高中数学立体几何常考证明题汇总(全)

合集下载

新课标立体几何常考证明题汇总

新课标立体几何常考证明题汇总

新课标立体几何常考证明题汇总1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形(2) 若BD=AC=2,EG=2。

求异面直线AC 、BD 所成的角和EG 、BD 所成的角。

2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE;(2)平面CDE ⊥平面ABC 。

3、如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点, 求证: 1//AC 平面BDE 。

AED 1CB 1DAAHGFEDCB AEDBC4、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .5、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点. 求证:(1) C 1O ∥面11AB D ;(2)1AC ⊥面11AB D .7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD . 证明:8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =, 90BDC ∠=,求证:BD ⊥平面ACDSDCBAD 1ODB AC 1B 1A 1CA1NMPCBA9、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,3AN NB =(1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。

10、如图,在正方体1111ABCD A BC D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF ∥平面BDG .11、如图,在正方体1111ABCD A BC D -中,E 是1AA 的中点. (1)求证:1//AC 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.13、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;(3)求二面角A BC P --的大小.14、如图1,在正方体1111ABCD A BC D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .考点:线面垂直的判定,运用勾股定理寻求线线垂直 15、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .16、证明:在正方体ABCD -A 1B 1C 1D 1中,A 1C ⊥平面BC 1D17、如图,过S 引三条长度相等但不共面的线段SA 、SB 、SC ,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC ⊥平面BSC .18.(本小题满分12分)如图所示,在直三棱柱ABC-A1B1C1中,AC ⊥BC . (1) 求证:平面AB1C1⊥平面AC1;(2) 若AB1⊥A1C ,求线段AC 与AA1长度之比;(3) 若D 是棱CC1的中点,问在棱AB 上是否存在一点E ,使DE ∥平面AB1C1?若存在,试确定点E 的位置;若不存在,请说明理由.AC111。

高一数学常考立体几何证明的题目及答案

高一数学常考立体几何证明的题目及答案

证明:( 1)连结 A1C1 ,设 A1C 1 B1D1 O1,连结 AO1
∵ ABCD A1B1C 1D1 是正方体
A1 ACC1 是平行四边形
∴ A1C1∥ AC 且 A1C 1 AC
又 O1,O 分别是 A1C1, AC 的中点,∴ O1C1∥ AO 且 O1C1 AO
AOC1O1 是平行四边形 C1O∥ AO1, AO1 面 AB1D1 , C1O
.
1、如图,已知空间四边形 ABCD 中, BC AC , AD BD , E 是 AB 的中点。
求证:( 1) AB 平面 CDE; ( 2)平面 CDE 平面 ABC 。
BC AC
证明:( 1)
AE BE
CE AB
AD BD
同理,
AE BE
DE AB
A E
B
C
又∵ CE DE E
∴ AB 平面 CDE
9、如图,在正方体 ABCD A1B1C1D1 中, E 是 AA1 的中点 . ( 1)求证: A1C // 平面 BDE ; ( 2)求证:平面 A1AC 平面 BDE .
10、已知 ABCD 是矩形, PA 平面 ABCD , AB 2 , PA AD 4 , E 为 BC 的中点. ( 1)求证: DE 平面 PAE ; ( 2)求直线 DP 与平面 PAE 所成的角.
13 、 如 图 2 , 在 三 棱 锥 A - BCD 中 , BC= AC, AD= BD, 作 BE⊥ CD, E 为 垂 足 , 作 AH⊥ BE 于 H . 求 证 : AH⊥ 平 面 BCD.
精彩文档
实用标准文案
14. (12 分 )求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形. 已知:如图,三棱锥 S—ABC, SC∥截面 EFGH ,AB∥截面 EFGH . 求证:截面 EFGH 是平行四边形.

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题及答案1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。

2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证: 1//AC 平面BDE 。

3、已知ABC ?中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD ⊥面SBC .4、已知正方体1111ABCD A BC D -,O 是底ABCD 对角线的交点.求证:(1) C1O ∥面11AB D ;(2)1AC ⊥面11AB D .5、正方体''''ABCD A B C D -中,求证:''AC B D DB ⊥平面;6、正方体ABCD —A1B1C1D1中. (1)求证:平面A1BD ∥平面B1D1C ;(2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD .7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC=,90BDC ∠=,求证:BD ⊥平面ACD 8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D的中点.求证:平面1D EF ∥平面BDG .AEDBCAED 1CB 1DCBASDCB AD 1ODBAC 1B 1A 1CA 1 AB 1BC 1C D 1D G EF9、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//AC 平面BDE ;(2)求证:平面1A AC ⊥平面BDE .10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ;(2)求证:AD PB ⊥. 12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1AO ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH. 求证:截面EFGH 是平行四边形.AH GFE DCB15.(12分)已知正方体ABCD —A1B1C1D1的棱长为a ,M 、N 分别为A1B 和AC 上的点,A1M =AN =23a ,如图. (1)求证:MN ∥面BB1C1C ;16.(12分)(2009·浙江高考)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点.(1)证明:PQ ∥平面ACD ;17.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点.求证:(1)直线EF ∥面ACD.(2)平面EFC ⊥平面BCD .18、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点求证:EFGH 是平行四边形20、如图,在正方体1111ABCD A B C D 中,E 是1AA 的中点,求证:1//AC 平面BDE 。

高中数学立体几何证明题汇总

高中数学立体几何证明题汇总

高中数学立体几何证明题汇总立体几何常考证明题1.已知四边形ABCD是空间四边形,E,F,G,H分别是边AB,BC,CD,DA的中点。

1)证明EFGH是平行四边形。

2)已知BD=23,AC=2,EG=2,求异面直线AC、BD所成的角和EG、BD所成的角。

2.如图,已知空间四边形ABCD中,BC=AC,AD=BD,E 是AB的中点。

1)证明AB垂直于平面CDE。

2)证明平面CDE垂直于平面ABC。

3.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。

证明A1C平行于平面BDE。

4.已知三角形ABC中∠ACB=90,SA垂直于面ABC,AD垂直于SC。

证明AD垂直于面SBC。

5.已知正方体ABCD-A1B1C1D1,O是底面ABCD对角线的交点。

1)证明C1O平行于面AB1D1.2)证明AC1垂直于面AB1D1.6.正方体ABCD-A1B1C1D1中。

1)证明AC垂直于平面B1D1D。

2)证明BD1垂直于平面ACB1.7.正方体ABCD-A1B1C1D1中。

1)证明平面A1BD平行于平面B1DC。

2)已知E、F分别是AA1、CC1的中点,证明平面EB1D1平行于平面FBD。

8.四面体ABCD中,AC=BD,E、F分别为AD、BC的中点,且EF=AC/2,∠XXX。

证明BD垂直于平面ACD。

9.如图P是△ABC所在平面外一点,PA=PB,CB垂直于平面PAB,M是PC的中点,N是AB上的点,AN=3NB。

1)证明XXX垂直于AB。

2)当∠APB=90,AB=2BC=4时,求MN的长度。

10.如图,在正方体ABCD-A1B1C1D1中,E、F、G分别是AB、AD、C1D1的中点。

证明平面D1EF平行于平面BDG。

11.如图,在正方体ABCD-A1B1C1D1中,E是AA1的中点。

1)证明A1C平行于平面BDE。

2)证明平面A1AC垂直于平面BDE。

12、已知矩形ABCD,PA垂直于平面ABCD,AB=2,PA=AD=4,E为BC的中点。

高中数学几何证明题

高中数学几何证明题

新课标立体几何常考证明题汇总1、已知四边形 ABCD 是空间四边形,E,F,G,H 分别是边AB, BC,CD, DA 的中点 (1) 求证:EFGH 是平行四边形(2) 若BD=2√3,AC=2 EG=2求异面直线 AG BD 所成的角和EG BD 所成的角。

1证明:在 ABD 中,∙∙∙ E, H 分别是AB, AD 的中点二EH //BD ,EH BD21同理,FG // BD , FG BD ∕∙ EH // FG ,EH = FG .∙.四边形 EFGH 是平行四边形。

2⑵ 90 ° 30 °考点:证平行(利用三角形中位线),异面直线所成的角2、如图,已知空间四边形 ABCD 中,BC =AC, AD =BD ,E 是AB 的中点。

同理,AD一BD=DE _ AB AE =BE,又∙.∙ CE DE=E.∙. AB _ 平面 CDE(2)由(1)有AB _平面CDE 又∙.∙ A B-平面ABC ,.∙.平面CDE _平面ABC 考点:线面垂直,面面垂直的判定求证:(1) AB _ 平面 CDE;(2) 平面CDE _平面ABC 。

证明:BC=AC [— (1) ⅛ CE 丄 ABAE=BEAC3、如图,在正方体ABCD-A1B1C1D1中,E是AA l的中点,求证:AC//平面BDE 。

证明:连接AC交BD于O ,连接EO ,∙∙∙ E为AA1的中点,O为AC的中点∙∙∙ EO为三角形A1AC的中位线∙∙∙ EO//AC又EO在平面BDE内,AC在平面BDE夕卜∙A I C // 平面BDE。

考点:线面平行的判定4、已知ABC 中.ACB =90〔SA_ 面ABC, AD _ SC,求证:AD _ 面SBC.证明:T ACB =90 ° BC _ AC又SA_面ABC . SA_ BC.BC _ 面SAC.BC _ AD又SC — AD, SC「BC =C AD_ 面SBC考点:线面垂直的判定5、已知正方体ABCD -A I BIGD I , O是底ABCD对角线的交点•求证:(1 )C I O // 面AB1D1 ; (2)AC-面AB1D1 .证明:(1)连结A1C1,设AICλ BID^O I,连结AO1∙∙∙ ABCD -^B1C1D1是正方体.A l ACC I是平行四边形∙ A1C1 // AC 且A I C^AC又O1,O 分别是A1C1,AC 的中点,∙∙∙ O1C1∕/ AO 且O1C1 =AO AOC1O1是平行四边形Ca AOI, AOI面AB1D1, C1O 二面AB1D1∙ C1O// 面AB1D1(2)'* CC1丄面A1B1C1D1 =CC 丄BD又T AG 丄BIDI, ΛB1 D1丄面 A1C1C 即 AC丄BD同理可证AIC—AD I ,又D I B I AD1 = D IAC -面AB1D1考点:线面平行的判定(利用平行四边形),线面垂直的判定B CCBC1C6、正方体 ABCD —A'B'C'D'中,求证:(1)AC 丄平面 B'D'DB ;( 2)BD'丄平面 ACB'7、正方体 ABCD — A I B I C I D I 中.⑴求证:平面 A i BD //平面B i D i C;⑵若E 、F 分别是AA i ,CC i 的中点,求证:平面 EB i D i /平面FBD . 证明:⑴由B i B/ DDi ,得四边形BB i D i D 是平行四边形,二B i D i / BD , 又 BD 二平面 B i D i C, B i D i 平面 B i D i C,∙∙∙ BD //平面 B i D i C . 同理 A i D //平面 B i D i C .而 A i D ∩ BD = D ,∙平面 A i BD //平面 B i CD .⑵由 BD/ B i D i ,得 BD //平面 EB i D i •取 BB i 中点 G,∙ AE // B i G .从而得 B i E // AG ,同理 GF // AD . ∙ AG // DF . ∙ B i E/ DF . ∙ DF //平面 EB i D i考点:线面平行的判定(利用平行四边形) 8、如图P 是 ABC 所在平面外一点,PA = PB,CB _平面PAB , M 是PC 的中点,N 是AB 上的点,AN =3NB(i)求证:MN _ AB ; (2)当.APB =90 , AB =2BC =4 时,求 MN 的长。

最新高一数学常考立体几何证明题及答案

最新高一数学常考立体几何证明题及答案

高一数学常考立体几何证明题1、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE; (2)平面CDE ⊥平面ABC 。

2、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证: 1//A C 平面BDE 。

3、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥, 求证:AD⊥面SBC .4、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.求证:(1) C1O ∥面11AB D ;(2)1AC ⊥面11AB D .5、正方体''''ABCD A B C D -中,求证:''AC B D DB ⊥平面;6、正方体ABCD —A1B1C1D1中.(1)求证:平面A1BD ∥平面B1D1C ;(2)若E 、F 分别是AA1,CC1的中点,求证:平面EB1D1∥平面FBD .AE D BCAE D 1CB 1DCBASDCB AD 1ODBAC 1B 1A 1C A 1 A B 1BC 1C D 1D G EF7、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且22EF AC =,90BDC ∠=,求证:BD ⊥平面ACD8、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点.求证:平面1D EF∥平面BDG .9、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点.(1)求证:1//A C 平面BDE ;(2)求证:平面1A AC ⊥平面BDE .10、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.11、如图,在四棱锥P ABCD -中,底面ABCD 是060DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥.12、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD于点O ,求证:1AO ⊥平面MBD .13、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD , 作BE ⊥CD ,E为垂足,作AH ⊥BE 于H. 求证:AH ⊥平面BCD .14.(12分)求证平行于三棱锥的两条相对棱的平面截三棱锥所得的截面是平行四边形.已知:如图,三棱锥S —ABC ,SC ∥截面EFGH ,AB ∥截面EFGH. 求证:截面EFGH 是平行四边形.15.(12分)已知正方体ABCD —A1B1C1D1的棱长为a ,M 、N 分别为A1B 和AC 上的点,A1M =AN =23a ,如图. (1)求证:MN ∥面BB1C1C ;16.(12分)(2009·浙江高考)如图,DC ⊥平面ABC ,EB ∥DC ,AC =BC =EB =2DC =2,∠ACB =120°,P ,Q 分别为AE ,AB 的中点. (1)证明:PQ ∥平面ACD ;N MPCBA17.(12分)如图,在四面体ABCD 中,CB =CD ,AD ⊥BD ,点E 、F 分别是AB 、BD 的中点. 求证:(1)直线EF ∥面ACD. (2)平面EFC ⊥平面BCD .20、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点,求证:1//A C 平面BDE 。

高中立体几何证明题

高中立体几何证明题

高中立体几何证明题一、线面平行的证明题1已知正方体ABCD - A_{1}B_{1}C_{1}D_{1},E,F分别是AB,BC的中点,求证:EF∥平面A_{1}C_{1}D。

解析1. 连接AC。

- 在 ABC中,因为E,F分别是AB,BC的中点,所以EF∥ AC。

2. 正方体ABCD - A_{1}B_{1}C_{1}D_{1}中:- AC∥ A_{1}C_{1}。

- 由EF∥ AC和AC∥ A_{1}C_{1}可得EF∥ A_{1}C_{1}。

- 又A_{1}C_{1}⊂平面A_{1}C_{1}D,EFnot⊂平面A_{1}C_{1}D。

- 根据线面平行的判定定理,所以EF∥平面A_{1}C_{1}D。

题2在三棱柱ABC - A_{1}B_{1}C_{1}中,D是AB的中点,求证:AC_{1}∥平面CDB_{1}。

解析1. 连接BC_{1},交B_{1}C于点E。

- 在三棱柱ABC - A_{1}B_{1}C_{1}中,E为BC_{1}的中点。

2. 因为D是AB的中点:- 所以在 ABC_{1}中,DE∥ AC_{1}。

- 又DE⊂平面CDB_{1},AC_{1}not⊂平面CDB_{1}。

- 根据线面平行的判定定理,可得AC_{1}∥平面CDB_{1}。

二、线面垂直的证明题3在四棱锥P - ABCD中,底面ABCD是正方形,PA = PB = PC = PD,求证:PA⊥平面ABCD。

解析1. 连接AC,BD交于点O,连接PO。

- 因为底面ABCD是正方形,所以O为AC,BD中点。

- 又PA = PC,PB = PD,根据等腰三角形三线合一的性质:- 可得PO⊥ AC,PO⊥ BD。

- 而AC∩ BD = O,AC⊂平面ABCD,BD⊂平面ABCD。

- 根据直线与平面垂直的判定定理,所以PO⊥平面ABCD。

- 又PA = PB = PC = PD,AO = BO = CO = DO,所以 PAO≅ PBO≅ PCO ≅ PDO。

高中数学立体几何常考证明题汇总

高中数学立体几何常考证明题汇总

立体几何选择题:一、三视图考点透视:① 能想象空间几何体的三视图,并判断(选择题) ② 通过三视图计算空间几何体的体积或表面积•③ 解答题中也可能以三视图为载体考查证明题和计算题 1. 一空间几何体的三视图如图 2所示, 该几何体的体积为AJ ,3则正视图中X 的值为( )A. 5B.4C. 3D. 22. 在一个几何体的三视图中,正视图和俯视图如图所示,则相应的侧视图可以为3. _________________________________ 如图4,已知一个锥体的正视图(也称主视图) 别为3, 4, 6,则该锥体的体积是 4 _____________________ .4•某四棱锥的三视图如图 1 — 1所示,该四棱锥的表面积是 (B ) A . 32 B . 16+ 16 .2 C. 48 D . 16 + 32 2二、直观图掌握直观图的斜二测画法:①平行于两坐标轴的平行关系保持不变;② 平行于y 轴的长度为原来的一半, X 轴不变; ③ 新坐标轴夹角为 45°或135 °。

1、禾U 用斜二侧画法画水平放置的平面图形的直观图,得到下列结论,其中正确的是()不要求记忆,但要会使用公式。

审题时分清“表面积”和“侧面积” 。

(1) 圆柱、圆锥、圆台的侧面积,球的表面积公式。

(2) 柱、锥、台体,球体的体积公式。

(3) 正方体的内切球和外接球:内切球半径? 外接球直径? (4) 扇形的面积公式 S =1Ir =丄十弧长公式IXr2 21、一个直角三角形的两条直角边分别是3和4,以它的斜边为轴旋转所得的旋转体的表面积为()A. 84-B. 144 - C . 36 二D. 24 二Q ∖ [ħΔ ΛABC D 正视图 左视图正视图俯视图4 =►,左视图(也称侧视图)和俯视图均为直角三角形,且面积分 A .正三角形的直观图仍然是正三角形. B. 平行四边形的直观图一定是平行四边形. C. 正方形的直观图是正方形.D .圆的直观图是圆 2、如图,梯形 A I BCD 是一平面图形=1 ,则梯形ABC 啲面积是()ABC [的直观图(斜二测),若 AD // Oy 1, AB // CD , AB = 2, GD = 3 D . 10 I 2二、表面积和体积 AD俯视图2、 若圆锥的高是底面半径和母线的等比中项,则称此圆锥为“黄金圆锥” 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

新课标立体几何常考证明题汇总
考点:证平行(利用三角形中位线),异面直线所成的角
1、已知四边形ABCD 是空间四边形,,,,E F G H 分别是边,,,AB BC CD DA 的中点 (1) 求证:EFGH 是平行四边形
(2) 若
BD=AC=2,EG=2。

求异面直线AC 、BD 所成的角和EG 、BD 所成的角。

考点:线面垂直,面面垂直的判定
2、如图,已知空间四边形ABCD 中,,BC AC AD BD ==,E 是AB 的中点。

求证:(1)⊥AB 平面CDE;
(2)平面CDE ⊥平面ABC 。

考点:线面平行的判定
3、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点, 求证: 1//A C 平面BDE 。

A
E
D 1
C
B 1
D
C
B
A
A
H
G
F
E
D
C
B A
E
D
B
C
考点:线面垂直的判定
4、已知ABC ∆中90ACB ∠=,SA ⊥面ABC ,AD SC ⊥,求证:AD ⊥面SBC .
考点:线面平行的判定(利用平行四边形),线面垂直的判定 5、已知正方体1111ABCD A B C D -,O 是底ABCD 对角线的交点.
求证:(1) C 1O ∥面11AB D ;(2)1
AC ⊥面11AB D .
考点:线面垂直的判定
6、正方体''''ABCD A B C D -中,求证:(1)''AC B D DB ⊥平面;(2)''BD ACB ⊥平面.
考点:线面平行的判定(利用平行四边形)
7、正方体ABCD —A 1B 1C 1D 1中.(1)求证:平面A 1BD ∥平面B 1D 1C ; (2)若E 、F 分别是AA 1,CC 1的中点,求证:平面EB 1D 1∥平面FBD .
S
D
C
B
A
D 1O
D
B A
C 1
B 1
A 1
C
A 1 A
B 1
B
C 1
D 1
D G E
F
N
M
P
C
B
A
考点:线面垂直的判定,三角形中位线,构造直角三角形
8、四面体ABCD 中,,,AC BD E F =分别为,AD BC 的中点,且2
2
EF AC =
, 90BDC ∠=,求证:BD ⊥平面ACD
考点:三垂线定理
9、如图P 是ABC ∆所在平面外一点,,PA PB CB =⊥平面PAB ,M 是PC 的中点,N 是AB 上的点,
3AN NB = (1)求证:MN AB ⊥;(2)当90APB ∠=,24AB BC ==时,求MN 的长。

考点:线面平行的判定(利用三角形中位线)
10、如图,在正方体1111ABCD A B C D -中,E 、F 、G 分别是AB 、AD 、11C D 的中点. 求证:平面1D EF ∥平面BDG .
考点:线面平行的判定(利用三角形中位线),面面垂直的判定 11、如图,在正方体1111ABCD A B C D -中,E 是1AA 的中点. (1)求证:1//A C 平面BDE ; (2)求证:平面1A AC ⊥平面BDE .
考点:线面垂直的判定,构造直角三角形
12、已知ABCD 是矩形,PA ⊥平面ABCD ,2AB =,4PA AD ==,E 为BC 的中点.
(1)求证:DE ⊥平面PAE ;(2)求直线DP 与平面PAE 所成的角.
考点:线面垂直的判定,构造直角三角形,面面垂直的性质定理,二面角的求法(定义法)
13、如图,在四棱锥P ABCD -中,底面ABCD 是0
60DAB ∠=且边长为a 的菱形,侧面PAD 是等边三角形,且平面PAD 垂直于底面ABCD .
(1)若G 为AD 的中点,求证:BG ⊥平面PAD ; (2)求证:AD PB ⊥;
(3)求二面角A BC P --的大小.
考点:线面垂直的判定,运用勾股定理寻求线线垂直
14、如图1,在正方体1111ABCD A B C D -中,M 为1CC 的中点,AC 交BD 于点O ,求证:1A O ⊥平面MBD .
考点:线面垂直的判定
15、如图2,在三棱锥A-BCD 中,BC =AC ,AD =BD ,
作BE ⊥CD ,E为垂足,作AH ⊥BE 于H.求证:AH ⊥平面BCD .
考点:线面垂直的判定,三垂线定理
16、证明:在正方体ABCD-A1B1C1D1中,A1C⊥平面BC1D
11
A B1
D C
B
考点:面面垂直的判定(证二面角是直二面角)
17、如图,过S引三条长度相等但不共面的线段SA、SB、SC,且∠ASB=∠ASC=60°,∠BSC=90°,求证:平面ABC⊥平面BSC.。

相关文档
最新文档