2014_管桩水平承载力计算
上部扩大桩水平承载力计算

上部扩大桩水平承载力计算上部扩大桩是指在桩顶部增加一个拓宽部分,以增加桩的承载能力。
在实际工程中,经常会遇到土层较软或承载力要求较高的情况,此时可采用上部扩大桩来提高桩的水平承载能力。
本文将介绍上部扩大桩水平承载力的计算方法,以帮助工程师在设计过程中准确地评估桩的承载能力。
一、桩的水平承载力计算公式对于普通桩,其水平承载力可以通过下式计算:Q=p×A其中,Q为桩的水平承载力,单位为N;p为土壤的侧摩阻力,单位为N/m^2;A为桩的受力面积,单位为m^2对于上部扩大桩,其水平承载力可以通过以下公式计算:Q=p×A+T×h其中,Q为桩的水平承载力,单位为N;p为土壤的侧摩阻力,单位为N/m^2;A为桩的受力面积,单位为m^2;T为桩的承载能力提高系数,无单位;h为上部扩大桩的拓宽高度,单位为m。
二、上部扩大桩水平承载力计算方法1.确定土壤的侧摩阻力p首先需要确定桩周围土壤的侧摩阻力p。
通常可以通过现场取样测试或者地质勘探数据来获得土壤的侧摩阻力值。
2.计算桩的受力面积A桩的受力面积A取决于桩的截面形状和尺寸,一般可以根据实际情况来计算。
3.确定桩的承载能力提高系数T桩的承载能力提高系数T通常取决于桩的拓宽形式和拓宽高度h。
一般情况下,可以通过试验或者经验数据来确定。
4.计算桩的水平承载力Q根据上述公式,将p、A、T、h代入,即可计算得到桩的水平承载力Q。
三、案例分析以项目中的上部扩大桩为例,桩的直径为1.2m,拓宽高度为0.6m,土壤的侧摩阻力为200kN/m^2,桩的承载能力提高系数为1.51.计算桩的受力面积A桩的受力面积A为:A=π×(1.2/2)^2=1.13m^22.计算桩的水平承载力QQ=200kN/m^2×1.13m^2+1.5×200kN/m^2×0.6m=450kN+180kN=630kN因此,该上部扩大桩的水平承载力为630kN。
管桩水平承载力计算

桩空心部分截
单 面惯性距 I1 桩 桩身换算截面 水 惯性距 Io
平 钢筋混凝土桩 承 EI 载 力 (4)、桩的水平变 设 形系数 α 按下 计 式确定:(桩基 值 5.7.5)
计
算
对于圆形桩,
当直径 d≤1m时,
桩的水平变形 系数 α
(5)、桩顶水平位 移系数 νx: (查表 规范 5.7.2)
桩类型:钢筋混 凝土预制管桩 PHC 桩身直径d 桩身壁厚C 混凝土强度等级 混凝土弹性模量 Ec 桩身纵筋As 基 净保护层厚度c 本 钢筋弹性模量Es 资 桩入土深度 料 桩侧土水平抗力 系数的比例系数m
桩顶容许水平位 移χoa
(1)、桩身面积Ac (2)、桩身配筋率 ρg (3)、桩身抗弯刚 度 EI:
扣除保护层的 桩直径do
钢筋弹性模量与 混凝土弹性模量的比 值αE
桩身全截面换算截 面惯性距 I2=
单 桩 水
单桩水平
承载力特
500径+1: 铰接、自由
d= C=
Ec=
As= c= Es= h=
(查表5.7.5) m=
500 mm 100 mm C80
38000 N/mm2
700 mm2 45 mm
195000 N/mm2 40 m
3.5 MN/m4
χoa=
10 mm
Ac=π[d2-(d2C)2]/4=
ρg=As/Ac=
125660 mm2 0.0056
do=d-2c=
410 mm
αE=Es/Ec=
πd2[d2+2(αE-1) ρgdo2]/64=
5.13 0.00316 m4
(6)、单桩水平承载 力特征值
νx=
桩基础水平承载力的概念及计算方法

桩基础水平承载力的概念及计算方法
计算桩基础水平承载力的方法有很多种,其中常用的有动力触探法和
静载试验法。
动力触探法是通过在地面上利用锤击力和桩周土体的反应力来获取桩
基础水平承载力。
具体步骤如下:
1.在距离桩基础位置一定距离的地面上,设立一个与桩平行的触探点。
2.用一根标准试验杆在触探点上进行锤击,测量锤击时试验杆的侵入
深度,并记录锤击杆的质量、锤头的质量以及锤击时的下落高度。
3.通过试验杆侵入深度和试验杆的土壤类别(根据试验杆在不同土层
中的侵入速度判断)来确定土壤的力学特性。
4.根据土壤的力学特性和地面反应力,计算桩基础水平承载力。
静载试验法是通过在已经完成的桩基础上施加水平荷载,并进行荷载
与位移的测量来计算桩基础水平承载力。
具体步骤如下:
1.安装测量设备,包括荷载计和位移计。
2.施加水平荷载,并记录荷载与位移的变化。
3.根据施加的荷载和位移数据,绘制荷载-位移曲线。
4.通过荷载-位移曲线的形状和荷载的变化,计算桩基础水平承载力。
无论是动力触探法还是静载试验法,计算桩基础水平承载力都需要考
虑土壤的力学参数和桩的几何尺寸。
土壤的力学参数可以通过室内试验或
者现场试验来测定,如剪切强度和压缩模量等。
桩的几何尺寸包括桩的形状、直径和长度等。
需要注意的是,动力触探法和静载试验法只能计算桩的垂直承载力,对于水平承载力的计算只能提供参考值。
因此,在实际工程中,还需要根据具体情况综合考虑各种因素,如土壤的力学特性、桩的类型和设计要求等,进行合理的安全系数选取,以保证桩基础的安全可靠。
管桩水平承载力计算

管桩水平承载力计算桩水平承载力是指桩的抗侧力能力,是桩基础设计和施工中需要重点考虑的一个指标。
桩水平承载力的计算方法有很多种,常见的有静力分析法、动力分析法、试验法等。
下面主要介绍静力分析法和动力分析法两种计算方法。
一、静力分析法:静力分析法是通过土力学原理,根据土体的力学性质,计算桩在侧向荷载作用下的水平承载力。
主要包括刚度方法和土压力分布法两种计算方法。
1.刚度方法:刚度方法是根据桩与土体之间的刚度差异来计算桩的水平承载力,常用的有极限平衡法、有限差分法、有限元法等。
其中,基于极限平衡法的计算比较常见,步骤如下:(1)假设桩的侧向土壁是铰接的,即桩与土壁之间无摩擦力,土壁不发生变形;(2)假设土体的应力及变形分布满足柯西弹性体的假设;(3)根据桩与土体之间的刚度差异,可以得出桩的水平承载力。
2.土压力分布法:土压力分布法是根据土的压力与位移的关系,计算桩的水平承载力。
常用的计算方法有半解析法和数值方法等。
步骤如下:(1)假设桩的侧向土壁满足弹性理论;(2)根据桩与土体之间的弹性特性,建立土压力与位移的关系;(3)通过求解土压力与位移的方程,可以得出桩的水平承载力。
二、动力分析法:动力分析法是通过桩的震动响应来计算桩的水平承载力,主要包括共振振动法和波动等分析法两种计算方法。
1.共振振动法:共振振动法利用地震波或振动源作用下,桩在共振状态下的位移与力的关系,计算桩的水平承载力。
常用的计算方法有共振理论和能量耗散法等。
步骤如下:(1)假设桩在共振状态下,即地震波或振动源与桩的共振频率相等;(2)根据桩的动力响应,计算桩的位移与力的关系;(3)通过求解共振频率与位移的方程,可以得出桩的水平承载力。
2.波动等分析法:波动等分析法是通过桩在地震波或振动源作用下的波动等传播过程,计算桩的水平承载力。
常用的计算方法有单桩法和双桩法等。
步骤如下:(1)假设桩与土体之间的相互作用满足弹性理论,桩与土体之间的刚度满足一定的关系;(2)根据桩与土体之间的动力特性,建立桩的动力方程;(3)通过求解动力方程,可以得出桩的水平承载力。
预制管桩承载力计算

预制管桩承载力计算预制管桩是一种常用的地基处理技术,广泛应用于建筑工程和基础设施建设中。
在设计和施工过程中,准确计算预制管桩的承载力至关重要,以确保工程的安全和稳定。
本文将介绍预制管桩承载力计算的基本原理和方法。
预制管桩的承载力是指它所能承受的最大垂直荷载。
准确计算预制管桩的承载力需要考虑多个因素,包括土壤的物理力学性质、预制管桩的几何形状和材料性质等。
常用的预制管桩承载力计算方法包括静力触探法、动力触探法和数值模拟法等。
静力触探法是一种常用的预制管桩承载力计算方法。
该方法通过在预制管桩周围进行静力触探试验,测量土壤的抗力和变形性质,从而推断出预制管桩的承载力。
静力触探法适用于土质较为均匀的场地,可以提供较为准确的承载力计算结果。
动力触探法也是一种常用的预制管桩承载力计算方法。
该方法通过在预制管桩顶部施加冲击力,观测预制管桩的振动响应,从而推断出其承载力。
动力触探法适用于土质较为松散或不均匀的场地,可以提供较为准确的承载力计算结果。
数值模拟法是一种基于数值分析的预制管桩承载力计算方法。
该方法通过建立土体和预制管桩的有限元模型,模拟施加在预制管桩上的荷载作用,从而计算出其承载力。
数值模拟法适用于复杂地质条件和荷载情况下的承载力计算,可以提供较为准确的结果。
在进行预制管桩承载力计算时,需要考虑土壤的物理力学性质。
土壤的抗剪强度、压缩性和变形特性等参数将直接影响预制管桩的承载力。
因此,需要进行土壤试验和实地观测,获取土壤参数的准确数值。
预制管桩的几何形状和材料性质也是承载力计算的重要考虑因素。
预制管桩的直径、壁厚和长度等参数将决定其抗弯和抗压能力。
另外,预制管桩的材料强度和刚度也将影响其承载力。
因此,在进行承载力计算时,需要准确了解预制管桩的几何和材料参数。
预制管桩承载力计算是建筑工程和基础设施建设中的重要任务。
通过静力触探法、动力触探法和数值模拟法等方法,可以准确计算出预制管桩的承载力,并为工程设计和施工提供可靠的依据。
桩基础水平承载力的概念及计算方法(五)

桩基础水平承载力的概念及计算方法(五)澳门特别行政区某住宅公屋项目,由1栋34层高塔楼、4层裙房及塔楼局部地下空间组成,局部地下空间为深埋主缆,埋深为6.0m;其余为浅埋承台及地梁,其埋深为1.6m~2.6m。
塔楼为带梁式转换层剪力墙结构,裙楼为框架剪力墙结构中,勘察报告将地层从上而下划分为5层,分别是填土层、上层海相沉积层、冲积层、下层海相沉积层及基岩三层,主要由淤泥(mud)、砂土(Sand)、黏土(Clay)、完全风化花岗岩(C.D.G)以及中会风化花岗岩(M.D.G)、微风化花岗岩(S.D.G)等岩土层组成。
建筑物不设整体地下室,设计采用在塔楼中部设置平面尺寸为31.7m×27.6m的地下室,其承台埋深为6.0m;五桩沉箱及基桩数大于5的承台埋深为2.4m;其余承台埋深为1.9m;承台间设置基础梁及地面结构层,地梁埋深1.6m,地面层板厚度为250mm。
桩基设计为直径Φ610mm进度表预钻孔工字钢水泥浆灌注桩,桩隔墙端进入中风化或微风化花岗岩层,单桩竖向沃尔穆特征值为4900kN,单桩水平承载力特征值为100kN,桩基平面布置见图1。
该工程水平很大风荷载关键作用较大,由于东西两侧高层柱廊下无东西地下室,设计采用粉喷水泥土桩对周围地基土进行加固,并在场地四周设置永久钢板桩,地基修复深度拟定为6m,以满足基桩水平承载力要求。
为可以有效传递结构劳动生产率力,基础梁与地面层结构应有足够的厚度及刚度,使得建筑物各承台短期内可想像成整体,以有效递送水平作用,降低基底应力和建筑物的建筑物水平位移。
另外,为保证蒙孔图填土对基础的埋置约束作用,承台施工完毕后,应及时进行回填工作,承台周围回填土应均匀自上而下夯实,以保证回填土与外围土体紧密基础,能有效传递水平力。
根据以上条件,对该工程在水平风荷载下的基础水平承载力进行验算,验算按照《建筑桩基技术规范》JGJ94-2021中5.7节相关新规定进行计算,并在考虑承台(含地下墙体)-桩-土共同作用下进行分析,计算其在水平风载作用下桩基承台位移、桩身内力等。
桩水平承载力计算

桩水平承载力计算
首先,计算桩身抗压力。
桩身抗压力是指桩在承受侧向荷载时桩身的
变形和破坏。
计算桩身抗压力主要有以下两种方法:
1.基于凝聚力和内摩擦角的计算方法。
通过土的强度参数(如凝聚力
和内摩擦角)来计算桩身抗压力。
2.基于太切理论的计算方法。
太切理论是一种经验公式,通过考虑桩
体周围土体的太切应力来计算桩身抗压力。
其次,计算桩顶抗剪力。
桩顶抗剪力是指桩在承受侧向荷载时顶部混
凝土的变形和破坏。
计算桩顶抗剪力主要有以下两种方法:
1.基于反力法的计算方法。
利用反力法,可以计算出桩顶抗剪力的大小。
2.基于双曲抛物弯矩分布的计算方法。
通过假设桩顶的弯矩分布为双
曲抛物形状,可以计算出桩顶抗剪力的大小。
此外,还需要考虑桩的嵌入深度和直径等因素。
桩的嵌入深度越深,
桩的水平承载力越大。
而桩的直径越大,桩的水平承载力也越大。
在实际计算中,可以通过现场试验或数值模拟来确定桩的水平承载力。
通过实际试验可以获得桩的承载性状曲线,从而计算出桩的水平承载力。
总之,桩水平承载力的计算是确定桩在承受侧向荷载时的能力,需要
考虑桩身抗压力和桩顶抗剪力,以及桩的嵌入深度和直径等因素。
通过现
场试验或数值模拟可以确定桩的水平承载力。
管桩水平承载力计算

管桩水平承载力计算管桩水平承载力是指管桩在水平方向上所能承受的荷载能力。
管桩是一种常用的地基处理方法,它由钢管或混凝土管组成,通常安装在土壤中以增加地基的承载能力。
今天,我们将详细介绍管桩水平承载力的计算方法,希望对研究和实践工程的工程师们有所帮助。
首先,我们需要确定管桩水平承载力计算的参数。
主要包括以下几个方面:1. 土壤参数:包括土壤的抗剪强度、土壤的容重和土壤的摩擦角等。
这些参数可以通过地基勘探和实验室试验来确定。
2. 管桩本身的参数:包括管桩的几何尺寸和材料力学性质等。
这些参数可以通过设计图纸和材料试验来获取。
确定了这些参数后,我们就可以进行管桩水平承载力的计算了。
计算方法根据不同的情况可以分为以下两种情况:情况一:管桩位于强固土层中。
这种情况下,管桩的水平承载力主要由管桩端部的摩擦力和管桩周围土壤的侧阻力组成。
摩擦力的计算可以使用库仑公式:Ff = N * tan(φ) + Qs *tan(φs),其中Ff表示摩擦力,N表示管桩端部土壤的单位长度力(垂直于桩的方向),tan(φ)表示土壤的摩擦角。
Qs为静止充实土层的侧向应力。
侧阻力的计算可以使用托马森公式:Fp = σ * As + Qp,其中Fp 表示侧阻力,σ表示土壤的有效应力,As表示管桩的侧表面积,Qp表示充实土层的侧向应力。
情况二:管桩位于松散土层中。
这种情况下,管桩的水平承载力主要由管桩端部的摩擦力和桩身的摩阻力组成。
摩擦力的计算同样使用库仑公式,而桩身的摩阻力可以使用莫尔-库伦公式:Fs = τ * As,其中Fs表示桩身的摩阻力,τ表示土壤的单位剪切强度。
以上就是管桩水平承载力的计算方法,但需要注意的是,这只是一种理论上的计算方法,实际工程中还需要考虑其他因素的影响,如孔周土壤的变形和桩身与土壤之间的强度相互作用等。
总之,管桩水平承载力的计算对于工程设计和实施至关重要,它直接影响到管桩的使用效果和工程的安全性。
希望通过本文的介绍,能够帮助工程师们更好地理解管桩水平承载力的计算方法,并在实践中做出合理的设计和决策。