MATLAB实现图像恢复设计报告
matlab图像处理实验报告

matlab图像处理实验报告《Matlab图像处理实验报告》摘要:本实验报告通过使用Matlab软件进行图像处理实验,对图像进行了灰度化、二值化、边缘检测、图像增强等处理,通过实验结果分析,验证了Matlab在图像处理领域的实用性和有效性。
1. 实验目的本实验旨在通过Matlab软件进行图像处理实验,掌握图像处理的基本方法和技术,提高对图像处理算法的理解和应用能力。
2. 实验原理图像处理是对图像进行数字化处理的过程,主要包括图像获取、图像预处理、图像增强、图像分割和图像识别等步骤。
Matlab是一种功能强大的科学计算软件,具有丰富的图像处理工具箱,可用于图像的处理、分析和识别。
3. 实验内容(1)图像灰度化首先,通过Matlab读取一幅彩色图像,并将其转换为灰度图像。
利用Matlab 中的rgb2gray函数,将RGB图像转换为灰度图像,实现图像的灰度化处理。
(2)图像二值化接着,对灰度图像进行二值化处理,将图像转换为黑白二值图像。
利用Matlab 中的im2bw函数,根据设定的阈值对灰度图像进行二值化处理,实现图像的二值化处理。
(3)边缘检测然后,对二值图像进行边缘检测处理,提取图像的边缘信息。
利用Matlab中的edge函数,对二值图像进行边缘检测处理,实现图像的边缘检测处理。
(4)图像增强最后,对原始图像进行图像增强处理,改善图像的质量和清晰度。
利用Matlab 中的imadjust函数,对原始图像进行图像增强处理,实现图像的增强处理。
4. 实验结果分析通过实验结果分析,可以发现Matlab在图像处理领域具有较高的实用性和有效性。
通过Matlab软件进行图像处理实验,可以快速、方便地实现图像的处理和分析,提高图像处理的效率和精度,为图像处理技术的研究和应用提供了重要的工具和支持。
5. 结论本实验通过Matlab图像处理实验,掌握了图像处理的基本方法和技术,提高了对图像处理算法的理解和应用能力。
Matlab中的模糊图像恢复与图像重建技术详解

Matlab中的模糊图像恢复与图像重建技术详解引言:随着数码相机、移动设备以及各种图像处理软件的普及,人们对图像质量要求越来越高。
然而,在图像获取和传输过程中,由于种种原因,图像可能会变得模糊,失真或损坏。
为了解决这些问题,图像恢复和重建技术应运而生。
本文将详细介绍基于Matlab的模糊图像恢复与图像重建技术。
一、图像模糊恢复技术1. 模糊图像的概念和原因模糊图像是指由于摄像机移动、图像采集设备问题、环境光线等因素而导致图像失真的现象。
图像模糊会降低图像的细节和清晰度,使得图像难以辨认和识别。
常见的模糊原因有运动模糊、焦距模糊、镜头畸变等。
2. 模糊图像恢复方法为了恢复模糊图像的清晰度和细节,研究人员提出了各种方法。
其中,基于傅里叶变换的频域滤波是最常用的方法之一。
该方法通过将模糊图像转换到频域,应用适当的频域滤波器来消除模糊效果。
Matlab提供了丰富的函数和工具箱来实现这些滤波方法,比如利用低通滤波器恢复运动模糊图像。
另外,基于对图像恢复的数学建模和优化算法也是常用的方法。
例如,最小二乘法、最小化总变差等。
3. Matlab中的模糊图像恢复函数Matlab提供了多种函数用于模糊图像恢复。
其中,`deconvwnr`函数可以用于模糊图像的逆滤波处理。
该函数通过对图像进行频域滤波,去除模糊效果。
另外,`deconvblind`函数可以用于盲去卷积处理,即对图像进行反卷积操作以恢复图像细节。
二、图像重建技术1. 图像重建的意义和应用图像重建指的是利用已有的图像信息来还原、修复或生成新的图像。
与图像恢复类似,图像重建技术对于改善图像质量、还原损坏图像、生成虚拟图像等方面有着重要的应用。
图像重建技术在医学影像、图像压缩和增强、虚拟现实等领域都有广泛的应用。
2. 图像重建算法在Matlab中,图像重建可以通过多种算法实现。
其中一种常用的算法是基于插值的图像重建方法。
该方法通过对已有图像的像素进行插值来生成新的图像。
实验一 MATLAB_图像处理实验报告

实验一 MATLAB_图像处理实验报告实验报告课程名称数字图像处理实验名称图像的几何变换姓名__吴征宇学号____ 3101110002 专业班级_ 实验日期__20XX_ 年_10 _月_18 日成绩_____ __ 指导教师___ _一、实验目的掌握图像平移、缩放、旋转与镜像变换;二、实验原理图像平移,自写平移函数function outImage=immove(inImage,Tx,Ty) [m, n] = size(inImage);%计算图象大小outImage = uint8(zeros(m+abs(Ty), n+abs(Tx))); if(Tx>0&&Ty>0) %往右下角平移的情况outImage(1+Ty:m+Ty,1+Tx:n+Tx) = inImage; else if(Tx0) %往左下角平移的情况outImage(1+Ty:m+Ty,1:n) = inImage; else % 往右上角平移的情况outImage(1:m,1+Tx:n+Tx) = inImage; end endend 主函数I=imread('C:\\Documents and Settings\\student\\桌面\\'); J=rgb2gray(I);imshow(J);title('原图像'); H=immove(J,100,-100);figure;imshow(H);title('平移后图像'); B=immove(J,80,-50);figure;imshow(B);title('平移后图像'); G=imresize(J,);figure;imshow(G);title('缩放后图像'); C=imresize(J,2);figure;imshow(C);title('缩放后图像'); D=imrotate(J,30);figure;imshow(D);title('旋转后图像'); E=imrotate(J,54);figure;imshow(E);title('旋转后图像'); F = flipdim(J,1);figure;imshow(F);title('垂直镜像图像'); G = flipdim(J,2);figure;imshow(G);title('水平镜像图像');三、实验环境Window 20XX Matlab1.利用imread( )函数读取一幅图像,假设其名为,存入一个数组中;a=imread('')2.利用whos 命令提取该读入图像的基本信息;3.利用imshow 函数来显示这幅图像;4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息;5.利用imwrite 函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件,设为;语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。
Matlab中的模糊图像处理和图像模糊恢复技术

Matlab中的模糊图像处理和图像模糊恢复技术随着数字图像的广泛应用和发展,图像模糊成为一个重要的问题。
由于摄像器材或传输媒介等方面的限制,图像的清晰度可能受到一定程度的影响,导致图像模糊。
在实际应用中,图像的模糊问题会给图像解析、目标跟踪、计算机视觉等许多领域带来困扰。
为了改善模糊图像的质量,并解决图像模糊问题,Matlab提供了一系列的模糊图像处理和图像模糊恢复技术。
一、图像模糊的产生原因图像模糊一般是由光学系统的缺陷、运动物体、相机抖动等因素引起的。
光学系统的缺陷包括镜头的失真、散射、衍射等;运动物体指的是图像中的物体在拍摄过程中出现运动造成模糊;相机抖动是由于相机本身的不稳定性或者手持摄影造成的。
二、模糊图像处理的方法1.滤波方法滤波方法是最基本也是最常用的图像模糊处理方法。
在Matlab中,可以使用各种滤波器对图像进行处理,例如平滑滤波、高斯滤波、中值滤波等。
这些滤波器可以消除图像中的高频噪声,同时也会导致图像的模糊。
2.图像退化模型图像退化模型是描述图像模糊过程的数学模型。
常见的图像退化模型有运动模糊模型、模糊核模型等。
通过了解图像退化模型的特性,可以更准确地恢复图像的清晰度。
在Matlab中,可以根据图像退化模型进行图像恢复的研究和实现。
3.频域方法频域方法是一种基于图像频谱的模糊图像处理方法。
通过对图像进行傅里叶变换,可以将图像从空间域转换到频率域,然后在频率域进行处理,最后再进行逆傅里叶变换得到恢复后的图像。
在Matlab中,可以利用fft2函数进行傅里叶变换和逆傅里叶变换,实现频域方法对图像的处理。
三、图像模糊恢复技术1.盲去卷积算法盲去卷积算法是一种不需要知道图像退化模型的图像恢复方法。
通过对模糊图像进行去卷积处理,可以尽可能地恢复图像的清晰度。
在Matlab中,可以使用盲去卷积相关的函数和工具箱实现图像模糊恢复。
2.基于深度学习的图像超分辨率重建技术深度学习技术如今在计算机视觉领域取得了巨大的成功。
利用Matlab进行图像超分辨率重建和图像修复

利用Matlab进行图像超分辨率重建和图像修复图像是我们生活中不可或缺的一部分,无论是个人照片、电影剧照还是科学研究数据,图像都扮演着重要的角色。
然而,由于传感器设备的限制或者图像损坏等原因,我们经常会遇到图像分辨率不足或者损坏的情况。
在这种情况下,利用Matlab进行图像超分辨率重建和图像修复成为了一种常见的解决方案。
图像超分辨率重建是指通过利用图像中存在的空间信息,从低分辨率图像中恢复出高分辨率的图像。
在传统的方法中,通常采用插值算法来进行超分辨率重建,但这种方法往往会导致图像细节丢失和模糊。
为了解决这一问题,基于深度学习的超分辨率重建方法逐渐兴起。
在Matlab中,我们可以利用深度学习工具箱中的预训练模型或者自己训练神经网络模型来进行图像超分辨率重建。
首先,我们可以使用Matlab提供的函数加载已经训练好的模型,然后将低分辨率的图像输入到模型中进行预测,最后得到重建后的高分辨率图像。
这种方法通过学习大量的图像样本来提高图像重建的准确度和细节保留效果。
与图像超分辨率重建类似,图像修复也是一种常见的图像处理技术。
图像修复的目标是恢复损坏或者有噪声的图像,使其尽可能接近原始图像。
在Matlab中,我们可以通过各种滤波器、噪声模型和图像处理算法来实现图像修复。
首先,我们可以利用Matlab中的滤波器函数对图像进行去噪处理。
滤波器是一种通过消除图像中的噪声来提高图像质量的方法。
在Matlab中,我们可以使用均值滤波器、中值滤波器、高斯滤波器等滤波器函数来去除图像中的不同类型的噪声。
其次,我们可以利用Matlab中的图像修复算法来修复图像中的损坏部分。
图像修复算法通常是基于局部像素相似性原理来进行的。
例如,图像补偿算法利用图像中的相似区域来填充缺失的像素值,修复图像中的空洞。
Matlab中提供了一些图像修复算法的函数,如基于纹理合成的修复算法和基于偏微分方程的修复算法等。
此外,利用Matlab进行图像修复还可以使用图像插值和图像重建的方法。
图像复原实验报告 2

NSR=sum(noise(:).^2)/sum(MF(:).^2);
subplot(232);imshow(MF,[]);title(‘运动模糊’);
subplot(233);imshow(deconvwnr(MF,PSF),[]);title(‘逆滤波复原’);
实验报告
实验课程名称数字图像处理
实验项目名称图像复原
年级2010
专业光信息科学与技术
学生姓名XXX
学号XXXXX
理学院
实验时间:2013年5月2日
学院:理学院专业:光信息科学与技术班级:光信XXX
姓名
XXX
学号
XXXX
实验组
实验时间
2013.5.2
指导教师
XXXX
成绩
实验项目名称
图像复原
实验目的及要求:
subplot(131);imshow(f);title('原图像');
s=0.9;
theta=pi/6;
T=[s*cos(theta) s*sin(theta) 0
-s*sin(thetaaketform('affine',T);
g=imtransform(f,tform,'Fillvalue',0.5);
subplot(132);imshow(g);title('几何失真图像');
cpselect(g,f);
tform=cp2tform(input_points,base_points,'projective');
gp=imtransform(g,tform,'XData',[1 320],'YData',[1 256]);
Matlab中的图像超分辨率和图像恢复技术

Matlab中的图像超分辨率和图像恢复技术图像超分辨率和图像恢复技术是数字图像处理领域的两个重要研究方向。
在实际应用中,图像有时会因为拍摄设备的局限性或者其他问题而受到分辨率的限制,导致图像细节不够清晰甚至模糊。
这时候,图像超分辨率和图像恢复技术就能发挥作用,通过一系列算法和方法,提高图像的分辨率和清晰度。
一、图像超分辨率技术图像超分辨率指的是提高图像的分辨率,使得图像的细节更加清晰。
Matlab是一个功能强大且拥有丰富工具箱的软件,提供了多种图像超分辨率技术的实现方法。
1.1 基于插值的图像超分辨率方法插值是一种简单而常用的图像超分辨率方法。
在Matlab中,可以使用像素插值方法,如最近邻插值、双线性插值和双三次插值等。
这些插值方法基于已知像素点的值,通过计算和拟合,预测缺失像素点的值,并用插值结果替代原来的像素点。
1.2 基于滤波的图像超分辨率方法滤波是另一种常用的图像超分辨率方法。
Matlab提供了多种滤波器设计和应用的函数,比如傅里叶变换和小波变换等。
通过这些函数,可以对图像进行频域和空域的滤波操作,以提高图像的分辨率和清晰度。
1.3 基于深度学习的图像超分辨率方法深度学习是近年来发展迅速的一门学科,它在图像超分辨率技术中也得到了广泛应用。
Matlab提供了深度学习框架,如深度神经网络(Deep Neural Network, DNN)和卷积神经网络(Convolutional Neural Network, CNN),可以通过训练大量的图像样本,实现图像超分辨率的预测和恢复。
二、图像恢复技术图像恢复技术是一种根据已知信息和先验知识,对损坏或降质的图像进行恢复的方法。
以下介绍几种在Matlab中常用的图像恢复技术。
2.1 去噪与降噪图像中的噪声会影响到图像的质量,使得图像失真,难以辨识。
Matlab提供了多种去噪和降噪的函数和工具箱,如均值滤波器、中值滤波器和小波去噪等。
通过这些方法,可以减少或去除图像中的噪声,提高图像的质量和清晰度。
如何利用Matlab进行图像恢复

如何利用Matlab进行图像恢复图像恢复是数字图像处理中的一个重要的研究领域。
Matlab作为一种功能强大的工具,被广泛应用于图像处理领域。
本文将介绍如何利用Matlab进行图像恢复,并探讨其中的原理和算法。
首先,图像恢复是一种通过消除或减小图像失真、模糊或噪声等问题,使图像更加清晰和还原的过程。
在实际应用中,图像常常受到噪声污染、运动模糊、光照变化等影响,导致图像质量下降。
利用图像恢复技术,可以提高图像的视觉质量和辨识度,对于图像处理、计算机视觉等领域具有重要意义。
Matlab作为一款高级的数学计算工具,提供了丰富的函数库和灵活的编程接口,能够方便地进行图像处理和分析。
在图像恢复中,Matlab提供了多种处理图像的函数和算法,可以帮助我们实现各种图像恢复的方法。
一种常用的图像恢复方法是基于空域滤波的处理。
在Matlab中,可以使用imfilter函数来实现各种空域滤波算法,如均值滤波、中值滤波、高斯滤波等。
这些滤波算法通过在图像像素之间进行加权平均或统计操作,可以消除图像中的噪声和模糊。
另一种常用的图像恢复方法是基于频域滤波的处理。
在Matlab中,可以使用fft2函数和ifft2函数来实现图像的傅里叶变换和反傅里叶变换。
通过将图像从空域转换到频域,可以利用频域滤波算法对图像进行处理,如理想低通滤波、巴特沃斯低通滤波、维纳滤波等。
这些滤波算法可以根据图像的频域特征,有选择地增强或抑制图像中的某些频率分量,从而实现图像的恢复。
此外,Matlab还提供了一些专门用于图像恢复的函数,如wiener2函数、deconvwnr函数等。
wiener2函数实现了维纳滤波算法,可以用于消除运动模糊或加性噪声的图像恢复。
deconvwnr函数实现了维纳滤波的变种算法,可以根据图像和模糊函数的噪声特性,自适应地调整滤波参数,从而实现更好的图像恢复效果。
除了上述方法,Matlab还提供了其他一些高级的图像恢复算法,如超分辨率恢复、图像拼接等。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
MATLAB实现图像恢复设计报告
一、设计目标及需求分析
设计目标:希望通过matlab设计一个软件来实现对CT图像的模糊再恢复的过程,是对现实中CT图像复原的一个简单仿真。
需求分析:随着网络和通信技术的发展,数字图像处理与分析技术已经在科学研究、工业生产、医疗卫生、教育等领域得到了广泛应用,对推动社会的发展和提高人们的生活水平都起到了重要作用[1]。
而在医学CT影像中,CT图像的影响因素众多,包括部分容积效应,空间分辨力,密度分辨力,相机条件设定和噪声等[2]。
这些因素会造成CT 图像模糊失真,需要对图像进行恢复,才能满足对临床诊断的要求。
二、设计概要
图像退化
三、详细设计
在GUI界面设计中选取三个静态文本分别叫“原始图像”、“模糊加噪图像”、“恢复图像”,添加三个坐标轴,三个按钮分别用于“读入原始图像”、“模糊和加噪”、“恢复”。
图一 GUI界面设计
①点击按钮“读入图像”,将选取的原始肺部CT图像导入第一个坐标轴中。
②点击按钮“模糊和加噪”,对原始CT图像进行运动模糊,加入高斯噪声,生成的图像显示在第二个坐标轴中。
图二模糊和加噪
在这里用MATLAB图像处理工具函数fspecial生成了一个运动模糊的点扩展函数PSF,PSF 再与原图卷积得到模糊图像,这一步操作是为了模拟现实CT图像中由于病人身体的移动,心脏搏动和胃肠蠕动这些不自主的运动造成的伪影。
在CT图像中的噪声有多种类型,有高斯噪声,椒盐噪声,泊松噪声,斑点噪声等。
这里只引入了高斯噪声是由于通过查阅文献得知,CT图像中的噪声主要是高斯噪声[3],是一个抽象简化的退化模型。
③点击按钮“恢复”,对模糊和加噪的图像进行图像复原,将复原后的图像显示在第三个坐标轴上。
图三约束最小二乘滤波恢复
在这里使用的图像恢复方法为约束最小二乘滤波恢复,利用deconvreg函数实现约束最小均方误差恢复。
在使用deconvreg时,通过对输出图像采取某些约束,如默认光滑性约束等,实现对模糊图像的约束最小二乘滤波恢复。
J=deconvreg(I,PSF,NP),其中I表示输入图像,PSF表示点扩展函数,NP表示图像的噪声强度,函数调用后的返回值J 表示恢复后的输出图像[4]。
过高的估计噪声强度会导致恢复效果大大下降,而对噪声估计不足导致噪声的放大效果,并且产生了振铃现象。
针对噪声放大效应和振铃现象,通过调用edgetaper函数,对图像边缘信息进行提取,然后作为deconvreg函数的参数进行图像恢复,在这种情况下,恢复的效果将对噪声强度不敏感,以此来抑制振铃现象和噪声,提高图像的恢复质量。
四、运行结果及分析
图四程序运行结果
程序的运行结果如图四所示,在对导入的原始CT图像进行模糊和加噪后,可以明显的看出图像变得模糊不清晰,再用约束最小二乘滤波进行图像复原后的图像与模糊加噪的图像对
比起来清晰了许多,与原图已经更接近了,但还是有一定程度的失真,说明了这个恢复模型还有一定的局限。
在图像恢复过程中,是在缺乏图像先验知识的情况下,对退化过程建立模型进行描述,进而寻找一种削弱其影响的过程,是一种估计方法。
在设计过程中对MATLAB提供的四个图像恢复函数都进行了尝试,对比了维纳滤波恢复,约束最小二乘滤波恢复,Luy-Richardson恢复,盲解卷积算法恢复这四种方法对CT图像的恢复效果发现,约束最小二乘滤波恢复的恢复效果最好,最终选定了这种方法。
由于影响CT图像的因素是多种多样的,本次设计只是进行了一个简化的模拟,并且在恢复过程中还会引入新的噪声,这个模型还不能实现100%的复原。
五、调试
在软件系统设计过程中,要经常用到MATLAB中的调试功能,可以帮助我们及时的发现错误并纠正。
通过设置和清除断点,来使程序运行到断点的位置,观察命令行窗口的提示,来发现错误。
我在程序调试的过程中除了发现一些基本的拼写错误外,还发现了一些程序编写过程中的问题。
一开始在CT原始图像的导入过程中发现导入的图像只出现在最新创建的axes3上,通过添入语句axes(handles.axes1)得到了解决。
在变量的设置上也出现了问题,在前面设置的变量没有实现参数的传递,在后面的程序运行中提示变量未定义,通过设置全局变量global I,并在后面用到的时候进行声明就可以实现参数的传递。
还有在程序的运行过程中,在命令行窗口出现了运行的中间结果,检查程序发现一些语句的结尾没加分号,加上后问题得到了解决,提高了程序的运行速率。
六、总结
在本次小学期的医疗仪器设计——MATLAB软件设计中,我收获了许多知识。
在上学期的信号与系统实验中有接触到MATLAB,但那只是对已有程序的一个验证,并没有学习程序的编写。
这次的软件设计从假期的自学入门知识,到自主选定课题设计,再到最后的设计成果,展示这些从头到尾都是需要自己去查找资料,文献进行学习来完成的。
这过程中也遇到了许多问题,一开始想要做一个CT图像的恢复,打算把所有的影响因素都考虑进去,但现实是能力不足,没办法全都考虑,一再缩水,最后只考虑了伪影和噪声进行简化。
在刚开始编写程序时,连全局变量都不会设,只能一点点的去查资料学习,在这个过程中学会了很多matlab 的使用方法,如何调用函数,调参数,help等等。
也学会了利用程序调试来发现错误,编写的过程是辛苦的,但到最后有一个成果也是很有成就感的,虽然简单,但毕竟是自己亲手做的。
七、参考文献
[1]龚声蓉,刘纯平,王强.数字图像处理[M].北京:清华大学出版社,2006.46-84,123-144
[2]安瑞金,黄岗.CT图像质量和辐射剂量的影响因素研究[J].生物医学工程与临
床,2009,13(02):92-95.
[3]张元科,张军英,卢虹冰.低剂量CT投影图像噪声分析及去噪算法研究[J].光电子.激光,2010,21(07):1073-1078.
[4]罗军辉,冯平,哈力旦.A.MATLAB7.0在图像处理中的应用.北京:机械工业出版社,2005.268-271
[5]杨宝会. 基于Matlab GUI的医学图像处理系统[D].暨南大学,2014.。