基础医学导论:纳米材料与癌症治疗

基础医学导论:纳米材料与癌症治疗
基础医学导论:纳米材料与癌症治疗

纳米材料与癌症治疗

姓名:刘通通学号:班级:基础二班电话:

摘要:在癌症治疗领域,人们通常采用手术、放疗、化疗进行治疗。临床上用的化疗治

癌药物显示出低的水溶性、较差的稳定性、快速的血液清除并且缺乏对肿瘤部位的靶向性,常常对于正常细胞造成伤害。近年来,随着纳米技术的发展,纳米材料作为一种新型抗肿瘤药物载体及mRNA载体为癌症患者提供了新的希望。通过梳理纳米技术在癌症治疗方面的发展历程,可以明确其发展方向,给后来的研究者提供一个大概的认识。本文主要就纳米技

术在癌症治疗领域的发展历程,以及现在出现的比较成功的纳米运输药物进行介绍。

关键词:纳米颗粒癌症纳米运输系统基因治疗

1.引言:

癌症一直是困扰人们的重大难题,传统疗法如化疗往往带给患者莫大的痛苦,并且收效甚微。20世纪70年代,纳米概念首次出现,1981年扫描隧道显微镜发明后,诞生了一门以0.1到100纳米长度为研究分子的科学,那些纳米分子的性能常常有很大的特异性。纳米生物学也孕育而生,而用纳米技术治疗恶性肿瘤是国际肿瘤研究领域的一个重要方向。已经逐渐发展了比较完善的纳米给药系统,可以输送药物和小型RNA,定向到达肿瘤部位,从而特异性抑制肿瘤生长。目前关于纳米药物的研究主要集中在以下方面:发展纳米给药系统;新型高载量的纳米颗粒的制备;构建纳米载体,用于输送环状DNA,诱导癌细胞的凋亡。

2.纳米载体与基因治疗

基于核酸药物的治疗手段可以通过外源正常基因导入靶细胞以纠正或补偿因基因缺陷和异常或者下调在肿瘤组织中过量表达的癌基因来达到治疗癌症的目的。利用纳米载体进行输送基因可以高效定向起到作用。

2.1纳米生物技术基因治疗载体的特点

在药剂学中,纳米载体是指由纳米生物材料制备,尺寸定在1~1000纳米的药物载体,具有生物兼容性、可生物降解、药物缓释和药物靶向传递等良好的特性[1]。

纳米生物技术基因主要有以下特点。1.生物安全性。纳米基因载体一般由具

生物兼容性、可生物降解性的纳米生物材料制备,基本无毒性,无免疫原性,体内可以代谢降解,生物安全性好[1]。纳米脂质体主要由磷脂及胆固醇合成,由

于其自身的仿生物膜的特点,可以通过与细胞膜的融合和胞吞作用将目的基因导入细胞。2.可保护核苷酸。纳米脂质体和纳米粒可以通过表面电荷吸附作用或通过包裹在其中来保护核苷酸不被核酸酶降解。Fattal等研究表明聚氰基丙烯酸烷

基脂阳离子纳米粒负载的寡核苷酸在细胞培养基中具有抗核酸酶的作用,阻止了寡核酸的降解,使得静脉给药体内的稳定性显著提高[2]。3.提高细胞吸收率。大

量实验表明细胞对载体的摄取效率随载体的尺寸变化而有显著差别[3],纳米级

的载体可以显著提高细胞的摄取,目的基因的表达水平。4.缓释作用。纳米级脂质体与纳米粒在体内的循环时间可明显延长。根据所选用的材料在体内的水解速度不同,可实现所负载核酸分子的可控、缓慢释放。5.靶向性。由于纳米基因载体在肿瘤、炎性病变部位组织毛细血管通透性明显高于正常的毛细血管,可选择性地在病变部位渗透,实现被动靶向基因传递;纳米基因载体的比表面积大,并且可在其表面偶联细胞的配体或抗体,实现基因治疗的主动靶向性,主动靶向性载体大大提高了基因传递的特异性,并加强了靶细胞对目的基因的摄取。

2.2纳米基因载体及输送系统

纳米基因载体及输送系统的是根据肿瘤中抑癌基因的缺失、血管增生和微缺氧环境等特点来设计的。纳米基因载体主要包括酯类物质载体和阳离子聚合物载体。阳离子脂质、聚合物、树形高分子、多肽等非病毒载体系统都具有浓缩DNA 进行系统给药的能力,但是由于不能有效克服细胞屏障和免疫防御机制,非病毒载体表现出略差的转染效率,但具备生物相容性和大规模生产潜能[4]。当纳米颗粒通过循环系统到达组织细胞后,细胞会以内吞的方式将其摄入胞内,首先纳米颗粒与胞膜等形成内吞小泡,内吞小泡会与溶酶体快速融合,在溶酶体内的基因如果不能被有效保护并及时释放,则会被溶酶体内存在的各种酶类很快降解。不少科学家将基因从溶酶体的快速释放当作基因转染能力的重要指标。因此过去几十年中对于阳离子化合物的设计有较多的研究,以期达到与DNA有效结合形成复合物并克服基因传输在体内和体外屏障的目的。

癌细胞对一些蛋白质的特异性表达或过度表达为癌症治疗提供了分子水平的新靶点。利用RNA干扰技术通过siRNA给药能特异性抑制致病基因的表达,具有高效和多样化的特征。脂质和大分子物质在肿瘤部位穿透性提高和滞留的现象称作EPR效应。EPR效应有助于大分子物质对肿瘤组织的被动靶向,可以提高药物的疗效并减少对正常组织的副作用。尺寸在10-500nm的颗粒由于EPR效应可以实现在肿瘤部位被动靶向和富集[5],键合包括RGD肽、叶酸、半乳糖残基和抗体等靶向分子的纳米药物载体可以实现对肿瘤的主动靶向传递。这种靶向型载体最大的优势在于可以增加肿瘤细胞的摄取,显著提高siRNA药物疗效,并降低化疗过程中的全身性毒副作用。2010年Davis和同事在《自然》杂志上报告了利用靶向纳米粒子将siRNA向癌症病人进行全身投递实验的第一阶段。纳米载体由基于环式糊精的线性聚合物,靶向基因转铁蛋白和亲水聚合物聚乙二醇构成,输送核糖核酸还原酶M2的siRNA。临床实验证明了在人体中RNAi能够经过纳米靶向输送投递来实现,并支持了siRNA作为一种遗传特定治疗方法的应用[6]。有的研究者还发展了一种阳离子脂质辅助、以聚乙二醇-聚乳酸嵌段聚合物为主要材料的纳米给

药系统,用于siRNA的系统给药[7]。

3.纳米材料作为非载体在癌症治疗中作用

纳米材料由于其特殊的性质,有些纳米颗粒本身对于癌症的治疗就有一定的作用。不乏研究者对于这方面研究。研究得出硒化铜Cu2-x Se纳米晶体及金银-酚醛树脂Ag@Au@Phenol Formaldehyde 纳米颗粒可以通过光热治疗(photothermal therapy, PPT)效应分别杀伤人结肠癌细胞HCT116及人肝癌细胞HepG2[8,9]. 而Fe@Au可通过诱导细胞线粒体介导的细胞自噬引发的细胞毒作用,用于口腔癌的治疗[10],包被有EGF抗体的纳米Fe@Au合金通过引发细胞自噬和细胞凋亡,可杀伤非小细胞肺癌[11]。氧化锌(Zinc oxide, ZnO)纳米颗粒可以通过活性氧介导的细胞凋亡特异性杀伤人肝细胞癌细胞HepG/肺腺癌细胞A549以及支气管上皮细胞癌-2B细胞[10]。纳米材料的特殊性使其在癌症治疗中大展身手,联合纳米材料和化疗药物,则更有可能提高复合药物杀伤癌细胞的能力。

4.载药纳米颗粒应用

输送免疫调节剂、抗肿瘤药物用于抗肿瘤治疗。Allemann把抗肿瘤药ZnPcF16装载到聚乳酸(PLA)纳米粒子和聚乙二醇(PEG)修饰的PLA纳米粒子中,给小鼠注射后,发现前者的血药浓度较低,这是因为PEG修饰的纳米粒子能够减少网状内皮细胞的摄取[12]。运载核苷酸用于基因治疗。Chavany等研究了聚氰基丙烯酸烷基脂纳米粒子吸附寡核苷酸的影响因素,证明无论在缓冲液还是细胞培养基中,结合在纳米粒子上的寡核苷酸都具有对抗核酸酶的作用,防止了核苷酸的降解,并且通过细胞对纳米粒子的吞噬作用而增加了寡核苷酸进入细胞内的量,同时增加了其稳定性[13]。以上是较为早的应用,现在已经有正式的纳米载体药物投放市场,但是由于肿瘤的特异性不是总是很高,所以研究受到限制。

5.展望

纳米生物技术是当今世界科学领域的前沿,将其应用到癌症治疗领域则是一个重大的突破,纳米载体结合基因治疗可能开辟一个全新的治疗恶性肿瘤的方法。现在对于能够长时间循环、靶向性强、缓释的纳米载体的研究突飞猛进,虽然当下世界取得了一定的进展,但是距离成功还有相当的距离。

虽则纳米技术不断发展,新型的纳米药物载体不断诞生,但是诸如纳米材料在体内应用时的稳定性、降解性、安全性等都有待解决。当今世界对于纳米技术越来越重视,我们相信现在存在的问题都会得到解决,纳米技术的全新发展将引领一场影响深远的科技革命,不仅对于癌症领域会有冲击,对于与疾病监测、诊疗技术和临床治疗手段向微型、微量、微创、以及功能化、智能化的方向发展都

会有大的启示性作用。

参考文献

1张小伟,田聆,魏于全. 纳米生物技术基因治疗载体研究进展[J]. 生物医学工程学杂志,2005,03:610-613.

2 Fattal E, Vauthier C, Aynie I, et al . Biodegradable polyalkylcyanoacrylate nanoparticles for the delivery of oligonucleotides. J Control Release, 1998; 53(1-3)∶137

3 Almofti MR, Harashima H, Shinohara Y, et al. Lipoplex size determines lipofection efficiency with or without serum. Mol Membr Biol, 2003;20(1):35

4 Behr JP. Synthetic gene-tranfer vectors. Acc chem Res 1993;26:274-278

5 Danquah MK, Zhang XA, Mahato RI. Extravasation of polymeric nanomedicines across tumor vasculature. Adv Drug Deliver Rev 2011;63:623-639

6 Davis ME, Zuckerman JE, Choi CH,Seligson D, Tolcher A, Alabi CA, et al. Evidence of RNAi in humans from systemically administered siRNA via targeted nanoparticles. Nature 2010;464:1067-1070.

7杨显珠. 小干扰RNA的纳米药物输送系统及其用于癌症治疗的研究[D].中国科学技术大学,2011

8.Hessel CM,Pattani VP, Rasch M, et al. 2011.Copper selenide nanocrystals for photothermal therapy[J].Nano Lett,11:2560-2566.

9Yang P, Xu QZ, Jin SY, et al.2012. Synthesis of multifunctional Ag@Au@Phenol Formaldehyde resin particles loaded with folic acids for photothermal therapy[J].Chem Eur J,18:9294-9299.

10.Wu YN, Yang LX, Shi XY, et al. 2011. The selective growth inhabition of oral cancer by iron core-gold shell nanoparticles through mitochondria-mediated autophagy[J]. Biomaterials, 32:4565-4573.

11.Yokoyama T, Tam J, Kuroda S, et al.2011. EGFR-targeted hybrid plasmonic magnetic nanoparticles synergistically induce autophagy and apoptosis in non-small cell lung cancer cells[J].PLoS ONE, 6:e25507.

12Allemann E, Brasseur N, Benrezzak O, et al. PEG-coated poly (lactic acid) nanoparticles for the delivery of hexadecafluoro zincphthalocyanine to EMT T-T mouse mammary tumours[J]. J Pharm Pharmacol, 1995, 47(5):382.

13 Chavany C, Le-Doan T, Couvreur P, et al.Polyalkylcya-noacrylate nanoparticles as polymeric carriers for antisense ligonucleotides [J]. Pharm Res, 1992, 9(4):441.

纳米材料与技术思考题2016

纳米材料导论复习题(2016) 一、填空: 1.纳米尺度是指 2.纳米科学是研究纳米尺度内原子、分子和其他类型物质的科学 3.纳米技术是在纳米尺度范围内对原子、分子等进行的技术 4.当材料的某一维、二维或三维方向上的尺度达到纳米范围尺寸时,可将此类材料称为 5.一维纳米材料中电子在个方向受到约束,仅能在个方向自由运动,即电子在 个方向的能量已量子化一维纳米材料是在纳米碳管发现后才得到广泛关注的,又称为 6.1997年以前关于Au、Cu、Pd纳米晶样品的弹性模量值明显偏低,其主要原因是 7.纳米材料热力学上的不稳定性表现在和两个方面 8.纳米材料具有高比例的内界面,包括、等 9.根据原料的不同,溶胶-凝胶法可分为: 10.隧穿过程发生的条件为. 11.磁性液体由三部分组成:、和 12.随着半导体粒子尺寸的减小,其带隙增加,相应的吸收光谱和荧光光谱将向方向移动,即 13.光致发光指在照射下被激发到高能级激发态的电子重新跃入低能级被空穴捕获而发光的微观过程仅在激发过程中发射的光为在激发停止后还继续发射一定时间的光为 14.根据碳纳米管中碳六边形沿轴向的不同取向,可将其分成三种结构:、和 15.STM成像的两种模式是和. 二、简答题:(每题5分,总共45分) 1、简述纳米材料科技的研究方法有哪些? 2、纳米材料的分类? 3、纳米颗粒与微细颗粒及原子团簇的区别? 4、简述PVD制粉原理 5、纳米材料的电导(电阻)有什么不同于粗晶材料电导的特点? 6、请分别从能带变化和晶体结构来说明蓝移现象

7、在化妆品中加入纳米微粒能起到防晒作用的基本原理是什么? 8、解释纳米材料熔点降低现象 9、AFM针尖状况对图像有何影响?画简图说明 1. 纳米科学技术 (Nano-ST):20世纪80年代末期刚刚诞生并正在崛起的新科技,是研究在千万分之一米10–7)到十亿分之一米(10–9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子等进行操纵和加工的技术,又称为纳米技术 2、什么是纳米材料、纳米结构? 答:纳米材料:把组成相或晶粒结构的尺寸控制在100纳米以下的具有特殊功能的材料称为纳米材料,即三维空间中至少有一维尺寸小于100nm的材料或由它们作为基本单元构成的具有特殊功能的材料,大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类;纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-8)到亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的学问;同时在这一尺度范围内对原子、分子进行操纵和加工 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望 5、纳米材料有哪4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、请叙述什么是小尺寸效应、表面效应、量子效应和宏观量子隧道效应、库仑堵塞效应 答:小尺寸效应:当颗粒的尺寸与光波波长、德布罗意波长以及超导态的相干长度或透射深度等物理特征尺寸相当或更小时,晶体周期性的边界条件将被破坏,非晶态纳米粒子的颗粒表面层附近的原子密度减少,导致声、光、电、磁、热、力学等特性呈现新的物理性质的变化称为小尺寸效应 表面效应:球形颗粒的表面积与直径的平方成正比,其体积与直径的立方成正比,故其比表面积(表面积/体积)与直径成反比随着颗粒直径的变小,比表面积将会显著地增加,颗粒表面原子数相对增多,从而使这些表面原子具有很高的活性且极不稳定,致使颗粒表现出不一样的特性,这就是表面效应 量子尺寸效应:当粒子的尺寸达到纳米量级时,费米能级附近的电子能级由连续态分裂成分立能级当能级间距大于热能、磁能、静电能、静磁能、光子能或超导态的凝聚能时,会出现纳米材料

基础医学概论自己整理的重点

第一章绪论 神经调节。特点:反应发生较快、持续时间相对较短;例子:当叩击股四头肌肌腱时,就刺激了股四头肌中的感受器——肌梭,使肌梭兴奋,通过传入神经纤维将信息传至脊髓,脊髓将对传入神经信息进行分析、综合,然后通过传入神经纤维将兴奋传到效应器——股四头肌,引起股四头肌的收缩,完成膝反射。 体液调节。特点:反应比较缓慢、作用持久而弥散。例子:当交感神经兴奋时,可促使它所支配的肾上腺髓质分泌肾上腺素和去甲肾上腺素,经血液运输,调节有关器官的功能活动。自身调节。特点:幅度和范围都比较小,但在生理功能调节中仍具有一定的意义。例子:心室肌的收缩力量在一定范围内与收缩前心肌纤维的初长度成正比,即收缩前心肌纤维越长,收缩时产生的力量越大:反之,收缩力量就越小。 第三章基因信息的传递 原核生物合成过程:DNA双螺旋解旋;引发体的生成和DNA解成复制叉;复制的延长;复制的终止。 逆转录:在逆转录酶的作用下以RNA为模板合成DNA的过程 逆转录的过程:以单链RNA的基因组为模板,在逆转录酶的催化下,合成一条单链DNA;产物与模板生成RNA/DNA杂化双链,杂化双链中的RNA被逆转录酶水解;以新合成的单链DNA为模板,逆转录酶催化合成第二链的DNA。 第四章神经系统 神经系统可分为中枢神经系统和周围神经系统两部分,前者包括脑和脊髓,后者包括12对脑神经和31对脊神经。 α波:频率为8~13次/s,成人处于安静状态的主要脑电波。 β波:频率为14~30次/s,安静闭目只在额叶出现,若被试者睁眼视物或接受其他刺激时,在皮层其他部分也出现β波 θ波:频率为4~7次/s,承认困倦时可见到,是中枢神经系统处于抑制状态的表现。 δ波:频率为0.1~3次/s,承认在清醒状态下不会出现,只有在睡眠时可见到。或深度麻醉、缺氧或大脑有器质性病变时也可出现,婴儿可常见δ波。 睡眠的时相 慢波睡眠: 特点:脑电波呈现同步化慢波 表现:各种感觉功能暂时减退;骨骼肌反射活动和肌紧张减弱;血压下降、呼吸变慢、心率减慢、瞳孔缩小、尿量减少、体温下降、胃液分泌增多、发汗增强等自主神经功能改变 作用:有利于促进生长、促进体力恢复 快波睡眠: 特点:脑电波呈现去同步化快波 表现:各种感觉功能进一步减退;骨骼肌反射活动和肌紧张进一步减弱;出现快速眼球运动、部分躯体抽搐、血压升高、心率加快、呼吸加快而不规则等; 作用:有利于幼儿神经系统的发育成熟、促进学习记忆 语言功能: 语言中枢包括运动性和感觉性,前者有说话语言中枢和书写语言中枢,后者有听觉语言中枢和视觉语言中枢。

新材料科学导论期末复习题(有答案版)

一、填空题: 1.材料性质的表述包括力学性能、物理性质和化学性质。 2.化学分析、物理分析和谱学分析是材料成分分析的三种基本方法。 3.材料的结构包括键合结构、晶体结构和组织结构。 4.材料科学与工程有四个基本要素,它们分别是:使用性能、材料的性质、制备/加工和结构/成分。 5.按组成和结构分,材料分为金属材料,无机非金属材料,高分子材料和复合材料。 6.高分子材料分子量很大,是由许多相同的结构单元组成,并以共价键的形式重复连接而成。 7.复合材料可分为结构复合材料和功能复合材料两大类。 8.聚合物分子运动具有多重性和明显的松弛特性。 9.功能复合材料是指除力学性能以外,具有良好的其他物理性能并包括部分化学和生物性能的复合材料。如有 光,电,热,磁,阻尼,声,摩擦等功能。 10.材料的物理性质表述为光学性质、磁学性质、电学性质和热学性质。 11.由于高分子是链状结构,所以把简单重复(结构)单元称为链节,简单重复(结构)单元的个数称为聚 合度。 12.对于脆性的高强度纤维增强体与韧性基体复合时,两相间若能得到适宜的结合而形成的复合材料,其性能显示 为增强体与基体的互补。(ppt-复合材料,15页) 13.影响储氢材料吸氢能力的因素有:(1)活化处理;(2)耐久性(抗中毒性能); (3)抗粉末化性能;(4)导热性能;(5)滞后现象。 14.典型热处理工艺有淬火、退火、回火和正火。 15.功能复合效应是组元材料之间的协同作用与交互作用表现出的复合效应。复合效应表现线性效应和非线性效 应,其中线性效应包括加和效应、平均效应、相补效应和相抵效应。 16.新材料发展的重点已经从结构材料转向功能材料。 17.功能高分子材料的制备一般是指通过物理的或化学的方法将功能基团与聚合物骨架相结合的过程。功能高 分子材料的制备主要有以下三种基本类型: ①功能小分子固定在骨架材料上; ②大分子材料的功能化; ③已有功能高分子材料的功能扩展; 18.材料的化学性质主要表现为催化性能和抗腐蚀性。 19.1977年,美国化学家MacDiarmid,物理学家Heeger和日本化学家Shirakawa首次发现掺杂碘的聚乙炔具有金 属的导电特性,并因此获得2000年诺贝尔化学奖。 20.陶瓷材料的韧性和塑性较低,这是陶瓷材料的最大弱点。 第二部分名词解释

纳米材料学教案

《纳米材料》教学大纲 一、课程基本信息 课程编号:2 中文名称:纳米材料 英文名称:Nano-materials 适用专业:化学工程与工艺 课程类别:专业选修课 开课时间:第5学期 总学时:32 总学分:2 二、课程简介(字数控制在250以内) 《纳米材料》是化学工程与工艺专业的一门专业选修课,本课程系统地讲授各类纳米材料的概念、制备方法、结构和性能特征以及表征技术和方法,在此基础上,对其发展前景进行了展望。通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 三、相关课程的衔接 与相关课程的前后续关系。 预修课程(编号):高等数学B1(210102000913)、高等数学B2(210102000713)、物理化学A1(2)、物理化学A2(2),无机化学(A1)(2)、无机化学(A2)(2)。 并修课程(编号):无特别要求 四、教学的目的、要求与方法 (一)教学目的 通过本课程的学习,引导大学生对纳米科学和技术进行认知与了解,帮助他们掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状以及未来发展前景,从而启迪大学生的创新思维,拓宽其科学视野,培养他们对纳米科技的学习兴趣。 (二)教学要求 掌握纳米科技和纳米材料学的基本概念、基本原理、研究现状,对未来发展前景有一定的认识。

(三)教学方法 本课程遵循科学性、系统性、循序渐进、少而精和理论联系实际的教学原则,结合最新的研究成果着重讲述有关纳米材料的基本理论、理论知识的应用。本课程以课堂讲授教学为主,教学环节还包括学生课前预习、课后复习,习题,答疑、期末考试等。 五、教学内容(实验内容)及学时分配 (1学时) 第一章绪论(2学时) 1、教学内容 1.1纳米科技的基本内涵 1.2纳米科技的研究意义 1.3纳米材料的研究历史 1.4纳米材料的研究范畴 1.5纳米化的机遇与挑战 2、本章的重点和难点 本章重点是纳米科技与纳米材料的基本概念。 第二章纳米材料的基本效应(2学时) 1、教学内容 2.1 小尺寸效应 2.2 表面效应 2.3 量子尺寸效应 2.4宏观量子隧道效应 2.5 库仑堵塞与量子隧穿效应 2.6 介电限域效应 2.7 量子限域效应 2.8 应用实例 2、本章的重点和难点 重点:纳米材料的表面效应、小尺寸效应及量子尺寸效应。难点:宏观量子隧道效应。 第三章零维纳米结构单元(4学时) 1、教学内容 3.1 原子团簇

基础医学概论期末考试试卷

第一节基本组织 二、填空题 1.以解剖学姿势为准,距正中矢状面近者为_内测_;较远者为_外测_。 2.人体的基本组织包括:上皮组织、结缔组织、肌组织和神经组织。 3.人体学常用术语中的三个轴是:矢状轴、冠状轴和垂直轴。 4.人体的解剖学方位是以解剖学姿势为标准描述的,近腹者为前,近背者为后。 5.机体的新陈代谢包括同化作用和异化作用两个方面。 6.衡量兴奋性高低的指标为阈强度,阈强度愈大,兴奋性愈低,反之愈高。 7.“液态镶嵌模型学说”认为细胞膜由双层类脂分子和镶嵌在其中的蛋白质分子所组成。 8.按结构和功能上皮组织可为被覆上皮和腺上皮两大类。 9.固有结缔组织分为疏松结缔组织、致密结缔组织、脂肪组织和网状组织。 10.根据肌组织形态和功能的特点,可分为骨骼肌、心肌和平滑肌三种 11.神经组织是由神经细胞和神经胶质细胞组成的。 12.神经元是神经系统的结构和功能单位。 13.根据功能的不同可将神经元分为感觉神经元、运动神经元和联络神经元三类。 14.化学性突触的结构包括突触前膜、突触间隙和突触后膜。 15.神经胶质细胞具有支持、保护、营养和绝缘的作用。 16.调节人体功能的方式有神经调节、体液调节和自身调节。 17.神经调节的基本方式是反射。 18.反射弧由感受器、传入神经、神经中枢、传出神经和效应器5个部分组成。 19.排尿反射是正反馈。 20.根据强度的大小,可以把刺激分为阈下刺激、阈刺激和阈上刺激。 21.解剖学术语中的“内和外”是表示与空腔器官位置关系的描述。 三、单项选择题 1.用来描述空腔器官的方位术语是 A.上和下 B.内和外 C.内侧和外侧 D.浅和深 E.近和远 2. 躯体上两点中,近正中矢状面的一点为 A.里 B.外 C.内侧 D.外侧 D.远侧 3.有“细胞供能站”之称的细胞器是 A.线粒体 B.核糖体 C.溶酶体 D.细胞核 E.内质网 4.不属于反射弧的结构是 A.感受器 B.受体 C.传入神经 D.传出神经 E.效应器 5.下列关于刺激与反应的叙述正确的是 A.组织受到刺激后必然引起反应 B.组织一旦发生反应就出现兴奋活动 C.只有阈刺激会引起组织产生兴奋 D.抑制也是组织发生反应的一种形式 E.以上说法均不对 6.下列生理过程中,不属于正反馈调节的是 A.排尿反射 B.分娩 C.血液凝固 D.减压反射 E.排便反射 7.平均动脉压在一定范围内升降时,脑血管可相应的收缩或舒张保持脑血流量相对稳定属 A.神经调节 B.体液调节 C.自身调节 D.正反馈调节 E.负反馈调节 8.神经调节的基本方式是 A.反射 B.反应 C.正反馈 D.负反馈 E.兴奋 9.判断组织兴奋性高低常用的指标是

纳米材料导论期末复习重点

名词解释: 1、纳米:纳米是长度单位,10-9米,10埃。 2、纳米材料:指三维空间中至少有一维处于纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3、原子团簇:由几个乃至上千个原子通过物理或化学结合力组成的相对稳定的微观或亚微观聚集体(原子团簇尺寸一般小于20nm)。 4、纳米技术:指在纳米尺寸范围内,通过操纵单个原子、分子来组装和创造具有特定功能的新物质。 5、布朗运动:悬浮微粒不停地做无规则运动的现象。 6、均匀沉淀法:利用某一化学反应使溶液中的构晶离子由溶液中缓慢地、均匀地释放出来,再与沉淀组分发生反应。 7、纳米薄膜材料:指由尺寸在纳米量级的颗粒构成的薄膜材料或纳米晶粒镶嵌与某种薄膜中构成的复合膜且每层厚度都在纳米量级的单层或多层膜。 8、真空蒸镀:指在高真空中用加热蒸发的方法是源物质转化为气相,然后凝聚在基体表面的方法。 9、超塑性:超塑性是指在一定应力下伸长率≥100%的塑性变形。 10、弹性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体又恢复原状。 11、塑性形变:指固体受外力作用而使各点间相对位置的改变,当外力撤消后,固体不会恢复原状。 HAII-Petch公式: σ--强度;H--硬度;d--晶粒尺寸;K--常数 纳米复合材料:指分散相尺度至少有一维小于100nm的复合材料。 14、蠕变:固体材料在保持应力不变的条件下,应变随时间延长而增加的现象。 15、热塑性:物质在加热时能发生流动变形,冷却后可以保持一定形状的性质。 大题: 纳米粒子的基本特性? (1)小尺寸效应:随着颗粒尺寸的量变,在一定条件下会造成颗粒性质的质变,由于颗粒尺寸的变小,所导致的颗粒宏观物理性质的改变称为小尺寸效应。 (2)表面效应:纳米粒子表面原子数与总原子数之比随着纳米粒子尺寸的减小而显著增加,粒子的表面能和表面张力也随着增加,物理化学性质发生变化。(粒度减小,比表面积增大;粒度减小,表面原子所占比例增大;表面原子比内部原子具有更高的比表面能;表面原子比内部原子具有更高的活性) (3)量子尺寸效应:当金属粒子的尺寸下降到某一值时,金属费米能级附近的能级由准连续变为离散能级或能隙变宽的现象。 (4)宏观量子隧道效应:宏观物理量具有的隧道效应。 纳米陶瓷具有较好韧性的原因? (1)纳米陶瓷材料有纳米相,具有纳米材料相关的性能,而纳米材料具有大的界面,界面原子排列相当混乱,原子在外力变形条件下容易迁移,从而表现出优良的韧性,因而纳米陶瓷也具有较好的韧性; (2)纳米级弥散相阻止晶粒长大,起到细晶强化作用,使强度、硬度、韧性都得到提高;(3)纳米级粒子的穿晶断裂,并由硬粒子对裂纹尖端的反射作用而产生韧化。

(整理)基础医学概论2

基础医学概论第二部分 名词解释 免疫:对“自己”或“非己”的识别,并排除“非己”以保护体内环境稳定的一种生理反应。 抗原:某些物质能与淋巴细胞抗原受体特异性结合,刺激机体产生特异性免疫应答,并与相应免疫应答产物发生特异性结合反应的物质 抗体:机体B细胞受抗原刺激后,转化为浆细胞,并由浆细胞产生的免疫球蛋白。 超敏反应:指已致敏机体,再次接触同一抗原时,造成机体生理功能紊乱或病理损伤 心力衰竭:在各种致病因素的作用下,心肌原发或继发性收缩和/或舒张功能障碍,使心输出量绝对或相对降低,不能满足机体的代谢需要的病理过程 呼吸衰竭:由于外呼吸功能障碍,导致PaO2低于60mmHg (8.0kPa),伴有或不伴有PaCO2升高超过50mmHg (6.7kPa)的病理过程。 肺源性心脏病:呼吸衰竭常伴有肺动脉高压,从引起右心肥大和衰竭,即肺源性心脏病肝性脑病:继发于严重肝病的精神神经综合征称为肝性脑病。 问答题 结合抗原(中和作用),活化补体,通过胎盘和粘膜,结合细胞,具有抗原性 3、简述免疫应答基本过程 抗原识别阶段 免疫细胞的活化、增殖、分化阶段 免疫效应阶段 4、抗体再次免疫应答的特点有哪些? 伏期短;抗体浓度增加快;抗体合成快速到达平台期,平台高,持续时间长;维持 时间久;诱发再次应答所需抗原量小;再次应答产生的抗体主要为IgG;抗体的亲 和力高

5、超敏反应有哪些类型?各举一例。 Ⅰ型超敏反应(速发型),青霉素过敏性休克 Ⅱ型超敏反应(细胞溶解型或细胞毒型),新生儿溶血症 Ⅲ型超敏反应(免疫复合物型或血管炎型),血清病 Ⅳ型超敏反应(迟发型),接触性皮炎 6、简述速发型超敏反应的发生机制。 变应原通过各种途径进入机体,某些个体能产生IgE抗体,通过其Fc段与组织中的肥大细胞,嗜碱性粒细胞表面的FcεR结合,机体处于致敏状态。当再次接触相同的变应原, 变应原可予以吸附在肥大细胞、嗜碱性粒细胞表面的相应的IgE抗体结合,引起上述细胞颗粒释放过敏介质,导致平滑肌收缩,腺体分泌增加,小血管及毛细血管扩张和通透性增加,出现一系列过敏发作症状。 7、左心衰竭表现呼吸困难的三种形式从轻到重一次是什么? 劳力性呼吸困难,端坐呼吸,夜间阵发性呼吸困难 8、简述肝性脑病的诱发因素。 消化道出血,酸碱平衡紊乱,镇静药和麻醉药使用不当

《纳米材料与技术》教学大纲(新)

《纳米材料与技术》课程教学大纲 课程中文名称:纳米材料与技术 课程英文名称:Nanomaterials and Nanotechnology 课程类别:全校性通识选修课 课程编号: 课程归属单位:材料与冶金工程学院 制订时间:2014年4月02日 一、课程的性质、任务 1.课程性质和任务 本课程是理工科专业的一门专业选修课,它研究了纳米材料的结构和性能及制备方法,以及纳米材料的应用以及纳米科技的新进展。本课程主要任务是使学生对纳米材料这样一种新的材料具有一个比较广泛的了解。为以后工作、学习及毕业论文实验提供必要的知识面和方法 2.教学要求 开此课前学生应已学过大学物理、无机、有机、及物理化学等基础课。 3.适用专业 本课程适用全校所有理工科专业。 4.本门课程与其它课程的关系 其先修课程是大学物理、无机、有机、及物理化学等,先修课程所讲授的物理、化学等知识是本课程讲授的基础知识。 5.学分、学时数 本课程学分数为2学分。教学总教学学时为36学时,其中理论教学36学时,实验教学0学时。 6.推荐教材 自编 7.推荐参考书 1.《纳米材料导论》哈尔滨工业大学出版社 2.《纳米材料和纳米结构》张立德,牟季美,科学出版社 3.《纳米复合材料》徐国财著化工出版版 4.《纳米材料分析》黄惠忠化工出版社 5.《纳米材料与器件》朱静清华大学出版社 8.主要教学方法和多媒体教学要求: 主要教学方法采用多媒体教学,要求有电脑、投影仪(含展示台)、屏幕等。 二、各章教学内容和要求 1、课堂讲授内容(36学时): 第一章纳米科学与技术的概述(4学时) 1.纳米科学与技术 2.纳米科学技术的发展史

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

东北大学《材料科学导论》期末考试必备真题集(含答案)18

东北大学继续教育学院 材料科学导论复习题 一、选择填空,在给出的a、b、c、d选项中选择一或多个你认为最合适的答案, 使得题目中给出描述完整准确。 1、材料的性质是在元器件或设备实现预期的使用性能而得到利用的。即材料的使用性能取决于( b )。 a 材料的组成 b 材料的基本性能 c 材料的结构 d 材料的合成与加工工艺 2、钢铁、有色金属、玻璃、陶瓷、高分子材料等的原材料多数来自( d )、为矿物资源,形成于亿万年之前,是不可再生的资源。因此,在材料生产中必须节省资源、节约能源、回收再生。 a 工业 b 农业 c 材料加工行业 d 采掘工业 3、高分子材料、金属材料和无机非金属材料,不论其形状大小如何,其宏观性能都是由( b )。 a 它的化学成分所决定的 b其化学组成和组织结构决定的。 c 其加工工艺过程所决定的 d其使用环境所决定的 4、如果使用温度是室温,就可以优先考虑高分子材料,因为在相同密度的材料中它们是 b、d 的。 a 最容易得到 b最便宜 c 最常见 d 加工最方便 5、根据其性能及用途的不同,可将陶瓷材料分为( a、c )和两大类。 a 结构材料用陶瓷 b特种陶瓷 c功能陶瓷 d 传统陶瓷 6、金属材料与无机非金属材料成型加工时由于工艺条件的不同也会造成制品性能的差异。因此,材料的( a、d )的总和决定了制品性能。 a 内在性能 b成型加工 c附加性能 d 成型加工所赋予的附加性能 7、材料的化学性能是指材料抵抗各种介质作用的能力。它包括溶蚀性、耐腐蚀性、抗渗

入性、抗氧化性等,可归结为材料的( c )。 a 有效性 b 实用性 c 稳定性 d 可用性 8、切削物体或对物体进行塑性变形加工的工具材料可分为高碳钢、高速钢、超硬质合金、金刚石等材料,其中可列入超硬质材料范畴的是( c、d )。 a高碳钢 b高速钢 c超硬质合金 d金刚石 9、纳米材料通常定义为材料的显微结构中,包括( a、b、c、d )等特征尺度都处于纳米尺寸水平的材料,通常由直径为纳米数量级的粒子压缩而成。 a 颗粒直径 b 晶粒大小 c 晶界 d 厚度 10、天然矿物原料一般杂质较多,价格较低;而人工合成原料( a、b )。此外,对环境的影响也是选用原材料时必须考虑的因素之一。 a 纯度较高 b价格也较高 c难以得到 d 以上所有 11、电化学腐蚀必须要有一个阴极与一个阳极。在纯金属中( a )或( b )可以构成阴极。 a 晶界 b 晶粒 c 环境的介质 d 更小的不均匀物种 12、腐蚀一旦发生,材料或制品就会( d );所以腐蚀是材料设计和选择时不得不考虑的重要因素。 a大受影响 b性能显著下降 c服务寿命缩短 d 以上所有 13、晶体的宏观形貌可以是( d )。 a一维的 b 二维的 c 三维的 d 上述所有 14、范德华键是永远存在于分子间或分子内非键结合的力,是一种( a )。

基础医学概论试题

节基本组织 一、名词解释 1. 新陈代谢机体与周围环境之间所进行的物质交换和能量交换的自我更新过程。 2. 兴奋性机体对环境中的刺激发生反应的能力和特性。 3. 反应当环境发生变化时,机体内部代谢及外边活动所发生的相应改变。 4. 刺激引起机体发生反应的各种环境变化统称为刺激。 5?阈值也叫阈强度指引起组织发生反应的最小刺激强度。 6. 内环境细胞直接生活的体内环境,称为机体的内环境,为细胞外液。 7. 稳态机体内环境的化学成分及理化性质在不断转换中达到相对平衡状态,称为稳态,它是生命存在的必要条件。 8. 组织是构成人体各器官的基本成分,由起源相同、类型相似的细胞和细胞间质所组成。 9. 内皮衬贴在循环管道腔面的单层扁平上皮。 10. 腺上皮以分泌功能为主上皮,构成腺。 11. 腺以腺上皮为主所构成的器官,具有分泌的功能。 12. 神经纤维由神经元长突起以及包绕在它外面的神经胶质细胞构成的结构。 13. 感受器是感觉神经纤维的终末部分,能感受刺激,传导冲动。 14. 效应器运动神经纤维的终末部分,可支配肌肉的收缩和腺体的分泌。 15. 突触是存在于神经元与神经元之间或神经元与效应器细胞(靶细胞)之间具有信息传递作用的特殊连接结构。 16. 器官机体内由几种功能近似的组织有机结合起来,构成的具有一定形态和功能的结构。 17. 系统一系列在结构和功能上具有密切联系的器官组合起来,共同完成某一方面生理功能,构成系统。 18. 体液调节指存在于血液循环或其他体液的一些化学物质对人体功能活动进行的调节。 19. 自身调节指内外环境改变时,器官、组织、细胞不依赖神经或体液调节,其本身所呈现出的一种适应性反应。 20. 正反馈指受控部分的反馈信息,使控制部分的调控作用减弱的过程。 21. 负反馈受控部分的反馈信息,使控制部分的调控作用加强的过程。 二、填空题 1. 以解剖学姿势为准,距正中矢状面近者为内测;较远者为外测。 2. 人体的基本组织包括:上皮组织、结缔组织、肌组织和神经组织。 3. 人体学常用术语中的三个轴是:矢状轴、冠状轴和垂直轴。 4. 人体的解剖学方位是以解剖学姿势为标准描述的,近腹者为前,近背者为后。 5. 机体的新陈代谢包括同化作用和异化作用两个方面。 6. 衡量兴奋性高低的指标为阈强度,阈强度愈大,兴奋性愈低,反之愈高。 7. “液态镶嵌模型学说”认为细胞膜由双层类脂分子和镶嵌在其中的蛋白质分子所组成。 8. 按结构和功能上皮组织可为被覆上皮和腺上皮两大类。 9 ?固有结缔组织分为疏松结缔组织、致密结缔组织、脂肪组织和网状组织。 10. 根据肌组织形态和功能的特点,可分为骨骼肌、心肌和平滑肌三种 11. 神经组织是由神经细胞和神经胶质细胞组成的。

基础医学概论

、单选题: 1. 人体最大、最复杂的关节是 (C ) A.肩关节 B.肘关节 C.膝关节 D.腕关节 E.髋关节 2?阑尾根部的体表投影位于(B ) A.右髂前上棘与脐连线的中点 B.右髂前上棘与脐连线的中、外 1/3交点处 C. 右髂前上棘与脐连线的中、外 2/3交点处 D.左髂前上棘与脐连线的中点 E.以上都不对 3. 关于上皮组织的特点,以下哪项错误( C ) A.有极性 B.基底面与结缔组织相连 C.细胞少,细胞间质多 D. 大多数无血管,有神经末梢 E.具有保护、吸收、分泌和排泄功能 4. 关于心肌细胞,下列哪项错误( ) A.细胞呈短圆柱状,有分支并相互连接 B.多核,位于肌膜下方 C.有横纹 D. 纤维连接处称为闰盘 E.兴奋可从一个细胞传播到另一个细胞 5. 化学性突触的电镜结构包括( D ) A.突触前膜、突触小泡、突触后膜 B.线粒体、突触小泡、突触前膜 C.突触小泡、突触间隙、突触后膜 D.突触前成分、突触间隙、突触后成分 E. 突触小泡、突触间隙、特异性受体 10.无活性的酶原在一定条件下能转变成有活性的酶,这一过程称为 (D ) A.变性 B.同工酶 C.辅酶激活 D.酶原激活 E.复性 、多选题: 1. 关于膀胱三角正确的是( ) A.位于膀胱底内面 B.在两侧输尿管口与尿道内口之间的三角形区域 C.此区缺少黏 膜下层组织 D.黏膜与肌层疏松结合 E.是肿瘤、结核和炎症的好发部位 2. 脑脊液 ( ) 基础医学概论 6. 细胞膜在静息情况下,对下列哪种离子通透性最大( A.K + B.Na + C. Cl - D.Ca ++ E.Mg ++ 7. 神经系统对机体功能调节的基本方式是( A.反射 B.反应 C.适应 D.正反馈 E.负反馈 8. 蛋白质元素组成特点是含氮量接近, 蛋白质的大致含量 平均为( ),因此测定生物样品中含氮量可计算 9. A.15% B.16% C.17% D.18% E.19% 蛋白质经煮沸变性后其生物学活性(A ) A.丧失 B.升高 C.不变 D.降低 E.先降低后升高 A.主要产生于侧脑室的脉络丛 B.充填于脑室内 C.第四脑室的脑脊液经正中孔和

山大医学基础概论1.2.3

基础医学概论1 一、单选题: 1. 人体最大、最复杂的关节是( C ) A.肩关节 B.肘关节 C.膝关节 D.腕关节 E.髋关节 2. 阑尾根部的体表投影位于(B) A. 右髂前上棘与脐连线的中点 B.右髂前上棘与脐连线的中、外1/3交点处 C. 右髂前上棘与脐连线的中、外2/3交点处 D.左髂前上棘与脐连线的中点 E.以上都不对 3. 关于上皮组织的特点,以下哪项错误(C ) A.有极性 B.基底面与结缔组织相连 C. 细胞少,细胞间质多 D. 大多数无血管,有神经末梢 E.具有保护、吸收、分泌和排泄功能 4. 关于心肌细胞,下列哪项错误( B ) A.细胞呈短圆柱状,有分支并相互连接 B.多核,位于肌膜下方 C.有横纹 D.纤维连接处称为闰盘 E.兴奋可从一个细胞传播到另一个细胞 5. 化学性突触的电镜结构包括(D ) A.突触前膜、突触小泡、突触后膜 B.线粒体、突触小泡、突触前膜 C.突触小泡、突触间隙、突触后膜 D.突触前成分、突触间隙、突触后成分 E. 突触小泡、突触间隙、特异性受体 6. 细胞膜在静息情况下,对下列哪种离子通透性最大(A ) A.K+ B.Na+ C. Cl- D.Ca++ E.Mg++ 7. 神经系统对机体功能调节的基本方式是(A ) A.反射 B.反应 C.适应 D.正反馈 E.负反馈 8. 蛋白质元素组成特点是含氮量接近,平均为( B ),因此测定生物样品中含氮量可计算 蛋白质的大致含量 A.15% B.16% C.17% D.18% E.19% 9. 蛋白质经煮沸变性后其生物学活性( A ) A.丧失 B.升高 C.不变 D.降低 E.先降低后升高 10.无活性的酶原在一定条件下能转变成有活性的酶,这一过程称为(D ) A.变性 B.同工酶 C.辅酶激活 D.酶原激活 E.复性 二、 1. 关于膀胱三角正确的是(.ABCE ) A.位于膀胱底面 B.在两侧输尿管口与尿道口之间的三角形区域 C.此区缺少黏膜下 层组织 D.黏膜与肌层疏松结合 E.是肿瘤、结核和炎症的好发部位 2. 脑脊液(ABCD) A.主要产生于侧脑室的脉络丛 B.充填于脑室 C. 第四脑室的脑脊液经正中孔和两

纳米科技概论期末试卷

选择题6题18分,填空题6题24分,名词解释或问答3题18分,简答题2题20分,论述题1题20分 一、选择题 1、纳米(nm)是一个长度单位,它等于10-9米 2、光学显微镜分辨率约为200纳米(nm) 3、属于准一维纳米材料的是碳纳米管 4、扫描隧道显微镜和原子力显微镜的英文缩写为STM和AFM 5、DNA螺旋结构的横向尺寸约为1-3nm 6、纳米粒子粒径从100nm减小至1nm,其表面原子占粒子中原子总数比例将增大 7、平均粒径为40nm的铜粒子的熔点与同一种固体材料的熔点相比降低了300℃左右 8、DNA的直径约2nm左右,SARS病毒约60--120nm,艾滋(AIDS)病毒约100nm 9、属于液相制备方法的是溶胶-凝胶法(Sol-gel) 10、一个C60分子的结构是由12个五边形和20个六边形组成的球体 二、填空题 1、最早明确提出纳米尺度上科学和技术问题的是理查德·费曼 2、纳米科学技术(NST)的英文全称为:Nano-science and technology 3、当纳米粒子尺寸下降到某一值时,金属费米能级附近的电子能级由准连续变为离散能级的现象以及纳米半导体粒子能隙的调制现象,均被称为量子尺寸效应 4、为制造具有特定功能的纳米产品,其技术路线可分为“自上而下”和“自下而上”两种方案。其中“自下而上”是指以原子、分子为基本单位,根据人们的意愿进行设计和组装,从而构筑成具有特定功能的器件或产品的方式 5、纳米结构自组装体系英文全称为Nanostructured Self-assembling system 6、从学科角度层面上划分,纳米科学技术主要包括纳米(体系)物理学、纳米化学、纳米材料学、纳米生物学、纳米电子学、纳米加工与测量学、纳米力学等7个既相对独立又相互渗透的学科 7、碳材料有非晶碳(无定形碳)和晶态碳材料之分。其中晶态碳材料包括石墨、金刚石、富勒烯、碳纳米管;其中C-60的发现开创了碳科学的新领域,同时,三位科学家也因此分享了1996年诺贝尔化学奖 8、宏观尺度的下限是肉眼所能分辨的最小尺寸,而微观尺度的上限约为原子分子的大小,即0.1nm左右

电子科学与技术导论

电子科学与技术导论期末论文 学 院 电子信息工程 专 业 电子科学与技术 年 级 2014级 姓 名 白 淼 学 号 3014204001 2016年 4月 16日

一、电子科学与技术的发展简史 说到电子科学与技术,就不得不说电子的发现。1897年,剑桥大学卡文迪许实验室的约瑟夫·约翰·汤姆森在研究阴极射线时发现了电子,电子的发现打破了原子不可分的经典的物质观,开辟了原子物理学的崭新研究领域,也使电子科学与技术迎来了一个新时代。 电子管和晶体管是电子科学与技术领域的两个重要发明。电子管,是一种在气密性封闭容器中产生电流传导,利用电场对真空中的电子流的作用以获得信号放大或振荡的电子器件;晶体管,是一种固体半导体器件,可以用于检波、整流、放大、开关、稳压、信号调制和许多其它功能。1904年,世界上第一只电子二极管在英国物理学家弗莱明的手下诞生;1906年,美国发明家德福雷斯特在二极管的灯丝和板极之间巧妙地加了一个栅板,从而发明了第一只真空三极管;1947年,美国物理学家肖克利、巴丁和布拉顿三人合作发明了晶体管——一种三个支点的半导体固体元件。几根零乱的电线将五个电子元件连接在一起,就形成了历史上第一个集成电路。虽然它看起来并不美观,但事实证明,其工作效能要比使用离散的部件要高得多。在基尔比研制出第一块可使用的集成电路后,诺伊斯提出了一种“半导体设备与铅结构”模型。1960年,仙童公司制造出第一块可以实际使用的单片集成电路。诺伊斯的方案最终成为集成电路大规模生产中的实用技术。基尔比和诺伊斯都被授予“美国国家科学奖章”。他们被公认为集成电路共同发明者。随着电子技术的继续发展,超大规模集成电路应运而生。1967年出现了大规模集成电路,集成度迅速提高;1977年超大规模集成电路面世,一个硅晶片中已经可以集成15万个以上的晶体管;1988年,16M DRAM问世,1平方厘米大小的硅片上集成有3500万个晶体管,标志着进入超大规模集成电路(VLSI)阶段;1997年,300MHz奔腾Ⅱ问世,采用0.25μm工艺,奔腾系列芯片的推出让计算机的发展如虎添翼,发展速度让人惊叹,至此,超大规模集成电路的发展又到了一个新的高度。2009年,Intel酷睿i系列全新推出,创纪录采用了领先的32纳米工艺,并且下一代22纳米工艺正在研发。集成电路的集成度从小规模到大规模、再到超大规模的迅速发展,关键就在于集成电路的布图设计水平的迅速提高,集成电路的布图设计由此而日益复杂而精密。这些技术的发展,使得集成电路的发展进入了一个新的发展的里程碑。相信随着科技的发展,集成电路还会有更高的发展。 从电子管生产到半导体管的诞生及半导体技术的发展,再到集成电路的发明,人类进入微电子科技时代.作为现代技术革命的重要标志的微电子技术不仅使人类的通讯技术进入高速,准确和可靠的领域;同时,也大大促进了电子计算机技术的发展,微电子技术和电子计算机技术正是现代现代信息技术的两个重要基础,使今天人类社会又步入了一个新的发展时期即信息时代。 二、电子科学与技术学科的发展简史 电子科学与技术专业早期可以大致分为两个专业:电子学和电子技术。自从1906年发明了真空管以后, 就有人提出“电子学”这个名词。电子学主要研究由电子运动所组成的器件, 利用这些器件的线路和系统, 以及它们在通信广播和工业控制中的应用。电子学是属于科学知识的系统化、条理化和规范化, 着重从理论上进行系统的探讨;而电子技术是一种技术, 着重于应用。1948年美

纳米材料导论复习题

《纳米材料导论》复习题2013.12 第一章 1、纳米材料有哪些危害性? 答:纳米技术对生物的危害性:1)在常态下对动植物体友好的金,在纳米态下则有剧毒;2)小于100nm的物质进入动物体内后,会在大脑和中枢神经富集,从而影响动物的正常生存;3)纳米微粒可以穿过人体皮肤,直接破坏人体的组织及血液循环。 纳米技术对环境的危害性:美国研究人员证明,足球烯分子会限制土壤细菌的生长,而巴基球则对鱼类有毒,这说明纳米技术对生态平衡和生态安全都有一定的破坏性。 2、什么是纳米材料、纳米结构? 答:纳米材料:纳米级结构材料简称为纳米材料,是指组成相或晶粒结构的尺寸介于1纳米~100纳米范围之间,纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体等四类。纳米材料有两层含义: 其一,至少在某一维方向,尺度小于100nm,如纳米颗粒、纳米线和纳米薄膜,或构成整体材料的结构单元的尺度小于100nm,如纳米晶合金中的晶粒;其二,尺度效应:即当尺度减小到纳米范围,材料某种性质发生神奇的突变,具有不同于常规材料的、优异的特性量子尺寸效应。 纳米结构:以纳米尺度的物质为单元按一定规律组成的一种体系。 3、什么是纳米科技? 答:纳米科技是研究在千万分之一米(10-7)到十亿分之一米(10-9米)内,原子、分子和其它类型物质的运动和变化的科学;同时在这一尺度范围内对原子、分子进行操纵和加工的技术。 4、什么是纳米技术的科学意义? 答:纳米尺度下的物质世界及其特性,是人类较为陌生的领域,也是一片新的研究疆土在宏观和微观的理论充分完善之后,再介观尺度上有许多新现象、新规律有待发现,这也是新技术发展的源头;纳米科技是多学科交叉融合性质的集中体现,我们已不能将纳米科技归为任何一门传统的学科领域而现代科技的发展几乎都是在交叉和边缘领域取得创新性的突破的,在这一尺度下,充满了原始创新的机会因此,对于还比较陌生的纳米世界中尚待解释的科学问题,科学家有着极大的好奇心和探索欲望。 5、纳米材料有哪 4种维度?举例说明 答:零维:团簇、量子点、纳米粒子 一维:纳米线、量子线、纳米管、纳米棒 二维:纳米带、二维电子器件、超薄膜、多层膜、晶体格 三维:纳米块体 6、名词解释:STM、AFM、SEM、TEM 答:STM扫描隧道显微镜AFM原子力显微镜 SEM扫描电子显微镜XRFX射线荧光分析 TEM透射电子显微镜 7、简述STM和AFM的工作原理及对纳米技术的影响 答:STM工作原理:扫描隧道显微镜是一种利用量子力学的隧道效应的非光学显微镜它主要是利用一根非常细的钨金属探针,针尖电子会跳到待测物体表面上形成穿隧电流,同时,物体表面的高低会影响穿隧电流的大小,针尖随着物体表面的高低上下移动以维持恒定的电流,依此来观测物体表面的形貌 STM对纳米技术的影响:它作为一种扫描探针显微术工具,扫描隧道显微镜可以让科学家观察和定位单个原子,它具有比它的同类原子力显微镜更加高的分辨率此外扫描隧道显微镜在

相关文档
最新文档