a j)n n满足a ij a jk a ik (i, j,k 1,2, ,n)则称矩阵A具有一致性,称元素X i, X j ,X k的成对比较是一致的;并且称A为一致矩阵.(2) n阶正互反矩阵A的最大特征根max n ,当 n时,A是一致的.(3) n阶正互反矩阵是一致矩阵的充分必要条件是最大特征值max n .计算排序权重向量的方法和步骤设W ( 1, 2, , n)T是n阶判断矩阵的排序权重向量,当A为一致矩阵时,根据n阶判断矩阵构成的定义,有1 1 1n1 2_2_ _2_ _2_(2.1)A1 2 nn n n1 2 n因而满足A W nW,这里n是矩阵A的最大特征根,W是相应的特征向量;当A为一般的判断矩阵时A W max W ,其中max是A的最大特征值(也称主特征根),W是相应的特征向n量(也称主特征向量).经归一化(即i 1)后,可近似作为排序权重向量,这种方法称为i 1特征根法.一致性检验在构造判断矩阵时,我们并没有要求判断矩阵具有一致性,这是由客观事物的复杂性与人的认识的多样性所决定的.特别是在规模大、因素多的情况下,对于判断矩阵的每个元素来说,不可能求岀精确的i / j ,但要求判断矩阵大体上应该是一致的的判断矩阵有可能导致决策的失误.利用上述方法计算排序权重向量一致性时,其可靠性也有问题.因此,需要对判断矩阵的一致性进行检验进行:(1)计算一致性指标CIC| max nn 1(2.2)n时,判断矩阵A是一致的.当CI的值越大,判断矩阵A的不一致的程度就越严重.(2)查找相应的平均随机一致性指标RI表2给出了 n (1~11)阶正互反矩阵的平均随机一致性指标RI ,其中数据采用了100〜150个随机样本矩阵 A计算得到.(3)(2.3)当CR 0.10时,认为判断矩阵的一致性是可以接受的;否则应对判断矩阵作适当修正4. 计算层次总排序权重并做一致性检验计算岀某层元素对其上一层中某元素的排序权重向量后,还需要得到各层元素,特别是最底层中各方案对于目标层的排序权重,即层次总排序权重向量,再进行方案选择.层次总排序权重通过自上而下地将层次单排序的权重进行合成而得到考虑3个层次的决策问题:第一层只有1个元素,第二层有n个元素,第三层有m个元素.设第二层对第一层的层次单排序的权重向量为w⑵(12), 22), , n2))T第三层对第二层的层次单排序的权重向量为w k3)(w k3),w k?, ,w k3))T,k 1,2, ,n以w k3)为列向量构成矩阵:“,(3) (3) (3)w11 ,w21,,w n1 ,(3) (3) (3)W(3)(w13), w^, (3)、W12 ,,w n )w22 , ,w n2 , (2.4)(3) w1 m , w23m, ,w nm' nm m n则第三层对第一层的层次总排序权重向量为w⑶W(3)w⑵.一个经不起推敲,当判断矩阵过于偏离,检验可按如下步骤当CI 0,即maxCR CI RI(2.5)一般地,若层次模型共有s层,则第k层对第一层的总排序权重向量为(k) (k) (k 1)w W w , k 3,4, ,s(2.6)其中W(k)是以第k层对第k 1层的排序权向量为列向量组成的矩阵,w(k1)是第k 1层对第一层的总排序权重向量.按照上述递推公式,可得到最下层(第s层)对第一层的总排序权重向量为w(s)W(s W(s1) W(3)w(2)(2.7)对层次总排序权重向量也要进行一致性检验.具体方法是从最高层到最低层逐层进行检验.如果所考虑的层次分析模型共有 s层.设第l (3 I s )层的一致性指标与随机一致性指标分别为CI1(I),Cl2I), ,Ci n°(n是第I 1层元素的数目)与RI1(I),Rl2I), ‘Ri n1〉,令CI (l)[Ch⑴,,Cl1(I)]w(I 1)(2.8)Rl(I)[RI1(I), , RI1(I)]w(I 1)(2.9)则第I层对第一层的总排序权向量的一致性比率为(l) (I 1) CI ⑴.-.CR CR (iy , l 3,4, ,sRI (l)(2.10)其中CR(2)为由(2.3)式计算的第二层对第一层的排序权重向量的一致性比率当最下层对第一层的总排序权重向量的一致性比率CR(s)0.1时,就认为整个层次结构的比较判断可通过一致性检验.应用举例问题在选购电脑时,人们希望花最少的钱买到最理想的电脑.试通过层次分析法建立数学模型,并以此确定欲选购的电脑.1.建立选购电脑的层次结构模型图2-2该层次结构模型共有三层 目标层(用符号z 表示最终的选择目标);准则层(分别用符号 y i ,y 2,表示“性能”、“价格”、“质量”、“外观”、“售后服务”五个判断准案层(分别 用符号x 1, x 2, x 3表示品牌1,品牌2,品牌3三种选择方案).2.构造成对比较判断矩阵(1)建立准则层对目标层的成对比较判断矩阵根据表1的定量化尺度,从建模者的个人观点岀发,设准则层对目标层的成对比较判断 矩阵为1 5 3 9 3 1/5 11/2 2 1/2 A 1/321 3 11/9 1/2 1/3 1 1/3 1/3 2 1 3 1(2.11)(2)建立方案层对准则层的成对比较判断矩阵1 1/3 1/5 13 5 1 1/3 1/5 B 13 1 1/2 ,B 2 1/31 2 ,B 33 1 1/2 5 211/5 1/2 1 5211 5 31 3 3B 4 1/5 1 1/2 ,B 5 1/3 1 1 >1/3 2 11/3 1 13.计算层次单排序权重向量并做一致性检验先利用Mathematica 计算矩阵A 的最大特征值及特征值所对应的特征向量.输入«Miscellaneous\RealOnly.m(*调用只求实数运算的软件包 *)A={{1.0,5,3,9,3},{1/5,1,1/2,2,1/2},{1/3,2,1,3,1}, {1/9,1/2,1/3,1,1/3},{1/3,2,1,3,1}};(*以小数形式1.0输入进行近似计算,可避免精确解太长、太复杂 *) T=Eigensystem[A]//Chop(*输入//Chop,把与零非常接近的数换成零 *)则输出{{5.00974,Nonreal,Nonreal,0,0},目标层 准则层方案层性能 价格 质量 品牌1品牌3选择的目标售后服务品牌2 外观{{0.88126,0.167913,0.304926,0.0960557,0.304926},{0.742882,Nonreal,Nonreal,Nonreal,Nonreal},{0.742882,Nonreal,Nonreal,Nonreal,Nonreal},{-0.993398,0,0.0673976,0.0662265,0.0650555},{-0.65676,0,0.57431,0.043784,-0.486742}}}(输出中的Nonreal表示复数)从中得到A的最大特征值max 5.00974,及其对应的特征向量x (0.88126,0.167913,0.304926,0.0960557,0.304926)丁输入Clear[x];x=T【【2,1]];ww2=x/Apply[Plus,x]则得到归一化后的特征向量w(2)(0.502119,0.0956728,0.173739,0.0547301,0.173739)T 计算一致性指标CI 上n,其中n 5, ma x 5.00974,故n 1CI 0.002435.查表得到相应的随机一致性指标RI 1.12从而得到一致性比率CR⑵ CL 0.002174RI因CR⑵0.1,通过了一致性检验,即认为A的一致性程度在容许的范围之内,可以用归一化后的特征向量w(2)作为排序权重向量.下面再求矩阵B j(j 1,2, ,5)的最大特征值及特征值所对应的特征向量,输入B1=B3={{1.0,1/3,1/5},{3,1,1/2},{5,2,1}};B2=Transpose[B1];B4={{1.0,5,3},{1/5,1,1/2},{1/3,2,1}};B5={{1.0,3,3},{1/3,1,1},{1/3,1,1}};T仁 Eigensystem[B1]//ChopT2=Eigensystem[B2]//ChopT3=Eigensystem[B3]//ChopT4=Eigensystem[B4]//ChopT5=Eigensystem[B5]//Chop则输出{{3.00369,Nonreal, Nonreal},{{0.163954,0.46286,0.871137},{ Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal, 0.871137}}};{{3.00369,Nonreal, Nonreal},{{0.928119,0.328758,0.174679},{0.928119, Nonreal, Nonreal},{0.928119, Nonreal, Nonreal}}}{{3.00369, Nonreal, Nonreal}, {{0.163954,0.46286,0.871137}, { Nonreal, Nonreal,0.871137}, { Nonreal, Nonreal,0.871137}}}{{3.00369, Nonreal, Nonreal}, {{0.928119,0.174679,0.328758}, {0.928119, Nonreal, Nonreal}, {0.928119, Nonreal, Nonreal}}}{{3,0,0},{{0.904534,0.301511,0.301511}, {-0.973329,0.162221,0.162221}, {-0.170182,-0.667851,0.724578}}从上面的输出可以分别得到B j ( j 1,2, ,5)的最大特征值1 3.00369,2 3.00369,3 3.00369,4 3.00369, 5以及上述特征值所对应的特征向量X t (0.163954,0.46286,0.871137)T X 2 (0.928119,0.328758,0.174679)T TX 3 (0.163954,0.46286,0.871137)x 4 (0.928119,0.174679,0.328758)T X 5(0.904534,0.301511,0.301511)T其中x i (X i1 ,x i2, x i3),i 1,2,,5.为求出归一化后的特征向量,输入Clear[x1,x2,x3,x4,x5];x 仁 T1[[2,1]]; w1= x1/Apply[Plus,x1] x2=T2[[2,1]]; w2=x2/Apply[Plus,x2] x3=T3[[2,1]]; w3=x3/Apply[Plus,x3] x4=T4[[2,1]];3.000w4=x4/Apply[Plus,x4]仅供学习与交流,如有侵权请联系网站删除谢谢17x5=T5[[2,1]];w5=x5/Apply[Plus,x5]则输出W! (0.109452,0.308996,0.581552)Tw2(0.648329,0.229651,0.12202)Tw3(0.109452,0.308996,0.581552)TW4 (0.648329,0.12202,0.229651)Tw5(0.600000,0.200000,0.200000)Tn计算一致性指标Cl i - - (i 1,2, ,5),其中n 3,输入n 1lamda={T1【【1,1]],T2【【1,1]],T3【【1,1]],T4【【1,1]],T5【【1,1]]} CI=(lamda-3)/(3-1)//Chop则输出Cl i 0.0018473, Cl20.0018473, Cl30.0018473,Cl40.0018473, Cl5查表得到相应的随机一致性指标Rl i 0.58 (i 1,2, ,5) 计算一致性比率CR 鱼,i 1,2, ,5,输入Rl iCR=Cl/0.58则输出CR10.003185, CR20.003185, CR30.003185,CR4 0.003185, CR5 0.因CR i 0.1,(i 1,2, ,5),通过了一致性检验.即认为B j (j 1,2, ,5)的一致性程度在容许的范围之内,可以用归一化后的特征向量作为其排序权重向量.4.计算层次总排序权重向量并做一致性检验购买个人电脑问题的第三层对第二层的排序权重计算结果列于表 3.表33.00369 3.00369 3.00369 3.00369 3以矩阵表示第三层对第二层的排序权重计算结果为0.109452 0.648329 0.109452 0.648329 0.6W(3)0.308996 0.229651 0.308996 0.12202 0.20.581552 0.12202 0.581552 0.229651 0.2W(3)即是第三层对第二层的权重向量为列向量组成的矩阵.最下层(第三层)对最上层(第一层)的总排序权向量为w(3) W(3)w(2)为了计算上式,输入W3=Transpose[{w1,w2,w3,w4,w5}];ww3=W3.ww2则从输岀结果得到(3) Tw( )(0.275728,0.272235,0.452037)为了对总排序权向量进行一致性检验,计算CI(3)(C.hC.12, ,C」5)w ⑵输入CI.ww2则从输岀结果得到CI (3)0.00152635再计算RI⑶[Rh, ,Rl5】w(2)输入RI=Table[0.58,{j,5}];RI.ww2则从输岀结果得到R.I ⑶0.58最后计算 C.R(3) C.R⑵C」(3) / R.I (3),可得C.R(3)0.00480575因为C.R(3) 0.1,所以总排序权重向量符合一致性要求的范围.根据总排序权重向量的分量取值,品牌3的电脑是建模者对这三种品牌机的首选.实验报告仅供学习与交流,如有侵权请联系网站删除谢谢191. 根据你的设想购置一台计算机,需考虑什么样的判断准则?利用层次分析法及数学软件做岀最佳的决策.2. 根据你的经历设想如何报考大学,需要什么样的判断准则?利用层次分析法及数学软件做岀最佳的决策.3. 假期到了,某学生打算做一次旅游,有四个地点可供选择,假定他要考虑5个因素:费用、景色、居住条件、饮食以及旅游条件.由于该学生没有固定收入,他对费用最为看重,其次是旅游点的景色,至于旅游条件、饮食,差不多就行,住什么地方就更无所谓了.这四个旅游点没有一个具有明显的优势,而是各有优劣.该同学拿不定主意,请用层次分析法帮助他找出最佳旅游点.4. 假设你马上就要从大学毕业,正面临择业的问题,你对工作的选择着重考虑下面几个因素:(1)单位的声誉;(2)收入;(3)专业是否对口;(4)是否有机会深造或晋升;(5)工作地点;(6)休闲时间.对上述各种因素你可以根据自己的具体情况排序也可以增加或减少所考虑的因素. 现在有四个单位打算你,但如果用上述标准来衡量,没有一个单位具有明显的优势,请用层次分析法为你自己做一个合理的选择。

相关文档
最新文档