2020学年数学人教a版必修一优化课件:第二章 章末优化总结
高中数学人教A版必修一优化练习第二章章末检测含解析

一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每小题给出的四个选
项中,只有一项是符合题目要求的)
4
1. e-3 2=( ) A.e-3
B.3-e
C. 3-e
D.± 3-e
解析:∵e<3,∴e-3<0,
1
1
1
∴4 e-3 2=[(e-3)2] 4 =[(3-e)2] 4 =(3-e) 2 4 = 3-e.
A.0
B.1
C.ln(ln 2)
D.2
解析:∵0<ln 2<1,∴f(ln 2)=eln 2-1=2-1=1.
答案:B 4.函数 f(x)= x ·ax(a>1)的图象的大致形状是( )
|x|
解析:当 x>0 时,f(x)=ax,
1
当 x<0 时,f(x)=-ax,
则 f(x)=|xx|·ax(a>1)的图象为 B.
解析:题设等价于 ax=x+a 有两个解,即 y=ax 与直线 y=x+a 有两个交点,如
图所示:
答案:a>1 16. 已知 f(x)是定义在 R 上的偶函数,且在区间(-∞,0)上单调递增.若实数 a 满足 f(2a-1)>f(- 2),则 a 的取值范围是________. 解析:∵f(x)是偶函数,且在(-∞,0)上单调递增, ∴在(0,+∞)上单调递减,f(- 2)=f( 2), ∴f(2|a-1)| >f( 2),∴2 |a- 1<| 2=2 .
即 f(x)的定义域是(-∞,0)∪(0,+∞).
(2)由(1)知定义域是(-∞,0)∪(0,+∞),关于原点对称, 则 f(-x)=2-x1-1+21
高一数学(人教A版)必修1课件:第二章末归纳总结

[归纳总结] 该不等式与二次函数和对数函数有关,无法 直接求解,可作出两函数的图象,利用数形结合思想观察两 函数的大小关系.特别注意当对数函数的底数不确定时,要 对 a 分 a>1 和 0<a<1 两种情况讨论.
2.分类讨论思想
本章常见分类讨论思想的应用如下表:
高中数学课件
灿若寒星整理制作
成才之路·数学
人教A版·必修1
路漫漫其修远兮吾将上下而求索
第二章
基本初等函数(Ⅰ)
第二章
章末归纳总结
专题一 指数、对数的运算 题型探究: 指数与指数运算,对数与对数运算是两个重要的知识 点,不仅是本章考查的重要题型,也是高考的必考内容.
指数式的运算首先要注意化简顺序,一般负指数先转化 成正指数,根式化为指数;其次若出现分式,则要注意把分 子、分母因式分解以达到约分的目的.对数运算首先要注意 公式应用过程中范围的变化,前后要等价;其次要熟练地运 用对数的三个运算性质,并根据具体问题合理利用对数恒等 式和换底公式等.换底公式是对数计算、化简、证明常用的 公式,一定要掌握并灵活运用.
2x-1>0 (2)由题意得2x-1≠1,
3x-2>0
x>12 即x≠1,
x>23
从而原函数的
定义域为(23,1)∪(1,+∞). [答案] (1)(-∞,0] (2)(23,1)∪(1,+∞)
2.单调性问题
[例 3] (2012~2013 浙江省高一期中试题)若 0<x<y<1,
[例 5] 已知函数 f(x)对任意实数 x,y 均有 f(x+y)=f(x) +f(y),且当 x>0 时有 f(x)>0,f(-1)=-2,求 f(x)在[-2,1]上 的值域.
人教A版高中数学选择性必修第一册第二章_章末复习课1_课件

1 234
3.已知A(2,4)与B(3,3)关于直线l对称,则直线l的方程为_x-__y_+__1_=__0__. 解析 由题意知,直线l即为AB的垂直平分线, ∴kl·kAB=-1,得kl=1, AB 的中点坐标为(52,72), ∴直线 l 的方程为 y-72=x-25, 即x-y+1=0.
4.设直线l的方程为(a+1)x+y+2-a=0 (a∈R). (1)若l在两坐标轴上截距相等,求l的方程; 解 当直线过原点时,该直线在x轴和y轴上的截距为零, ∴a=2,方程即为3x+y=0. 当直线不经过原点时,截距存在且均不为0. ∴aa- +21=a-2,即 a+1=1. ∴a=0,方程即为x+y+2=0. 综上,l的方程为3x+y=0或x+y+2=0.
代入l的方程后,得3x3-y3-17=0.
即l3的方程为3x-y-17=0.
反思与感悟
(1)中心对称 ①两点关于点对称:设P1(x1,y1),P(a,b),则P1(x1,y1)关于P(a,b)对称 的点为P2(2a-x1 ,2b-y1),即P为线段P1P2的中点. ②两直线关于点对称:设直线l1,l2关于点P对称,这时其中一条直线上任 一点关于点P对称的点在另外一条直线上,必有l1∥l2,且P到l1、l2的距离 相等. (2)轴对称 两点关于直线对称:设P1,P2关于直线l对称,则直线P1P2与l垂直,且 P1P2的中点在l上.
1 2 3 45
1 234
2.已知直线l经过2x+y-5=0与x-2y=0的交点,则点A(5,0)到l的距离 的最大值为__1_0_____. 解析 解方程组2x-x+2yy-=50=,0, 得xy==21,, ∴直线l过点(2,1). 由题意得,当l与点A和交点连线垂直时,点A到l的距离为最大, 最大值为 5-22+0-12= 10.
第二章直线和圆的方程(章末小结)高二数学(人教A版选择性必修第一册)课件

(1)点关于点的对称:中点公式
考的题型之一,此类问题可借
(2)点关于直线的对称:AA'⊥l,AA'的中点在l上
[注]点(a,b)关于直线y=x的对称点为(b,a)
(3)线关于点的对称:斜率相等,求(1)型对称点
助光学性质:入射角等于反射
角,或使用对称思想(一般找对
称点)解决.
(4)线关于线的对称:求交点P,求(2)型对称点
过圆x 2 y 2 D1 x E1 y F1 0和直线Ax By C 0交点的圆系方程.
方法归纳——1.三点共线问题
用斜率公式解决三点共线问题的方法
方法归纳——2.两直线交点问题
求两直线的交点的方法:
设两条直线的方程是 l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,
直线的倾斜角越大,斜率越大(
)
α为钝角时,α越大,斜率越大,k由-∞变化到0;
所有的直线都有倾斜角;但不是所有直线都有斜率。
知识梳理——1.直线的倾斜角和斜率
类型
斜率存在
斜率不存在
条件
α1=α2≠90°
α1=α2=90°
对应关系
l1∥l2⇔k1=k2
l1∥l2⇔两条直线斜率都不存在
图示
对应关系 l1⊥l2⇔k1·k2=-1 l1的斜率不存在,l2的斜率为0⇒l1⊥l2
相交
O1
O2
R
2
r
1个
R
内切
内含
B
A
r
O1
O2
O1
2个
1个
r
O2
O2
O1
O2
O1
0个
| O1O2 | R r | O1O2 | R r | R r || O1O2 | R r | O1O2 || R r | 0 | O1O2 || R r |
章末复习与总结人教A版高中数学必修一PPT精品课件

第一章 集合与函数概念
(一)函数单调性、奇偶性联袂问题 单调性和奇偶性是函数的两个重要基本性质,二者之间有下 面的密切联系: (1)奇函数在关于原点对称的区间上具有相同的单调性; (2)偶函数在关于原点对称的区间上具有相反的单调性. 巧妙地运用单调性和奇偶性的联系,可以轻松解决很多函数 问题.
数学 必修1 配人教 A版
B.最小值是-9
C.最大值是-9
D.最大值是9
数学 必修1 配人教 A版
第一章 集合与函数概念
[解析] 因为f(x)是偶函数且在区间[3,6]上是增函数, 所以f(x)在区间[-6,-3]上是减函数.因此,f(x)在区间 [-6,-3]上最大值为f(-6)=f(6)=9. [答案] D
数学 必修1 配人教 A版
数学 必修1 配人教 A版
[解] 由于函数f(x)的定义域为(-1,1),
-1<1-m<1, 则有-1<12-2m<1,
解得0<m<34.
又f(1-m)+f12-2m<0, 所以f(1-m)<-f12-2m. 而函数f(x)为奇函数,
第一章 集合与函数概念
数学 必修1பைடு நூலகம்配人教 A版
第一章 集合与函数概念
数学 必修1 配人教 A版
[解析] 因为函数f(x)是偶函数, 所以f(-0.5)=f(0.5),f(-1)=f(1). 又因为f(x)在区间[0,1]上是减函数, 所以f(1)<f(0.5)<f(0), 即f(-1)<f(-0.5)<f(0). [答案] B
第一章 集合与函数概念
数学 必修1 配人教 A版
数学 必修1 配人教 A版
第一章 集合与函数概念
人教统编部编版高中数学必修一A版第二章《一元二次函数、方程和不等式》全章节教案教学设计含章末综合复习

【新教材】人教统编版高中数学必修一A版第二章教案教学设计2.1《等式性质与不等式性质》教案教材分析:等式性质与不等式性质是高中数学的主要内容之一,在高中数学中占有重要地位,它是刻画现实世界中量与量之间关系的有效数学模型,在现实生活中有着广泛的应,有着重要的实际意义.同时等式性质与不等式性质也为学生以后顺利学习基本不等式起到重要的铺垫.教学目标与核心素养:课程目标1. 掌握等式性质与不等式性质以及推论,能够运用其解决简单的问题.2. 进一步掌握作差、作商、综合法等比较法比较实数的大小.3. 通过教学培养学生合作交流的意识和大胆猜测、乐于探究的良好思维品质。
数学学科素养1.数学抽象:不等式的基本性质;2.逻辑推理:不等式的证明;3.数学运算:比较多项式的大小及重要不等式的应用;4.数据分析:多项式的取值范围,许将单项式的范围之一求出,然后相加或相乘.(将减法转化为加法,将除法转化为乘法);5.数学建模:运用类比的思想有等式的基本性质猜测不等式的基本性质。
教学重难点:重点:掌握不等式性质及其应用.难点:不等式性质的应用.课前准备:多媒体教学方法:以学生为主体,采用诱思探究式教学,精讲多练。
教学工具:多媒体。
教学过程:一、情景导入在现实世界和日常生活中,大量存在着相等关系和不等关系,例如多与少、大与小、长与短、轻与重、不超过或不少于等.举例说明生活中的相等关系和不等关系.要求:让学生自由发言,教师不做判断。
而是引导学生进一步观察.研探.二、预习课本,引入新课阅读课本37-42页,思考并完成以下问题 1.不等式的基本性质是?2.比较两个多项式(实数)大小的方法有哪些?3.重要不等式是?4.等式的基本性质?5.类比等式的基本性质猜测不等式的基本性质?要求:学生独立完成,以小组为单位,组内可商量,最终选出代表回答问题。
三、新知探究1、 两个实数比较大小的方法 作差法 {a −b >0⟺a >ba −b =0⟺a =b a −b <0⟺a <b作商法{ ab >1⟺a >b ab =1⟺a =b ab <1⟺a <b2.不等式的基本性质3.重要不等式四、典例分析、举一反三 题型一 不等式性质应用 例1 判断下列命题是否正确:(1)c a b c b a >⇒>>,( ) (2)22bc ac b a >⇒> ( ) (3)bd ac d c b a >⇒>>,( ) (4)b a cb c a >⇒>22 ( ) (5) 22b a b a >⇒> ( ) (6)22b a b a >⇒> ( ) (7) dbc ad c b a >⇒>>>>0,0 ( ) 【答案】(1)× (2) × (3)× (4)√ (5)× (6) √ (7 )×解题技巧:(不等式性质应用)可用特殊值代入验证,也可用不等式的性质推证. 跟踪训练一1、用不等号“>”或“<”填空:(1)如果a>b ,c<d ,那么a-c ______ b-d ; (2)如果a>b>0,c<d<0,那么ac______bd ; (3)如果a>b>0,那么1a 2 ______1b 2 (4)如果a>b>c>0,那么ca _______ cb【答案】(1) > (2) < (3) < (4) < 题型二 比较大小例2 (1).比较(x+2)(x+3)和(x+1)(x+4)的大小 (2).已知a >b >0,c >0,求ca >cb 。
一元二次函数、方程和不等式章节复习与小结课件-2024-2025学年高一上学期数学人教A版必修第一册
c 0
ac>bc
a b
,
⇒
c 0
a b
性质5同向可加性:
⇒ a+c>b+d .
c d
a b 0
性质6同向同正可乘性:
ac>bd
⇒
c d 0
an>bn
性质7可乘方性:a>b>0⇒
性质8可开方性:a>b>0⇒
n
anb
ac<bc .
.
(n∈N,n≥1).
2
+1}上的最大值小于 0,又抛物线 y=x2+mx-1 开口向上,
m2+m2-1<0,
所以只需
m+12+mm+1-1<0,
2m2-1<0,
2
即 2
解得- <m<0.]
2m +3m<0,
2
(2)[ 解]
由 y=x2+(m-4)x+4-2m
=(x-2)m+x2-4x+4,
g=(x-2)m+x2-4x+4 可看作以 m 为自变量的一次函数.
3.若关于 x 的不等式 ax2+2x+2>0 在 R 上恒成立,
求实数 a 的取
值范围.
解:当 a=0 时,原不等式可化为 2x+2>0,其解集不为 R,故 a=0 不满足
a>0,
题意,舍去;当 a≠0 时,要使原不等式的解集为 R,只需
Δ=22-4×a<0,
1
,+∞
1
解得 a> .综上,所求实数 a 的取值范围为 2
能.解答此类问题关键是创设应用不等式的条件,合理拆分项或配
凑因式是常用的解题技巧,而拆与凑的目的在于使等号能够成立.
1 9
16
2.已知 x>0,y>0,且 + =1,则 x+y 的最小值为________.
高中数学(人教版A版必修一)配套课件:第二章 章末复习课
超级记忆法--故事法
• 鲁迅本名:周树人
• 主要作品:《阿Q正传》、《药》
什么是学习力
什么是学习力-你遇到这些问题了 吗
总是
比别人
学得慢
一看就懂 一做就错 看得懂,但不会做
总是 比别人学得差 不会举一反三
什么是学习力-含义
管理知识的能力 (利用现有知识
解决问题)
学习知识的能力 (学习新知识
速度、质量等)
长久坚持的能力 (自律性等)
什么是学习力-常见错误学习方 式
案例式
(3)logaMn=nlogaM(n∈R).
返回
题型探究
类型一 指数、对数的运算
提炼化简方向:根式化分数指数幂,异底化同底.
化简技巧:分与合.
注意事项:变形过程中字母范围的变化.
例1
化简:1 (
2
8) 3
(3
102
9
)2
105;
解
3
原式=(22
-2
)3
29
(103 )2
5
10 2
=2-1
103
10-52=2-1
2
<120=1,
所以 y∈12,1.
1 2345
解析答案
规律与方法
1.函数是高中数学极为重要的内容,函数思想和函数方法贯穿整个高 中数学的过程,对本章的考查是以基本函数形式出现的综合题和应用 题,一直是常考不衰的热点问题. 2.从考查角度看,指数函数、对数函数概念的考查以基本概念与基本 计算为主;对图象的考查重在考查平移变换、对称变换以及利用数形 结合的思想方法解决数学问题的能力;对幂函数的考查将会从概念、 图象、性质等方面来考查.
跟踪训练3 函数f(x)=loga(1-x)+loga(x+3)(0<a<1). (1)求函数f(x)的定义域; 解 要使函数有意义,则有1x+-3x>>00, , 解得-3<x<1,∴定义域为(-3,1).
2019_2020学年高中数学第二章基本初等函数(Ⅰ)2.3幂函数课件新人教A版必修1
(A)2
(B)1
(C) 1 2
(D)0
解析:(1)因为函数 f(x)=ax2a+1+b+1 是幂函数,
所以
a b
1, 1
0,
即
a b
1, 1,
所以 a+b=0,故选 D.
(2)(2018·福建龙岩期中)若函数f(x)=(m2-m-1)xm是幂函数,且图象与坐
标轴无交点,则f(x)( )
.
24
解析:(2)因为幂函数 f(x)=xa 的图象过点( 1 , 1 ), 24
所以( 1 )a= 1 ,解得 a=2, 24
所以 loga8=log28=3. 答案:(2)3
题型二 幂函数的图象 [例 2] (1)与下列幂函数对应的图象序号正确的一组是( )
a.y=x5;b.y=
x
4 3
;c.y=
(A)是偶函数
(B)是奇函数
(C)是单调递减函数 (D)在定义域内有最小值
解析:(2)幂函数f(x)=(m2-m-1)xm的图象与坐标轴无交点,可得m2-m1=1,且m≤0,解得m=-1,则函数f(x)=x-1,所以函数是奇函数,在定义 域上不是减函数,且无最值,故选B.
易错警示
(1)幂函数解析式的结构特征:①解析式是单项式;②幂指数为常数, 底数为自变量,系数为1. (2)幂函数y=xα的图象与坐标轴无交点,则α≤0,而不是α<0.
3
2
(4)4. 15
,3.
8
2 3
和(-1.9)
3 5
.
2
2
解:(4)因为幂函数 y= x 5 在(0,+∞)上为增函数,且 4.1>1,所以 4.15 >1,
数学人教A版选择性必修第一册第二章直线和圆的方程章末总结
(−)
=0,l2:(a-1)x+y+
=0.
−
∵坐标原点到l1,l2的距离相等,
∴4|
−
|=|
|,a=2或a= .
−
,
−
因此
=
=
或
.
= −
=
知识应用
1. 已知直线l:2x-3y+1=0,点A(-1,-2).求:
x y
1
a b
知识结构
3.两条直线的位置关系
设l1:A1x+B1y+C1=0,l2:A2x+B2y+C2=0,则
(1)平行⇔A1B2-A2B1=0且B1C2-B2C1≠0;
(2)相交⇔A1B2-A2B1≠0;
A1 B1 C1
(3)重合⇔A1=λA2,B1=λB2,C1=λC2(λ≠0)或 = = (A2B2C2≠0).
(1)点A关于直线l的对称点A′的坐标;
(2)直线m:3x-2y-6=0关于直线l的对称直线m′的方程;
(3)直线l关于点A的对称直线l′的方程.
解:(1)设对称点 A′的坐标为(m,n),
n+2 2
× =-1,
m+1 3
由已知可得 m-1
n-2
2×
-3×
+1=0,
2
2
33 4
- ,
即 A′ 13 13 .
B1y+C1+λ(A2x+B2y+C2)=0(λ为参数)(但不包含直线A2x+B2y+C2=0).
知识应用
1.已知两条直线l1:ax-by+4=0和l2:(a-1)x+y+b=0,分别求满足下列条件
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)函数 y=2x2-2x+3 的值域是( )
A.[4,+∞)
B.(4,+∞)
C.(-∞,4)
D.(-∞,4]
[解析] 函数 y=2x2-2x+3 的定义域为 R,设 t=x2-2x+3,则有 t=x2-2x+3
=(x-1)2+2≥2,∴y=2t≥4. [答案] A
(2)设函数 y=4x-3·2x+3,x∈[-1,2]求其最值. [解析] y=4x-3·2x+3=(2x)2-3·2x+3, 设 t=2x,∵-1≤x≤2,∴12≤t≤4, ∴y=t2-3t+3=(t-32)2+34, ∴当 t=32时,ymin=34; t=4 时,ymax=7.
(3)因为函数 y=ax(a>0 且 a≠1),当底数 a 大于 1 时在 R 上是增函 数;当底数 a 小于 1 时在 R 上是减函数, 而 1.2<1.3,故当 a>1 时,有 a1.2<a1.3; 当 0<a<1 时,有 a1.2>a1.3. (4)∵y=x3 在 R 上是增函数, 且 0.21<0.23,∴0.213<0.233.
专题二 指数函数与对数函数有关的值域问题 1.y=af(x)或 y=logaf(x)结构: (1)确定函数定义域; (2)设 t=f(x),确定定义域内 t 的范围; (3)作出 y=at 或 y=logat 简图,由图象直观性求值域. 2.y=m·(ax)2+n·ax+c 或 y=m(logax)2+n·logax+c 结构: 设 t=ax 或 t=logax,转化为关于 t 的二次函数问题.
2.比较下列各组数的大小: (1)27,82;(2)log0.22,log0.049;(3)a1.2,a1.3;(4)0.213,0.233. 解析:(1)∵82=(23)2=26, 由指数函数 y=2x 在 R 上单调递增知 26<27,即 82<27. (2)∵log0.049=lglg0.904=lglg03.222 =22lglg03.2=lglg03.2=log0.23. 又∵y=log0.2x 在(0,+∞)上单调递减, ∴log0.22>log0.23, 即 log0.22>log0.049.
3.函数 y=log2(x2-2x+3)的值域是________. 解析:函数 y=log2(x2-2x+3)的定义域为 R, 设 t=x2-2x+3=(x-1)2+2≥2,∴y=log2t≥1. 答案:[1,+∞)
4.设函数 f(x)=(log2x+log24)(log2x+log22)的定义域为14,4, (1)若 t=log2x,求 t 的取值范围; (2)求 y=f(x)的最大值与最小值,并求出最值时对应的 x 的值.
ln12<ln 1=0
∴20.1>0.60.2>ln12.
1.设 a=log0.5的大小关系为( )
A.a<b<c
B.b<a<c
C.b<c<a
D.a<c<b
解析:∵a=log0.50.8<log0.50.5=1,b=log1.10.8<log1.11=0, c=1.10.8>1.10=1,又∵a=log0.50.8>log0.51=0.∴b<a<c. 答案:B
解析:(1)因为 t=log2x,而 x∈14,4,
所以 t 的取值范围为区间log214,log24=[-2,2]. (2)记 y=f(x)=(log2x+2)(log2x+1)=(t+2)(t+1)=g(t) (-2≤t≤2).
∵y=g(t)=t+322-14在区间-2,-32是减函数,在区间-32,2是增函数,
∵y=2x 是增函数,且 1.8>1.5>1.44,∴21.8>21.5>21.44
即 40.9>12-1.5>80.48
(2)ln22-ln33=3ln
2-2ln 6
3=ln
8-ln 6
9<0,∴ln22<ln33,
ln22-ln55=5ln
2-2ln 10
5=ln
32-ln 10
25>0,∴ln22>ln55,
∴当
t=log2x=-32,即
x=2
3 2
=
42时,
y=f(x)有最小值 f 42=g-32=-14; 当 t=log2x=2,即 x=22=4 时, y=f(x)有最大值 f(4)=g(2)=12.
专题三 指数函数与对数函数图象问题 1.给式求图 (1)确定函数定义域;(2)确定函数奇偶性;(3)确定函数单调性;(4)特殊点的位置. 2.图象变换及应用 出现我们不会解的方程的时候,我们常常用数形结合思想处理方程解的个数.
比较下列各组数的大小
(1)40.9,80.48,12-1.5;
(2)ln22,ln33,ln55;
1
1
1
(3)2 2 ,3 3 ,6 6 ;
(4)20.1,0.60.2,ln12.
[解析] (1)40.9=(22)0.9=21.8,80.48=(23)0.48=21.44,
(12)-1.5=(2-1)-1.5=21.5,
章末优化总结
网络 体系构建 专题 归纳整合
章末检测
专题一 数式的大小比较 数的大小比较常用方法: (1)比较两数(式)或几个数(式)大小问题是本章的一个重要题型,主要考查幂函数、 指数函数、对数函数图象与性质的应用及差值比较法与商值比较法的应用.常用的方 法有单调性法、图象法、中间搭桥法、作差法、作商法. (2)当需要比较大小的两个实数均是指数幂或对数式时,可将其看成某个指数函 数、对数函数或幂函数的函数值,然后利用该函数的单调性比较. (3)比较多个数的大小时,先利用“0”和“1”作为分界点,即把它们分为“小于 0”, “大于等于 0 小于等于 1”,“大于 1”三部分,然后再在各部分内利用函数的性质比 较大小.
∴ln33>ln22>ln55
1
1
1
(3)(2 2 )6=23=8,(3 3 )6=32=9,(6 6 )6=61=6;
1
1
1
又∵2 2 >0,3 3 >0,6 6 >0,且 y=x6 在(0,+∞)单调递增,
111
∴3 3 >2 2 >6 6 .
(4)∵20.1>20=1;0<0.60.2<0.60=1;