灌注桩及管桩承载力计算
管桩承载力特征值

管桩承载力特征值桩承载力特征值是指在确定的工况下,用于描述桩的承载力大小的一个指标。
桩承载力特征值的确定对于土建工程的设计和施工具有重要意义。
本文将从桩的承载力计算方法、影响桩承载力的因素以及桩承载力特征值的确定方法等方面进行详细介绍。
一、桩的承载力计算方法桩的承载力计算方法主要包括施工观测法、静力触探法、动力触探法和数值计算法等。
其中,施工观测法是一种通过实际施工观测来推断桩的承载力的方法,适用于桩基础常规工程;静力触探法是通过测量钻孔或者触探孔的孔壁阻力或孔底阻力来推断桩的承载力的方法,适用于桩基础特殊工程;动力触探法是通过测量桩锤或马头击击落地反弹高度来推断桩的承载力的方法,适用于钻孔灌注桩和灌注桩等;数值计算法是通过有限元方法或其他数值模拟方法来计算桩的承载力的方法,适用于复杂的桩基础工程。
二、影响桩承载力的因素影响桩承载力的因素主要包括桩的几何形状、桩材料的性质、桩的侧摩阻力以及土体的力学性质等。
桩的几何形状主要指桩的截面形状和长宽比,不同形状和长宽比的桩的承载力会有所差异;桩材料的性质主要包括强度、刚度和耐久性等,桩材料的选择会直接影响桩的承载力;桩的侧摩阻力是指桩侧表面与土体之间的摩擦力,侧摩阻力对桩的承载力有重要影响;土体的力学性质主要包括土的压缩性、剪切强度、孔隙水压力等,土体力学性质的不同会直接影响桩的承载力。
三、桩承载力特征值的确定方法确定桩承载力特征值的方法主要包括经验公式法和概率统计法等。
经验公式法是基于多年的实际工程经验总结出来的一种计算桩承载力的简便方法,常见的有摩擦桩和端承桩的经验公式;概率统计法是利用统计学原理,通过对大量桩基础的试验数据进行统计分析,得出桩承载力的概率分布特征,从而确定桩的承载力特征值。
四、桩承载力特征值的实际应用桩承载力特征值在土建工程的设计和施工中具有重要的实际应用价值。
在桩基础的设计中,通过确定桩承载力特征值可以合理选择桩的类型和尺寸,保证桩的承载力满足工程要求;在桩基础的施工监控中,通过实测桩的承载力特征值可以及时了解施工质量,保证桩基础的安全性。
材料成本相同的PHC管桩和灌注桩的承载力对比

材料成本相同的P H C 管桩和灌注桩的承载力 对比
姜正 平 , 明维 。 周展 钊 , 何耀 晖
( 1 . 苏 州科技 大学 土木 工程 学 院 , 江 苏 苏州 2 1 5 0 1 1 ; 2 . 广 东宏基 管桩 有 限公 司 , 广 东 中山 5 2 8 4 2 7 ) 摘要 : 对 比 了材料 成本相 同的 P H C管桩 与灌 注桩 的承载 力性能 , 重点分析 了水平承 载力的差异 。结果表 明: 当材料成 本相 同时。 P HC管桩具有 更大的桩径和较 高的桩 身混凝 土强度 . P HC管桩 的轴 向承载力是 灌注桩的
P HC p i p e p i l e i s a b o u t 4 . 5 5 t i me s o f t h e c a i s s o n p i l e . T h e a d v a n t a g e s o f P HC p i p e p i l e s ’b e a r i n g c a p a c i t y a r e
p i p e p i l e s i s mo r e t h a n 2 . 1 t i me s o f t h e c a i s s o n p i l e . a n d t h e l f e x u r a l b e a r i n g a n d s h e a r b e a r i n g c a p a c i t y o f t h e
2 . 1倍 以上 , 而受弯承载 力和 受剪承载力分别 约是 灌注桩的 4 . 5 5倍 、 1 . 8 7倍 , 其承载 力具 有明显的优 势。 因此 ,
桥梁桩基础设计计算部分要点

一方案比选优化公路桥涵结构设计应当考虑到结构上可能出现的多种作用,例如桥涵结构构件上除构件永久作用(如自重等)外,可能同时出现汽车荷载、人群荷载等可变作用。
《公路桥规》要求这时应该按承载力极限状态和正常使用极限状态,结合相应的设计状况进行作用效应组合,并取其最不利组合进行计算。
1、按承载能力极限状态设计时,可采用以下两种作用效应组合。
(1)基本作用效应组合。
基本组合是承载能力极限状态设计时,永久作用标准值效应与可变作用标准值效应的组合,基本组合表达式为(1-1)或(1-2)γ-桥梁结构的重要性系数,按结构设计安全等级采用,对于公路桥梁,安全等级0一级、二级、三级,分别为1.1、1.0和0.9;γGi-第i个永久荷载作用效应的分项系数。
分项系数是指为保证所设计的结构具有结构的可靠度而在设计表达式中采用的系数,分为作用分项系数和抗力分项系数两类。
当永久作用效应(结构重力和预应力作用)对结构承载力不利时,γGi=1.2;对结构的承载能力有利时,γGi=10;其他永久作用效应的分项系数详见《公路桥规》;γQ1-汽车荷载效应(含汽车冲击力、离心力)的分项系数,取γQ1=1.4;当某个可变作用在效用组合中,其值超过汽车荷载效用时,则该作用取代汽车荷载,其分项系数应采用汽车荷载的分项系数;对专门为承受某种作用而设置的结构或装置,设计时该作用的分项系数取与汽车荷载同值;计算人行道板和人行道栏杆的局部荷载时,其分项系数也与汽车荷载取同值。
γQj-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)、风荷载以外的其他第j个可变作用效应的分项系数,取γQ1=1.4,但风荷载的分项系数取γQ1=1.1;S gik、S gid-第i个永久作用效应的标准值和设计值;S Qjk-在作用效应组合中除汽车荷载效应(含汽车冲击力、离心力)外的其他第j个可变作用效应的标准值;S ud-承载能力极限状态下,作用基本组合的效应组合设计值,作用效应设计值等于作用效应标准值S d与作用分项系数的乘积。
承台桩基 承载力计算公式

承台桩基承载力计算公式引言。
承台桩基是一种常用的地基工程结构,它能够有效地分担建筑物或其他重型设备的荷载,并将荷载传递到地下的承载层。
在设计承台桩基时,计算其承载力是非常重要的一步。
本文将介绍承台桩基承载力的计算公式及其相关内容。
承台桩基承载力计算公式。
承台桩基的承载力计算公式是基于桩的承载力计算公式和承台的承载力计算公式的基础上进行综合计算得出的。
在计算承台桩基承载力时,需要考虑到桩的承载力和承台的承载力,并进行合理的组合计算。
1. 桩的承载力计算公式。
桩的承载力计算公式一般采用静力荷载法或动力触探法进行计算。
静力荷载法是根据桩的受力状态和地层的性质来计算桩的承载力,其计算公式如下:Qs = As fs。
其中,Qs为桩的承载力,As为桩的截面积,fs为桩材料的抗压强度。
2. 承台的承载力计算公式。
承台的承载力计算公式一般采用承载力公式和弯矩公式进行计算。
承载力公式用于计算承台的承载能力,弯矩公式用于计算承台的抗弯能力。
3. 承台桩基承载力计算公式。
承台桩基的承载力计算公式是将桩的承载力和承台的承载力进行合理的组合计算得出的。
其计算公式如下:Qp = Qs + Qf。
其中,Qp为承台桩基的承载力,Qs为桩的承载力,Qf为承台的承载力。
承台桩基承载力计算实例。
为了更好地理解承台桩基承载力的计算过程,我们可以通过一个实例来进行说明。
假设某建筑物的荷载为1000kN,采用承台桩基结构,桩的截面积为1m²,桩材料的抗压强度为50MPa,承台的承载能力为2000kN,承台的抗弯能力为1000kN·m。
则承台桩基的承载力计算如下:桩的承载力计算:Qs = As fs = 1m² 50MPa = 50MN。
承台的承载力计算:Qf = 2000kN。
承台的抗弯能力计算:Mf = 1000kN·m。
承台桩基的承载力计算:Qp = Qs + Qf = 50MN + 2000kN = 2050kN。
【精品】桩基础与地基加固工程说明及工程量计算规则

钻(冲)孔注入桩计算规则一、钻孔桩成孔工程量按成孔长度乘预设桩径剖平面或者物体表面的大以立米米计较成孔长度为天然地坪至预设桩底的长度片岩层增长耗费功夫程量按现实入岩数目以立米米计算。
二、绞车带冲抓(击)锤冲孔工程量别离按步入各种土层、片岩层的成孔长度乘预设桩径剖平面或者物体表面的大以立米米计算。
三、灌灌水下混凝土工程量按桩长乘预设桩径剖平面或者物体表面的大计较,桩长=预设桩长+预设加灌长度,预设未划定加灌长度时,加灌长度(岂论有没有地下室)按差别预设桩长确定:25m之内按0.5m、35m之内按0.8m、35m以上按1.2m计算。
四、泥浆水池建造以及拆掉、泥浆水运输工程量按成孔工程量以立米米计较5、桩孔回填工程量按加灌长度顶面至天然地坪的长度乘桩孔剖平面或者物体表面的大计算。
桩基础与地基加固工程说明及工程量计算规则学习园地2010-07-1111:18:55阅读224评论3 字号:大中小订阅第二章桩基础与地基加固工程说明一、本定额所列桩基施工机械的规格、型号按常规施工工艺和方法所用机械综合取定。
二、本定额中涉及的各类土(岩石)层鉴别标准如下:1、砂、粘土层:粒径大于2mm的颗粒质量不超过总质量的50%的土层,包括粘土、粉质粘土、粉土、粉砂、细砂、中砂、粗砂、砾砂。
2、碎、卵石层:粒径大于2mm的颗粒质量超过总质量50%的土层,包括角砾、圆砾、碎石、卵石、块石、漂石,此外亦包括软石及强风化岩。
3、岩石层:除软石及强风化岩以外的各类坚石,包括次坚石、普坚石和特坚石。
4、定额中未涉及土(岩石)层的子目,已综合考虑了各类土(岩石)层因素。
三、人工探桩位等因素已综合考虑于各类桩基定额,不另行计算。
四、桩基施工前场地平整、压实地表、地下障碍物处理等,定额均末考虑,发生时可另行计算。
五、打、压预制钢筋混凝土方桩、空心方桩、板桩、预应力钢筋混凝土管桩定额均已包括就位供桩和场内吊运桩,发生时不再另行计算;如发生场内汽车运桩且运距在200m以上者,另按发生运输工程量及混凝土构件运输相应定额规定计算。
钻孔灌注桩,PHC管桩,CFG桩复合地基承载力计算 2020-04-06

土层编号 土层名称
Li qsik qpk
① 杂填土
0.50 0 0
② 粉土 1.50
48 0
③ 粉质粘土
7.50 54 0
④
⑤
⑥
⑦
粉土
粉砂 粉质粘土 粉土
3.00
4.00
2.00
8.50
58
70
64
70
0
3000
2500
3500
承台及桩信息输入、标高信息输出
⑧ 粉质粘土
73 3000
⑨-1 粉土
130 4000
大直径桩效应系数
ψsi
ψpi
1.00
1.00
-6.440 ⑨-1
780.00
-9.440 ⑨
380.00
-48.04 ⑽ 0.00
各层土极限侧阻力kN 其他各层 持力层⑽ 3278.9 603.2
极限 端阻力kN
854.5
PHC管桩-单桩竖向承载计算 土层信息,按地勘报告输入 Li:各土层参与计算总侧阻力土层厚度(m),即当桩持力层为第⑧土时,认为⑧及以下土层地勘未揭露,厚度应输为0; qsik:各土层极限侧阻力标注值(kpa);qpk:各土层极限端阻力标准值(kpa)
569.0
桩间土承载 力发挥系数
β
褥垫层底①层土天然地 基承载力特征fak
处理后桩间 土承载力放
大系数
处理后桩间土的承载力 特征值ƒsk
0.85
120.00
1.00
120
1.00
矩形桩距
纵向距s1 横向距s2
1.60
1.60
注:仅黄色单元格需要填入信息。
-1.30 ⑨-1 0.00
工程量计算规则(桩与地基基础)

工程量计算规则1.计算打桩(灌注桩)工程量前应确定下列事项。
(1)确定土质级别:根据工程地质资料中的土层构造、土壤物理力学性能及每米沉桩时间鉴别适用定额土质级别。
(2)确定施工方法、工艺流程,采用机型,桩、土壤泥浆运距。
2.打预制钢筋混凝土桩(含管桩)的工程量,按设计桩长(包括桩尖,即不扣除桩尖虚体积)乘以桩截面面积以立方米计算。
管桩的空心体积应扣除。
3.静力压桩机压桩。
(1)静压方桩工程量按设计桩长(包括桩尖,即不扣除桩尖虚体积)乘以桩截面面积以立方米计算。
(2)静压管桩工程量按设计长度以米计算;管桩的空心部分灌注混凝土,工程量按设计灌注长度乘以桩芯截面面积以立方米计算;预制钢筋混凝土管桩如需设置钢桩尖时,钢桩尖制作、安装按实际重量套用一般铁件定额计算。
4.螺旋钻机钻孔取土按钻孔入土深度以米计算。
5.接桩:电焊接桩按设计接头,以个计算;硫磺胶泥按桩断面以平方米计算。
6.送桩:按桩截面面积乘以送桩长度(即打桩架底至桩顶高度或自桩顶面至自然地平面另加0.5m)以立方米计算。
7.打孔灌注桩。
(1)混凝土桩、砂桩、碎石桩的体积,按[设计桩长(包括桩尖,即不扣除桩尖虚体积)+设计超灌长度]×设计桩截面面积计算。
(2)扩大(复打)桩的体积按单桩体积乘以次数计算。
(3)打孔时,先埋入预制混凝土桩尖,再灌注混凝土者,桩尖的制作和运输按本定额A.4混凝土及钢筋混凝土工程相应子目以立方米计算,灌注桩体积按[设计长度(自桩尖顶面至桩顶面高度)+设计超灌长度]×设计桩截面积计算。
8.钻(冲)孔灌注桩和旋挖桩分成孔、灌芯、入岩工程量计算。
(1)钻(冲)孔灌注桩、旋挖桩成孔工程量按成孔长度乘以设计桩截面积以立方米计算。
成孔长度为打桩前的自然地坪标高至设计桩底的长度。
(2)灌注混凝土工程量按桩长乘以设计桩截面积计算,桩长=设计桩长+设计超灌长度,如设计图纸未注明超灌长度,则超灌长度按500mm计算。
(3)钻(冲)孔灌注桩、旋挖桩入岩工程量按入岩部份的体积计算。
钻孔灌注桩与PHC管桩的分析与对比

钻孔灌注桩与PHC管桩的分析与对比摘要:本文就钻孔灌注桩与PHC管桩的性价比以及施工成本、质量效果、环保效益等对比分析基础上,以某软土基坑支护工程为例,对其施工应用的作用优势进行研究。
关键词:钻孔灌注桩 PHC桩软土基坑支护应用对比在社会经济的发展推动下,各项工程项目建设也取得了相应的突破和发展,对工程建设应用技术及质量水平要求越来越高。
其中,基础工程作为项目建设重要一部分,其施工质量及成本等,对整个工程项目建设的质量、效益都存在较大的影响。
桩基础作为基础处理的主要技术方式,在各类建筑以及道路桥梁等工程建设中都有广泛的应用,而第钻孔灌注桩与PHC管桩作为桩基础中使用最多的两种类型,其具有各自不同的特征和优势,在工程项目基础施工中的应用效果也表现不同。
下文将对钻孔灌注桩与PHC管桩进行对比分析,以供参考。
1、钻孔灌注桩与PHC管桩的各项性能特点对比分析结合桩基础施工实际情况,钻孔灌注桩与PHC管桩作为两种较为常见的桩基础类型,其中,PHC管桩进行基础施工应用,具有施工速度快,且造价低、桩身质量可控性较好等特征优势,但由于其抗弯性能较差,再加上桩长较短并且无法接长等原因,在基础施工中存在一定的局限性,而钻孔灌注桩则具有适应性较强等优势,但由于其施工工序复杂,且桩身质量可控性较差、施工成本较高等,也存在一定的局限性。
首先,在施工应用的性价比上,从单桩承载力情况来看,由于桩基础的承载力确定是进行桩基础施工设计的重要内容和部分,其中,单桩承载力则是桩基承载力设计确定的基本要素,一般情况下,在进行桩基础承载力设计中,对单桩承载力计算需要从桩身强度与岩土阻力两个方面进行计算分析,以其计算结果的最小值作为桩基础的单桩承载力大小。
根据PHC管桩与钻孔灌注桩的单桩承载力计算公式,其中,以桩身强度进行单桩承载力计算中,在桩身截面与桩径大小相同的情况,PHC管桩的桩身强度等级明显高于钻孔灌注桩,由此可见,PHC管桩单桩轴向承载力较钻孔灌注桩大,且PHC管桩的桩身截面面积在达到钻孔灌注桩的31%至50%之间时,即可达到与其相同的单桩轴向承载力。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
土厚li(m) 13
பைடு நூலகம்
基底应力(kpa) 桩横向间距(m) 桩竖向间距(m) 单桩承载力标准 值Quk 结论: 有效桩长L= 单桩承载力特征 值Ra= Quk=μp*∑qsik*li+Ap*qpk
3600
13 1043.008761 单桩荷载标准值 (kN) 816
说明:1。本表按JGJ94-2008编制。 2。红色部分人工输入
桩外径D(mm) 截面钢筋数 钢筋直径(mm) 钢筋强度设计值 混凝土强度设计值 钢筋截面面积 混凝土截面面积
400 16 22 360 14.3 6079.04 119520.96
成桩工艺系数 0.9fy'·As' φ c·fc·Aps 桩身承载力
0.7 1969.60896 1196.40481 3166.01377
灌注桩承载力计算
桩侧土磨擦 阻力标准值 桩端土阻力标准 (qsik) 值(qpk) 100 ZK275
设计计算:
机具条件: 有效桩长(m) 桩截面面积(m ) 桩周长μ
p 2
外径D(m) 0.4 L= Ap=D *π/4 μp=D*π pk= d1= d2= 2086.017522
2
桩长范围土层名称 13 0.126 1.257 160 1.7 3 1 2 3 4 5 6