管桩检测及承载力计算
管桩水平承载力计算

桩空心部分截
单 面惯性距 I1 桩 桩身换算截面 水 惯性距 Io
平 钢筋混凝土桩 承 EI 载 力 (4)、桩的水平变 设 形系数 α 按下 计 式确定:(桩基 值 5.7.5)
计
算
对于圆形桩,
当直径 d≤1m时,
桩的水平变形 系数 α
(5)、桩顶水平位 移系数 νx: (查表 规范 5.7.2)
桩类型:钢筋混 凝土预制管桩 PHC 桩身直径d 桩身壁厚C 混凝土强度等级 混凝土弹性模量 Ec 桩身纵筋As 基 净保护层厚度c 本 钢筋弹性模量Es 资 桩入土深度 料 桩侧土水平抗力 系数的比例系数m
桩顶容许水平位 移χoa
(1)、桩身面积Ac (2)、桩身配筋率 ρg (3)、桩身抗弯刚 度 EI:
扣除保护层的 桩直径do
钢筋弹性模量与 混凝土弹性模量的比 值αE
桩身全截面换算截 面惯性距 I2=
单 桩 水
单桩水平
承载力特
500径+1: 铰接、自由
d= C=
Ec=
As= c= Es= h=
(查表5.7.5) m=
500 mm 100 mm C80
38000 N/mm2
700 mm2 45 mm
195000 N/mm2 40 m
3.5 MN/m4
χoa=
10 mm
Ac=π[d2-(d2C)2]/4=
ρg=As/Ac=
125660 mm2 0.0056
do=d-2c=
410 mm
αE=Es/Ec=
πd2[d2+2(αE-1) ρgdo2]/64=
5.13 0.00316 m4
(6)、单桩水平承载 力特征值
νx=
2024_管桩水平承载力计算

2024_管桩水平承载力计算管桩水平承载力计算是工程中非常重要的一项计算,它涉及到土工力学和结构力学等多个学科的知识。
下面将分几个方面介绍2024年管桩水平承载力计算的相关内容。
首先,对于管桩水平承载力计算,需要考虑到以下几个因素:土体的力学性质、桩的几何形状和尺寸、桩的材料性质、载荷特征等。
在计算水平承载力之前,需要对这些因素进行详细的调查和分析,以确定相关参数。
其次,管桩水平承载力计算主要涉及两个方面,即土体的反力和桩身的抵抗力。
土体的反力可以通过土体的变形特性来计算,通常采用弹性理论或塑性理论进行计算。
而桩身的抵抗力通常是通过桩身与土体的摩擦力和桩基的基底阻力来实现的。
对于土体的反力计算,可以采用不同的方法,如平面应力场和平面应变场的理论计算方法、有限元法等。
在计算过程中,需要考虑土体的弹性模量、剪切模量和泊松比等参数,以及土体的不变性参数。
对于桩身的抵抗力计算,可以通过桩身与土体之间的黏结力和摩擦力来实现。
摩擦力是桩身与土体之间的相对滑动产生的阻力,可以通过桩身周围土体与桩表面的摩擦系数以及桩身周围土体的单元体积重量来计算。
黏结力是由于土体中的黏性成分与桩身表面的接触而产生的,可以通过土体中的黏性成分的黏结系数、桩身周围土体的单元体积重量以及桩身的表面积来计算。
最后,根据土体的反力和桩身的抵抗力,可以计算出管桩的水平承载力。
常用的计算方法包括弹性理论方法、极限平衡法和数值模拟方法等。
根据不同的计算方法,可以得到不同的计算结果,需要根据具体情况选择合适的方法。
综上所述,2024年管桩水平承载力计算是一个复杂的过程,需要考虑多个因素和参数。
在实际工程中,需要根据具体情况选择适合的计算方法和模型,以保证计算结果的准确性和可靠性。
同时,还需要对计算结果进行合理的分析和评估,以确定管桩的水平承载力是否满足设计要求。
管桩水平承载力计算

管桩水平承载力计算桩水平承载力是指桩的抗侧力能力,是桩基础设计和施工中需要重点考虑的一个指标。
桩水平承载力的计算方法有很多种,常见的有静力分析法、动力分析法、试验法等。
下面主要介绍静力分析法和动力分析法两种计算方法。
一、静力分析法:静力分析法是通过土力学原理,根据土体的力学性质,计算桩在侧向荷载作用下的水平承载力。
主要包括刚度方法和土压力分布法两种计算方法。
1.刚度方法:刚度方法是根据桩与土体之间的刚度差异来计算桩的水平承载力,常用的有极限平衡法、有限差分法、有限元法等。
其中,基于极限平衡法的计算比较常见,步骤如下:(1)假设桩的侧向土壁是铰接的,即桩与土壁之间无摩擦力,土壁不发生变形;(2)假设土体的应力及变形分布满足柯西弹性体的假设;(3)根据桩与土体之间的刚度差异,可以得出桩的水平承载力。
2.土压力分布法:土压力分布法是根据土的压力与位移的关系,计算桩的水平承载力。
常用的计算方法有半解析法和数值方法等。
步骤如下:(1)假设桩的侧向土壁满足弹性理论;(2)根据桩与土体之间的弹性特性,建立土压力与位移的关系;(3)通过求解土压力与位移的方程,可以得出桩的水平承载力。
二、动力分析法:动力分析法是通过桩的震动响应来计算桩的水平承载力,主要包括共振振动法和波动等分析法两种计算方法。
1.共振振动法:共振振动法利用地震波或振动源作用下,桩在共振状态下的位移与力的关系,计算桩的水平承载力。
常用的计算方法有共振理论和能量耗散法等。
步骤如下:(1)假设桩在共振状态下,即地震波或振动源与桩的共振频率相等;(2)根据桩的动力响应,计算桩的位移与力的关系;(3)通过求解共振频率与位移的方程,可以得出桩的水平承载力。
2.波动等分析法:波动等分析法是通过桩在地震波或振动源作用下的波动等传播过程,计算桩的水平承载力。
常用的计算方法有单桩法和双桩法等。
步骤如下:(1)假设桩与土体之间的相互作用满足弹性理论,桩与土体之间的刚度满足一定的关系;(2)根据桩与土体之间的动力特性,建立桩的动力方程;(3)通过求解动力方程,可以得出桩的水平承载力。
预制管桩承载力计算

预制管桩承载力计算预制管桩是一种常用的地基处理技术,广泛应用于建筑工程和基础设施建设中。
在设计和施工过程中,准确计算预制管桩的承载力至关重要,以确保工程的安全和稳定。
本文将介绍预制管桩承载力计算的基本原理和方法。
预制管桩的承载力是指它所能承受的最大垂直荷载。
准确计算预制管桩的承载力需要考虑多个因素,包括土壤的物理力学性质、预制管桩的几何形状和材料性质等。
常用的预制管桩承载力计算方法包括静力触探法、动力触探法和数值模拟法等。
静力触探法是一种常用的预制管桩承载力计算方法。
该方法通过在预制管桩周围进行静力触探试验,测量土壤的抗力和变形性质,从而推断出预制管桩的承载力。
静力触探法适用于土质较为均匀的场地,可以提供较为准确的承载力计算结果。
动力触探法也是一种常用的预制管桩承载力计算方法。
该方法通过在预制管桩顶部施加冲击力,观测预制管桩的振动响应,从而推断出其承载力。
动力触探法适用于土质较为松散或不均匀的场地,可以提供较为准确的承载力计算结果。
数值模拟法是一种基于数值分析的预制管桩承载力计算方法。
该方法通过建立土体和预制管桩的有限元模型,模拟施加在预制管桩上的荷载作用,从而计算出其承载力。
数值模拟法适用于复杂地质条件和荷载情况下的承载力计算,可以提供较为准确的结果。
在进行预制管桩承载力计算时,需要考虑土壤的物理力学性质。
土壤的抗剪强度、压缩性和变形特性等参数将直接影响预制管桩的承载力。
因此,需要进行土壤试验和实地观测,获取土壤参数的准确数值。
预制管桩的几何形状和材料性质也是承载力计算的重要考虑因素。
预制管桩的直径、壁厚和长度等参数将决定其抗弯和抗压能力。
另外,预制管桩的材料强度和刚度也将影响其承载力。
因此,在进行承载力计算时,需要准确了解预制管桩的几何和材料参数。
预制管桩承载力计算是建筑工程和基础设施建设中的重要任务。
通过静力触探法、动力触探法和数值模拟法等方法,可以准确计算出预制管桩的承载力,并为工程设计和施工提供可靠的依据。
管桩承载力特征值

管桩承载力特征值桩承载力特征值是指在确定的工况下,用于描述桩的承载力大小的一个指标。
桩承载力特征值的确定对于土建工程的设计和施工具有重要意义。
本文将从桩的承载力计算方法、影响桩承载力的因素以及桩承载力特征值的确定方法等方面进行详细介绍。
一、桩的承载力计算方法桩的承载力计算方法主要包括施工观测法、静力触探法、动力触探法和数值计算法等。
其中,施工观测法是一种通过实际施工观测来推断桩的承载力的方法,适用于桩基础常规工程;静力触探法是通过测量钻孔或者触探孔的孔壁阻力或孔底阻力来推断桩的承载力的方法,适用于桩基础特殊工程;动力触探法是通过测量桩锤或马头击击落地反弹高度来推断桩的承载力的方法,适用于钻孔灌注桩和灌注桩等;数值计算法是通过有限元方法或其他数值模拟方法来计算桩的承载力的方法,适用于复杂的桩基础工程。
二、影响桩承载力的因素影响桩承载力的因素主要包括桩的几何形状、桩材料的性质、桩的侧摩阻力以及土体的力学性质等。
桩的几何形状主要指桩的截面形状和长宽比,不同形状和长宽比的桩的承载力会有所差异;桩材料的性质主要包括强度、刚度和耐久性等,桩材料的选择会直接影响桩的承载力;桩的侧摩阻力是指桩侧表面与土体之间的摩擦力,侧摩阻力对桩的承载力有重要影响;土体的力学性质主要包括土的压缩性、剪切强度、孔隙水压力等,土体力学性质的不同会直接影响桩的承载力。
三、桩承载力特征值的确定方法确定桩承载力特征值的方法主要包括经验公式法和概率统计法等。
经验公式法是基于多年的实际工程经验总结出来的一种计算桩承载力的简便方法,常见的有摩擦桩和端承桩的经验公式;概率统计法是利用统计学原理,通过对大量桩基础的试验数据进行统计分析,得出桩承载力的概率分布特征,从而确定桩的承载力特征值。
四、桩承载力特征值的实际应用桩承载力特征值在土建工程的设计和施工中具有重要的实际应用价值。
在桩基础的设计中,通过确定桩承载力特征值可以合理选择桩的类型和尺寸,保证桩的承载力满足工程要求;在桩基础的施工监控中,通过实测桩的承载力特征值可以及时了解施工质量,保证桩基础的安全性。
钢管桩验算

钢管桩验算Final revision by standardization team on December 10, 2020.钢管桩检算⑴桩基承载力计算:根据计算,中间钢管桩承载荷载最大,该最大荷载值为:Pmax=170.6KN。
⑵钢管桩最大容许承载力计算由于钢管桩打入过程中,桩周淤泥层受到破坏,无法提供桩身与淤泥层之间的摩阻力,本计算暂不考虑淤泥层摩阻力。
桩打入桩最大容许承载力:〔ρ〕=1/k(U∑f1L1+AR)式中〔ρ〕--桩的容许承载力KNU-----桩身横截面周长mf1----桩身穿过各地层与桩身之间的极限摩阻力KPa ;查《路桥施工计算手册》和设计院地质勘探成果,取f1=25L1----各土层厚度m L1=12A-----桩底支撑面积m2R-----桩尖极限磨阻力Kpa, R=0K----安全系数,本设计采用2。
桩基采用φ426mm钢管桩,壁厚δ=8mm,管内填砂密实,采用打桩振动锤击下沉。
桩的周长U=1.34m。
不计桩尖承载力,仅计算钢管桩侧摩阻。
根据地质情况,按照打入局部冲刷线以下12m 计算:单桩承载力为〔ρ〕=201KN,大于钢管桩承受荷载Pmax=170.6KN。
满足要求。
⑶桩身强度计算桩基采用φ426mm*8mm钢管桩。
对钢管桩的容许承载力,按下式计算:P=∮FR/KP-桩的容许承载力,kN;∮-纵向挠曲折减系数,根据lp/d查表得出;F-钢管截面的计算面积;R-钢的屈服应力,kPa;本设计中R=235000KPaK-安全系数,摩擦桩取2.5;lp-桩的计算长度,取ht;ht-从土壤表面到桩顶的距离;d-钢管桩外径。
取lp=htlp/d=1600/63=25.4查“轴心受压钢构件的纵向弯曲系数表”,纵向挠曲折减系数∮≈0.9F=πdδ=0.0158m2P=∮FR/K=1337KN>单桩设计承载力170.6KN。
满足受力要求。
(4) 结论经检算知,便桥设计满足受力要求。
phc管桩极限承载力自动计算表格

phc管桩是一种常见的基础工程结构,它广泛应用于桥梁、建筑和其他工程领域。
在工程设计过程中,计算phc管桩的极限承载力是非常重要的一项工作,它直接影响着工程的安全性和稳定性。
为了准确、快速地计算phc管桩的极限承载力,工程师们通常会利用专门的计算表格来进行计算,通过输入相关参数,就可以获得准确的计算结果。
下面将介绍phc管桩极限承载力自动计算表格的相关内容。
一、phc管桩极限承载力计算原理phc管桩的极限承载力计算是基于桩身土压力和桩端承载力来进行的。
在计算过程中,需要考虑桩的长度、直径、钢筋配筋、混凝土强度等参数,以及地基土的承载力和侧摩阻力等因素。
通过综合考虑这些因素,可以得到phc管桩的极限承载力。
二、phc管桩极限承载力计算表格的优势1.准确性:phc管桩极限承载力计算表格是根据相关理论和规范进行设计的,能够提供准确的计算结果。
2.快速性:使用计算表格可以节省大量的计算时间,提高工作效率。
3.便捷性:工程师只需输入相关参数,就可以得到计算结果,非常方便实用。
三、phc管桩极限承载力计算表格的使用方法1.准备计算数据:收集phc管桩相关的设计参数,包括长度、直径、钢筋配筋情况、混凝土强度等信息。
2.打开计算表格:在电脑上打开phc管桩极限承载力计算表格,根据提示输入相关设计参数。
3.获取计算结果:输入完毕后,点击计算按钮,即可获得phc管桩的极限承载力计算结果。
四、phc管桩极限承载力计算表格的相关注意事项1.数据准确性:输入的设计参数需要准确无误,以保证计算结果的准确性。
2.参数选择:在输入参数时,需要选择与phc管桩实际情况相符合的参数,以确保计算结果的可靠性。
3.计算结果验证:获得计算结果后,需要进行验证,确保其满足设计要求。
phc管桩极限承载力自动计算表格是一种非常实用的工具,能够帮助工程师快速、准确地进行phc管桩的极限承载力计算。
在工程实践中,使用这种计算表格可以有效地提高工作效率,确保工程的安全性和稳定性。
800桩管桩单桩承载力特征值

800桩管桩的单桩承载力特征值需要根据具体的设计参数和场地条件来确定。
一般情况下,单桩承载力特征值可以通过以下步骤计算得出:
1. 确定桩的几何形状和尺寸,包括桩长、直径或截面尺寸等。
2. 根据场地勘察数据和地质资料,确定桩顶与地面之间的有效摩擦阻力及桩底的端阻力。
3. 结合土层强度参数、承载力计算方法以及相关荷载信息,进行承载力计算。
常用的计算方法包括静力触探法、桩侧摩阻力法、静力加载试验等。
4. 进行不确定性分析,考虑桩基本位移、土层变异性和其他因素对承载力的影响,并得出单桩承载力的特征值。
由于缺乏具体的设计参数和场地条件,无法提供800桩管桩单桩承载力特征值的具体数值。
建议您根据实际情况,结合相关规范和设计手册,进行详细的工程计算和设计。
1。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
管桩检测及承载力计算管桩检测 1、管桩检测规范应严格按照《基桩高应变动力检测规程》(JGJ 106-97)中相关规定执行。
2、检测仪器管桩高应变动力检测仪器目前国内市场种类较多,所选进口或国产仪器均应满足规程中相关规定。
目前国外引进的仪器有瑞典PID打桩分析仪、荷兰TNO基桩诊断系统、美国桩基动力学公司PDA打桩分析仪,国内的有中国建筑科学研究院FEI-C型桩基动测分析系统、中交三航局SDF-1型打桩分析仪、中科院武汉岩土所RSM系列动测仪、武汉岩海工程技术有限公司RS系列桩基动测仪等型号。
武汉岩海公司RS-1616K(PLUS)/1616K动测仪高应变系统主要用途: •高应变测桩主要特点: •电性能指标高,机械故障率低•即现速度、力曲线和承载力与打击力•高应变实时监控大于130锤/分钟存取信号•任选RS模式和PDA模式从事高应变检测•自动实现连续采集、叠加、平衡调节功能•兼容速度计和国产或进口内装式加速度计中科院武汉岩土所RSM—24FD浮点工程动测仪是针对目前市政工程、铁路交通、地质勘察等检测工作研制开发的产品,应用多项最新技术,能有效完成基桩高低应变法检测;单孔波速、振动、瑞雷波测试;其它工程动态信号检测;…。
是目前我国工程界广泛采用的主流机型,深得广大用户的喜爱。
美国桩基动力学公司PAK型PDA高应变桩基动测专用仪器 Case法承载力。
侧摩阻力和端阻力。
最大压应力、加速度和位置。
桩身最大拉应力。
计算的桩端应力。
桩身结构完整性,缺损程度及位置。
传递给桩的最大能量。
锤垫层刚度(蒸汽锤/钢桩)每分钟锤击数,检验打桩系统。
可显示力、速度、动能、位移、阻力、上下行波的时标曲线,可以用来校核波速。
现场就可通过内置的CAPWAPC拟合软件作曲线拟合计算,得到总承载力、桩端土阻力、桩侧土阻力、桩侧土阻力分布等参数智能化操作设计。
美国桩基动力学公司PAL型PDA高应变桩基动测专用仪器 PAL-L型 PAL-R型3、管桩打桩监控打桩监控试验使用两个应力传感器和两个加速度传感器对称固定在桩顶附近或钢铸替打上,随连续锤击沉桩过程,记录每一锤作用下检测截面M 处的力F(t)和速度V(t)与阻抗Z 乘积的变化,然后利用一系列波动理论计算方法,从中可以获取大量的重要信息和分析结果。
概括起来可以得到以下三个方面的结果:⑴基桩的可打性分析,即通过桩身锤击应力监测和锤击能量监测,评判打桩机能否适应场地工程地质条件将桩有效地打入设计深度;⑵桩身结构完整性;⑶基桩竖向极限承载力。
3.1桩身最大锤击应力监测在混凝土预制桩的低应变动力检测中常常发现桩身某处严重破损或接桩处焊接开裂等工程质量问题,这是由于桩端从软土层突然进入较大阻力的硬土层时使桩身锤击压应力增大,或桩端穿过硬土层突然进入软夹层时使桩身锤击拉应力增大所致。
因此,桩身最大锤击应力监测包括桩身锤击压应力和锤击拉应力两部分。
根据波动理论推导,桩身最大锤击拉应力可按下式计算式中:σt:桩身最大锤击拉应力,kPa; x:计算点与测点之间的距离,m。
桩身最大锤击压应力可按下式计算:式中:σp:桩身最大锤击拉应力,kPa; Fmax:实测最大打击力,kN。
根据规范[2]规定,混凝土预制桩桩身最大锤击压应力σp 应小于桩材轴心抗压强度设计值,桩身最大锤击拉应力σt 应在(0.25~0.33)σp 之间。
3.2锤击能量监测打桩锤实际传递给桩的能量可按下式计算:式中:En:桩锤实际传递给桩的能量,kJ; T:采样结束的时刻。
国内通常使用柴油打桩锤,桩锤实际传递给桩的能量En 与已知的额定能量之比称为桩锤效率。
对于混凝土预制桩,该值一般介于0.20~0.30 之间。
3.3 桩身结构完整性监测在连续的锤击作用下常常会引起桩身缺陷或接桩开焊,发现和计算缺陷位置和缺陷大小尤为重要。
打桩监控试验可以观察连续锤击下缺陷的位置和缺陷逐步扩大或逐步闭合全过程的变化情况。
在监测过程中一般情况下是首先对力和速度(或上行波)曲线作定性分析,及时发现缺陷和位置并注意观察。
由于打入桩一般等截面,桩身规则且材质均匀,桩身截面力学阻抗相同,因此桩顶以下第一个缺陷可以采用结构完整性系数β法进行准定量计算:式中:β:桩身结构完整性系数; t1:速度第一峰所对应的时刻,ms; tx:缺陷反射峰所对应的时刻,ms;ΔR:缺陷以上部位土阻力估计值。
桩身缺陷位置可按下式计算: 3.4 单桩竖向极限承载力监测在连续的锤击作用下,桩身不断下沉,桩周土和桩端土阻力不断地被发挥出来,土阻力产生的阻力波使得实测曲线F(t)、V(t)上下分离,应用一维波动方程和桩一土体系的数学模型确定单桩竖向极限承载力。
桩打入地下设计标高时所测到的桩侧和桩端静土阻力值之和称为初打承载力,如果经过复打试验获得桩在地基土中的时间效应系数,就可以根据二者的乘积推算出不同龄期单桩竖向承载力值。
一般情况下,对打入桩单桩竖向极限承载力监测分为两个阶段:一是现场进行CASE 法分析,二是室内进行实测波形拟合(CAPWAP)法计算。
CASE 法是在一些理想假设基础上提出的,是一种半经验算法,比如它要求桩呈一维弹性体且桩身阻抗相等;应力波在传播过程中,桩侧没有动阻尼,动阻尼主要集中在桩端;桩-土体系满足质量-弹簧-阻尼系统等。
CASE 法在现场能粗略地提供桩承载力结果,常用以下公式进行计算:式中:Rc:单桩竖向极限承载力,kN; JC:CASE 阻尼系数; t1:速度峰值对应的时刻,ms; Z:桩身截面力学阻抗,kN﹒s/m;L:测点以下桩长,m。
从上式中不难看出,影响计算结果的主要参数是带有经验性的JC 值。
回到室内采用实测波形拟合(CAPWAP)法计算可以大大提高测试精度。
CAPWAP 法与CASE 法相比是截然不同的两种思路,它是利用实测波形中的一条曲线(F、V 或上、下行波)通过设定桩土参数进行波动方程拟合计算,得到另一条曲线的计算值,然后与实测曲线相比较,如不符合,重新调整桩土参数,再重新迭代计算,重复上述过程。
经过循环计算直到获得满意的拟合结果为止,最终确定出符合实际桩土体系的所有参数值,得到桩身摩阻力、桩端土阻力、桩身分段土阻力和总阻力。
管桩检测 1、管桩检测规范应严格按照《基桩高应变动力检测规程》(JGJ 106-97)中相关规定执行。
2、检测仪器管桩高应变动力检测仪器目前国内市场种类较多,所选进口或国产仪器均应满足规程中相关规定。
目前国外引进的仪器有瑞典PID打桩分析仪、荷兰TNO基桩诊断系统、美国桩基动力学公司PDA打桩分析仪,国内的有中国建筑科学研究院FEI-C型桩基动测分析系统、中交三航局SDF-1型打桩分析仪、中科院武汉岩土所RSM系列动测仪、武汉岩海工程技术有限公司RS系列桩基动测仪等型号。
武汉岩海公司RS-1616K(PLUS)/1616K动测仪高应变系统主要用途: •高应变测桩主要特点: •电性能指标高,机械故障率低•即现速度、力曲线和承载力与打击力•高应变实时监控大于130锤/分钟存取信号•任选RS模式和PDA模式从事高应变检测•自动实现连续采集、叠加、平衡调节功能•兼容速度计和国产或进口内装式加速度计中科院武汉岩土所RSM —24FD浮点工程动测仪是针对目前市政工程、铁路交通、地质勘察等检测工作研制开发的产品,应用多项最新技术,能有效完成基桩高低应变法检测;单孔波速、振动、瑞雷波测试;其它工程动态信号检测;…。
是目前我国工程界广泛采用的主流机型,深得广大用户的喜爱。
美国桩基动力学公司PAK型PDA高应变桩基动测专用仪器 Case法承载力。
侧摩阻力和端阻力。
最大压应力、加速度和位置。
桩身最大拉应力。
计算的桩端应力。
桩身结构完整性,缺损程度及位置。
传递给桩的最大能量。
锤垫层刚度(蒸汽锤/钢桩)每分钟锤击数,检验打桩系统。
可显示力、速度、动能、位移、阻力、上下行波的时标曲线,可以用来校核波速。
现场就可通过内置的CAPWAPC拟合软件作曲线拟合计算,得到总承载力、桩端土阻力、桩侧土阻力、桩侧土阻力分布等参数智能化操作设计。
美国桩基动力学公司PAL型PDA高应变桩基动测专用仪器 PAL-L型 PAL-R型 3、管桩打桩监控打桩监控试验使用两个应力传感器和两个加速度传感器对称固定在桩顶附近或钢铸替打上,随连续锤击沉桩过程,记录每一锤作用下检测截面M 处的力F(t)和速度V(t)与阻抗Z 乘积的变化,然后利用一系列波动理论计算方法,从中可以获取大量的重要信息和分析结果。
概括起来可以得到以下三个方面的结果:⑴基桩的可打性分析,即通过桩身锤击应力监测和锤击能量监测,评判打桩机能否适应场地工程地质条件将桩有效地打入设计深度;⑵桩身结构完整性;⑶基桩竖向极限承载力。
3.1桩身最大锤击应力监测在混凝土预制桩的低应变动力检测中常常发现桩身某处严重破损或接桩处焊接开裂等工程质量问题,这是由于桩端从软土层突然进入较大阻力的硬土层时使桩身锤击压应力增大,或桩端穿过硬土层突然进入软夹层时使桩身锤击拉应力增大所致。
因此,桩身最大锤击应力监测包括桩身锤击压应力和锤击拉应力两部分。
根据波动理论推导,桩身最大锤击拉应力可按下式计算式中:σt:桩身最大锤击拉应力,kPa; x:计算点与测点之间的距离,m。
桩身最大锤击压应力可按下式计算:式中:σp:桩身最大锤击拉应力,kPa; Fmax:实测最大打击力,kN。
根据规范[2]规定,混凝土预制桩桩身最大锤击压应力σp 应小于桩材轴心抗压强度设计值,桩身最大锤击拉应力σt 应在(0.25~0.33)σp 之间。
3.2锤击能量监测打桩锤实际传递给桩的能量可按下式计算:式中:En:桩锤实际传递给桩的能量,kJ; T:采样结束的时刻。
国内通常使用柴油打桩锤,桩锤实际传递给桩的能量En 与已知的额定能量之比称为桩锤效率。
对于混凝土预制桩,该值一般介于0.20~0.30 之间。
3.3 桩身结构完整性监测在连续的锤击作用下常常会引起桩身缺陷或接桩开焊,发现和计算缺陷位置和缺陷大小尤为重要。
打桩监控试验可以观察连续锤击下缺陷的位置和缺陷逐步扩大或逐步闭合全过程的变化情况。
在监测过程中一般情况下是首先对力和速度(或上行波)曲线作定性分析,及时发现缺陷和位置并注意观察。
由于打入桩一般等截面,桩身规则且材质均匀,桩身截面力学阻抗相同,因此桩顶以下第一个缺陷可以采用结构完整性系数β法进行准定量计算:式中:β:桩身结构完整性系数; t1:速度第一峰所对应的时刻,ms; tx:缺陷反射峰所对应的时刻,ms;ΔR:缺陷以上部位土阻力估计值。
桩身缺陷位置可按下式计算: 3.4 单桩竖向极限承载力监测在连续的锤击作用下,桩身不断下沉,桩周土和桩端土阻力不断地被发挥出来,土阻力产生的阻力波使得实测曲线F(t)、V(t)上下分离,应用一维波动方程和桩一土体系的数学模型确定单桩竖向极限承载力。