2015年江苏泰州中考数学真题及解析word完整版资料

合集下载

江苏省13市2015年中考数学试题分类解析汇编(20专题)专题2:代数式问题

江苏省13市2015年中考数学试题分类解析汇编(20专题)专题2:代数式问题

【答案】解:原式= 2212425xxxx【考点】整式的混合运算.【分析】利用完全平方公式和单项式乘多项式法那么展开,再合并得出答案即可.6.〔2021 年XXXX5分〕计算: 121a1aa.【答案】解:原式= a1a1aa1a1a1.【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.7.〔2021 年XXXX8分〕先化简,再求值:11a2a13a1,其中a4.【答案】解:原式=223a1a11aa3a2a13a1a1a1aa1.当a4时,原式=34441 .【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后代入a4求值.aa118.〔2021 年XXXX4分〕化简:2a1a1a1【答案】解:原式=aa11aa11a1a1a1a1a1aa1.【考点】分式的化简.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.9.〔2021 年XXXX6分〕先化简,再求值: 2x1x2x,其中x=2.【答案】解:原式22122221xxxxx,当x=2时,原式=8+1=9.【考点】整式的混合运算〔化简求值〕.【分析】原式第一项利用完全平方公式化简,第二项利用单项式乘以多项式法那么计算,去括号合并得到最简结果,把x的值代入计算即可求出值.218y02510.〔2021 年XXXX8分〕先化简个合.适.的数作为x的值,代入求值.00 11x12xx2x44,再从1、2、3三个数中选一【答案】解:原式=2x21x1x1x22x2x2x2x1x2.取x3代入,得,原式=321.【考点】分式的化简求值;分式有意义的条件.【分析】先将括号里面的通分后,将除法转换成乘法,约分化简.然后取使分式分母和除式不为0的x代入求值.【2:21·0·1·3】11.〔2021 年XXXX4分〕化简: 121a1a12a.【答案】解:原式=a1a1a1a1a11aa1. a12aa12a2【考点】分式的混合运算.【分析】先算括号中的加法通分,再算乘法约分即可.。

2015年江苏省泰州市初中毕业、升学统一考试(附答案)

2015年江苏省泰州市初中毕业、升学统一考试(附答案)

泰州市二〇一五年初中毕业、升学统一考试物理试题请注意:1.本试卷分选择题和非选择题两个部分.2.答题卡正面为化学学科的答题范围,反面为物理学科的答题范围.所有试题的答案均填写在答题卡上,写在试卷上无效.3.作图必须用2B 铅笔,并加黑加粗.第一部分 选择题(共24分)一、选择题(每题4个选项中只有1个符合题意.每题2分,共24分)21.下列有关物理量的估算,符合实际的是A .人正常心跳一次的时间约2sB .挂壁式空调的额定功率约1.2kWC .泰州地区冬季最低气温可达-25℃D .人的拇指宽度约为10cm22.开发和利用清洁能源是我国社会发展面临的重要课题,以下属于清洁能源的是A .天然气B .煤C .石油D .太阳能23.冬天戴眼镜的人进入温暖的室内时,镜片会变得“模糊”,产生该现象的原因是室内的水蒸气发生了A .液化B .凝华C .汽化D .凝固24.如图所示的四种现象,属于光的直线传播的是A .在二胡琴弓的弓毛上涂上松香B .自行车刹车时用力捏刹把C .古人利用滚木移动巨石D .“玉兔号”月球车车轮上刻有花纹26.如图,小球从斜面上A 处由静止滚下,经过B 处,最终停在粗糙水平面上的C 处.下列说法错误..的是 A .小球由A 处运动到B 处,重力势能主要转化为动能 B .小球由B 处运动到C 处,阻力改变了小球的运动状态C .小球由A 处运动到C 处的整个过程中,做减速运动D .小球停在C 处时,所受的重力和支持力是一对平衡力27.下列物体的运动可近似看作匀速直线运动的是A .正在进站的火车B .离开脚后在草地上滚动的足球C .站在商场自动扶梯上顾客的运动D .绕地球匀速转动的“北斗”卫星28.如图所示的几种器件,工作时应用了电磁感应现象的是B .电风扇C .电铃D .门吸 A .风力发电机 第28题图 A B C 第26题图第32题图乙第32题图甲 第32题图丙29.某学校地下车库有南北两个进出口,每个进出口处装有感应开关.当有车辆从任何一个进出口经过时,开关自动闭合一段时间,值班室内的指示灯会亮,提醒门卫有车辆通过,以便监视进出口安全.下列电路图中,符合要求的是30.如图所示,A 、B 、C 是三个圆柱形容器,分别装有水或酒精(ρ酒精<ρ水),A 、C 两容器中液体深度相同,B 、C 两容器的底面积相同.三个容器底部所受的液体压强分别为p A 、p B 、p C ,下列判断正确的是A .p A >pB >pC B .p C <p A =p B C .p A >p B =p CD . p C <p A <p B31.如图所示的电路,电源电压不变.闭合开关,滑动变阻器的滑片向右移动的过程中,电流表与电压表示数变化的情况分别是A .变小 不变B .变大 变小C .变大 变大D .变大 不变32.如图甲是灯泡L 和电阻R 的I -U 关系图像,灯丝电阻受温度的影响,温度越高电阻越大.将L 和R 以两种不同的方式接在同一电源上,如图乙和丙.若乙图中U 1︰U 2= m ,丙图中I 1A .m =nB .m =n 1C .m <n 1D . m >n1 第二部分 非选择题 (共76分)二、填空题(本题有9小题,每空1分,共24分)33.把正在发声的音叉插入水中,水面激起了水花,说明发声的物体在 ▲ ;中考考场附近禁止机动车鸣笛,这是从 ▲ 控制噪声.34.2015年,我国无人驾驶汽车红旗HQ3将再次进行长途测试.之前的测试中,该车的平均车速约90km/h ,合 ▲ m/s ;车载高精度GPS系统可对车实时定位,该系统定位时利用A B D C第29题图 A B C 水 水 酒精第30题图 第31题图 R了 ▲ (选填“电磁波”或“超声波”);自动行驶过程中,路边树木相对该车是 ▲ 的.35.将塑料绳的一端扎紧,尽可能将其撕成更多的细丝,用干燥的手从上向下捋几下,观察到如图所示的现象.这是因为塑料丝带了 ▲ 电荷(选填“同种”或“异种”),这种使塑料丝带电的方法称为 ▲ ,塑料丝带电的实质是 ▲ 在物体间转移.36.如图,在易拉罐中注入少量的水,对易拉罐加热,待罐口出现白雾时,用橡皮泥堵住罐口,撤去酒精灯.一段时间后,会观察到易拉罐变瘪了,这说明了 ▲ 的存在,同时也说明了力可以改变物体的 ▲ . 37.如图,水平桌面上有一块圆形玻璃转盘,距转盘2m 高处有一盏灯成像在其中.灯的像距离该灯 ▲ m ;若用手水平拨动转盘,则会观察到灯的像的位置 ▲(选填“改变”或 “不改变”),停止拨动转盘后,转盘还会继续转动,这是由于转盘具有 ▲ .38.如图,一重为0.5N 的鸡蛋沉在水底,向水中加入食盐并搅拌,鸡蛋仍沉在水底,此过程中鸡蛋受到的浮力 ▲ (选填“变大”、“变小”或“不变”);继续加入食盐并搅拌,鸡蛋上浮,最终静止时排开盐水的重力 ▲ 0.5N (选填“>”、“<”或“=”).39.如图所示,在空气压缩引火仪的玻璃筒底部放一小团干燥的棉花,快速压下活塞,可观察到棉花着火燃烧.此过程中活塞对筒内气体做功,气体的内能 ▲ ,这与四冲程汽油机的 ▲ 冲程的能量转化相同.某台汽油机飞轮的转速为2400r/min ,在1min 内,汽油机完成 ▲ 个工作循环.40.有一杠杆经过调节,处于水平平衡状态.如图所示,在A 点悬挂三个钩码(每个钩码重均为0.5N ),要使杠杆水平平衡,需在B 点悬挂 ▲ 个钩码;取走悬挂在B 点的钩码,改用弹簧测力计在C 点竖直向上拉,使杠杆水平平衡,测力计的拉力为▲N;如改变测力计拉力的方向,使之斜向右上方,杠杆仍然水平平衡,测力计的读数将 ▲ . 41.如图甲是一种新型插座,它能即时显示接在该插座上的用电器的工作电压和所耗电费等(插座本身消耗电能由内部电池提供).小明将装有质量为2.4kg 、初温为10℃水的电水壶插在该插座上,这时插座屏幕上显示如图乙所示,当水烧开至100℃时,屏幕显示如图丙所示.这段时间内电水壶消耗的电能为 ▲ J ,实际功率为▲ W ,电水壶烧水的效率为 ▲ .[电费单价:0.5元/ kW·h ;c 水=4.2×103J/(kg·℃)]第39题图 灯的像 第37题图 第38题图 第40题图第36题图 第35题图 电压 时钟 电费 元 第41题图乙 电压 时钟 电费 元 第41题图丙第41题图甲第44题图 三、解答题(本题有8小题,共52分.解答43、44题时应写出解题过程)42.(6分)根据要求作图.(1)如图甲,在图中画出与入射光线对应的折射光线.(2)如图乙,物体A 静止在斜面上,画出物体A 对斜面压力的示意图.(3)如图丙,在虚线框内分别画出开关和灯泡的符号,使之符合安全用电要求.43.(7分)质量为20kg 、底面积100cm 2的物体静止在水平地面上.用如图所示的滑轮组在5s 内将物体匀速竖直提升3m ,已知动滑轮重50N,不计绳重和摩擦.(g =10N/kg )求:(1)提升前,物体静止在水平地面上时对地面的压强;(2)拉力F 的功率;(3)滑轮组的机械效率.44.(6分)某型号的电饭锅有两挡,其原理如图所示,电阻R 1=44Ω.当开关S 闭合时,电饭锅处于高温挡,当开关S 断开时,电饭锅处于焖饭、保温挡,焖饭、保温时电饭锅的功率为高温挡功率的0.02倍.求: (1)高温挡的功率; (2)焖饭、保温时电路中的电流;(3)电阻R 2的阻值.45.(5分)(1)如图甲所示的温度计的分度值是 ▲ ℃,读数时视线应与液柱上表面 ▲ ;(2)如图乙,秒表的读数为 ▲ s ;(3)弹簧测力计在使用前应检查指针 ▲ ;如图丙是使用弹簧测力计测力时的情景,请指出图中存在的操作错误: ▲ .A 第42题图乙 第42题图丙第42题图甲第43题图 第45题图甲 第45题图乙 第45题图丙46.(5分)在“探究凸透镜成像规律”的实验中,凸透镜的焦距为10cm .(1)调整实验器材,使烛焰和光屏的中心位于凸透镜的主光轴上,如图所示,这样调整的目的是为了 ▲ .(2)把点燃的蜡烛由图示位置移至光具座的14cm刻度处时,需将光屏向 ▲ (选填“左”或“右”)移动才能在光屏上成清晰、倒立、 ▲ 的实像; ▲ 就是利用这一成像规律工作的.(3)完成实验后,继续模拟远视眼的缺陷:给透镜戴上远视眼镜,调节光屏的位置,使烛焰在光屏上成一个清晰的像;取下远视眼镜,保持蜡烛和凸透镜的位置不变,为使光屏上再次得到清晰的像,应将光屏 ▲ (选填“远离”或“靠近”)透镜.47.(7分)有一种巧妙测量人体血液密度的方法,测量前需先用天平和量筒测定几种硫酸铜溶液的密度备用.(1)测量前,应把天平放在 ▲ 上,当移动游码至零刻度处时,指针偏向分度盘的右侧,则应将平衡螺母向 ▲ 调,使指针指在分度盘的中央. (2)接下来的测量步骤如下:①往空烧杯中倒入适量的硫酸铜溶液,测出烧杯和溶液的质量为49.2g ;②将烧杯中的一部分溶液倒入量筒,读出量筒中溶液的体积为20mL ;③测出烧杯和剩余溶液的质量,砝码及游码的位置如图所示.将下面的实验记录表填写完整.(3)测定血液密度时,具体操作如下:在几支试管中分别装入密度已知且不等的硫酸铜溶液;然后向每支试管中滴入一滴待测血液,只要看到哪一支试管中的血滴处于悬浮状态,就知道被测血液的密度了.这是为什么?请利用所学知识,简要分析,写出推理过程.分析推理过程: ▲.(2分) 48.(5分) (1)按图甲组装实验器材,给直导线通电,直导线向左运动,这说明 ▲ 对通电直导线有力的作用;只对调电源正负极接线,通电直导线会向 ▲ 运动,这说明通电导体的受力方向与 ▲ 有关.(2)如图乙是某兴趣小组制作的神奇转框,框的上部中央与电池正极相连,下部紧贴在与电池负极相连的柱形物两侧,金属框就可以绕电池持续转动.据此,你认为构成柱形物的材料应具有较好的: ▲ 、 ▲ .(填物理属性)第47题图 +_N 直导线S 第48题图甲第48题图乙 第46题图49.(11分)(1)如图甲是小明“探究并联电路电流特点”的电路图.实验中,他将一只电流表分别接在A 、B 、C 三处,测得的数据如图甲中所示.完成此实验至少需要 ▲ 根导线;小明由此得出:并联电路中干路电流等于 ▲ ;请指出小明就此得出结论的不科学之处: ▲ ,你认为可做出的改进措施是 ▲ .(2)小华用如图乙所示电路测量小灯泡的额定功率,小灯泡上标有“3.8V ”的字样,额定功率约1W ,滑动变阻器的规格是“20Ω 1A ”,电源电压恒为6V .①帮小华在图乙上补画导线,使其成为完整的实验电路.要求:滑动变阻器的滑片向右滑动时,灯泡变亮.②在实验中,小华不慎将电流表和电压表的位置接反了,则合上开关后看到的现象可能是 ▲A .只有电流表有示数,灯不亮B .两电表均有示数,灯亮C .只有电压表有示数,灯不亮D .只有电流表有示数,灯亮③排除故障后,小华闭合开关并调节滑动变阻器的滑片,当灯正常发光时,电流表的示数如图丙所示,该电流值为 ▲ A ,测出的额定功率为 ▲ W .④小华刚准备拆除电路结束实验时,同组的小红提出,在调节滑片使灯正常发光时,电压表的示数很难准确达到3.8V ,可能因此造成一定的测量误差.她认为可以在小华第③步实验的基础上,对电路稍作改动,能提高测量数据的精确度.请帮小红补全测量步骤(补全步骤时必须准确阐述接法和操作要点):a .断开开关, ▲ ;(2分)b .闭合开关, ▲ ,并读出此时电流表的示数;c .计算出灯的额定功率.第49题图丙第49题图乙。

2015中考数学-2014中考数学真题分类解析

2015中考数学-2014中考数学真题分类解析

2015年中考数学备考资料2014年中考数学真题分类解析关于本文档:●朱永强搜集整理●共204页目录2014年中考数学真题分类解析-三角形的边与角 (2)一、选择题 (2)二、填空题 (5)2014年中考数学真题分类解析-运动变化类的压轴题 (7)一、单动点问题 (7)二、双动点问题 (26)三、几何图形运动问题 (41)2014年中考数学真题分类解析-平移旋转与对称 (48)一、选择题 (48)二、填空题 (57)三、解答题 (61)2014年中考数学真题分类解析-图形的展开与叠折 (70)一、选择题 (70)二、填空题 (73)三、解答题 (76)2014年中考数学真题分类解析-图形的相似与位似 (77)一、选择题 (77)二、填空题 (81)三、解答题 (84)2014年中考数学真题分类解析-矩形菱形与正方形 (116)一、选择题 (116)二、填空题 (125)三、解答题 (129)2014年中考数学真题分类解析-投影与视图 (156)一、选择题 (157)二、填空题 (167)2014年中考数学真题分类解析-与特殊四边形有关的填空压轴题 (168)2014年中考数学真题分类解析-实数 (180)一、选择题 (180)二、填空题 (187)三、解答题 (190)2014年中考数学真题分类解析-一元一次方程及其应用 (195)一、选择题 (195)二、填空题 (196)三、解答题 (196)2014年中考数学真题分类解析-三角形的边与角一、选择题1. (2014•广东,第9题3分)一个等腰三角形的两边长分别是3和7,则它的周长为()A.17 B.15 C.13 D.13或17【考点】等腰三角形的性质;三角形三边关系.【解答】解:①当等腰三角形的腰为3,底为7时,3+3<7不能构成三角形;②当等腰三角形的腰为7,底为3时,周长为3+7+7=17.故这个等腰三角形的周长是17.故选A.2. (2014•广西玉林市、防城港市,第10题3分)在等腰△ABC中,AB=AC,其周长为20cm,则AB 边的取值范围是(),3. (2014•湖南邵阳,第5题3分)如图,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC 于D,DE∥AB,交AC于E,则∠ADE的大小是()∠=4.(2014·台湾,第18题3分)如图,锐角三角形ABC中,直线L为BC的中垂线,直线M为∠ABC 的角平分线,L与M相交于P点.若∠A=60°,∠ACP=24°,则∠ABP的度数为何?()A.24 B.30 C.32 D.36解:∵直线M为∠ABC的角平分线,∴∠ABP=∠CBP.∵直线L为BC的中垂线,∴BP=CP,∴∠CBP=∠BCP,∴∠ABP=∠CBP=∠BCP,在△ABC中,3∠ABP+∠A+∠ACP=180°,即3∠ABP+60°+24°=180°,解得∠ABP =32°. 故选C .5.(2014·台湾,第20题3分)如图,有一△ABC ,今以B 为圆心,AB 长为半径画弧,交BC 于D 点,以C 为圆心,AC 长为半径画弧,交BC 于E 点.若∠B =40°,∠C =36°,则关于AD 、AE 、BE 、CD 的大小关系,下列何者正确?()A .AD =AEB .AE <AEC .BE =CDD .BE <CD解:∵∠C <∠B , ∴AB <AC ,即BE +ED <ED +CD , ∴BE <C D . 故选D .6.(2014·云南昆明,第5题3分)如图,在△ABC 中,∠A =50°,∠ABC =70°,BD 平分∠ABC ,则∠BDC 的度数是( ) A . 85° B . 80° C . 75° D . 70°7. (2014•泰州,第6题,3分)如果三角形满足一个角是另一个角的3倍,那么我们称这个三角形为“智慧三角形”.下列各组数据中,能作为一个智慧三角形三边长的一组是( )DCBA)底边上的高是=二、填空题1. (2014•福建泉州,第15题4分)如图,在△ABC中,∠C=40°,CA=CB,则△ABC的外角∠ABD= 110°.2. (2014•扬州,第10题,3分)若等腰三角形的两条边长分别为7cm和14cm,则它的周长为35cm.3. (2014•扬州,第15题,3分)如图,以△ABC的边BC为直径的⊙O分别交AB、AC于点D、E,连结OD、OE,若∠A=65°,则∠DOE=50°.(第2题图)三.解答题1. (2014•益阳,第15题,6分)如图,EF∥BC,AC平分∠BAF,∠B=80°.求∠C的度数.(第1题图)2014年中考数学真题分类解析-运动变化类的压轴题一、单动点问题【题1】(2014年江苏徐州第28题)如图,矩形ABCD 的边AB =3cm ,AD =4cm ,点E 从点A 出发,沿射线AD 移动,以CE 为直径作圆O ,点F 为圆O 与射线BD 的公共点,连接EF 、CF ,过点E 作EG ⊥EF ,EG 与圆O 相交于点G ,连接CG . (1)试说明四边形EFCG 是矩形;(2)当圆O 与射线BD 相切时,点E 停止移动,在点E 移动的过程中,①矩形EFCG 的面积是否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明理由; ②求点G 移动路线的长.【考点】圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判定与性质;圆周角定理;切线的性质;相似三角形的判定与性质. 【专题】压轴题;运动变化型. 【解答】解:(1)证明:如图1, ∵CE 为⊙O 的直径,∵EG⊥EF,∴∠FEG=90°.∴∠CFE=∠CGE=∠FEG=90°.∴四边形EFCG是矩形.(2)①存在.连接OD,如图2①,∵四边形ABCD是矩形,∴∠A=∠ADC=90°.∵点O是CE的中点,∴OD=OC.∴点D在⊙O上.∵∠FCE=∠FDE,∠A=∠CFE=90°,∴△CFE∽△DAB.∴=()2.∵AD=4,AB=3,∴BD=5,S△CFE=()2•S△DAB=××3×4=.=2S△CFE∴S矩形ABCD=.∵四边形EFCG是矩形,∴FC∥EG.∴∠FCE=∠CEG.∵∠GDC=∠CEG,∠FCE=∠FDE,∴∠GDC=∠FDE.∵∠FDE+∠CDB=90°,∴∠GDB=90°Ⅰ.当点E在点A(E′)处时,点F在点B(F′)处,点G在点D(G′处,如图2①所示.此时,CF=CB=4.Ⅱ.当点F在点D(F″)处时,直径F″G″⊥BD,如图2②所示,此时⊙O与射线BD相切,CF=CD=3.Ⅲ.当CF⊥BD时,CF最小,此时点F到达F″′,如图2③所示.S△BCD=BC•CD=BD•CF″′.∴4×3=5×CF″′.∴CF″′=.∴≤CF≤4.=,∵S矩形ABCD∴×()2≤S矩形ABCD≤×42.≤12.∴≤S矩形ABCD∴矩形EFCG的面积最大值为12,最小值为.②∵∠GDC=∠FDE=定值,点G的起点为D,终点为G″,∴点G的移动路线是线段DG″.∵∠GDC=∠FDE,∠DCG″=∠A=90°,∴△DCG″∽△DAB.∴=.∴=.∴DG″=.∴点G移动路线的长为.【题2】(2014•湖州第24题)已知在平面直角坐标系xOy中,O是坐标原点,以P(1,1)为圆心的⊙P与x轴,y轴分别相切于点M和点N,点F从点M出发,沿x轴正方向以每秒1个单位长度的速度运动,连接PF,过点PE⊥PF交y轴于点E,设点F运动的时间是t秒(t>0)(1)若点E在y轴的负半轴上(如图所示),求证:PE=PF;(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(3)作点F关于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x轴于点Q,连接QE.在点F运动过程中,是否存在某一时刻,使得以点Q、O、E为顶点的三角形与以点P、M、F为顶点的三角形相似?若存在,请直接写出t的值;若不存在,请说明理由.【解答】证明:(1)如图,连接PM,PN,∵⊙P与x轴,y轴分别相切于点M和点N,∴PM⊥MF,PN⊥ON且PM=PN,∴∠PMF=∠PNE=90°且∠NPM=90°,∵PE⊥PF,∠NPE=∠MPF=90°﹣∠MPE,在△PMF和△PNE中,,∴△PMF≌△PNE(ASA),∴PE=PF,(2)解:①当t>1时,点E在y轴的负半轴上,如图,由(1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t,a=NE﹣ON=t﹣1,∴b﹣a=1+t﹣(t﹣1)=2,∴b=2+a,②0<t≤1时,如图2,点E在y轴的正半轴或原点上,同理可证△PMF≌△PNE,∴b=OF=OM+MF=1+t,a=ON﹣NE=1﹣t,∴b+a=1+t+1﹣t=2,∴b=2﹣a,(3)如图3,(Ⅰ)当1<t<2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=1﹣t,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,解得,t=,当△OEQ∽△MFP时,∴=,=,解得,t=,(Ⅱ)如图4,当t>2时,∵F(1+t,0),F和F′关于点M对称,∴F′(1﹣t,0)∵经过M、E和F′三点的抛物线的对称轴交x轴于点Q,∴Q(1﹣t,0)∴OQ=t﹣1,由(1)得△PMF≌△PNE∴NE=MF=t,∴OE=t﹣1当△OEQ∽△MPF∴=∴=,无解,当△OEQ∽△MFP时,∴=,=,解得,t=2±,所以当t=,t=,t=2±时,使得以点Q、O、E为顶点的三角形与以点P、M、F 为顶点的三角形相似.【题3】(2014年四川省绵阳市第24题)如图1,矩形ABCD中,AB=4,AD=3,把矩形沿直线AC折叠,使点B落在点E处,AE交CD于点F,连接DE.(1)求证:△DEC≌△EDA;(2)求DF的值;(3)如图2,若P为线段EC上一动点,过点P作△AEC的内接矩形,使其定点Q落在线段AE上,定点M、N落在线段AC上,当线段PE的长为何值时,矩形PQMN的面积最大?并求出其最大值.【考点】四边形综合题.【解答】(1)证明:由矩形的性质可知△ADC≌△CEA,∴AD=CE,DC=EA,∠ACD=∠CAE,在△ADE与△CED中∴△DEC≌△EDA(SSS);(2)解:如图1,∵∠ACD=∠CAE,∴AF=CF,设DF=x,则AF=CF=4﹣x,在RT△ADF中,AD2+DF2=AF2,即32+x2=(4﹣x)2,解得;x=,即DF=.(3)解:如图2,由矩形PQMN的性质得PQ∥CA∴又∵CE=3,AC==5设PE=x(0<x<3),则,即PQ=过E作EG⊥AC于G,则PN∥EG,∴=又∵在Rt△AEC中,EG•AC=AE•CE,解得EG=∴=,即PN=(3﹣x)设矩形PQMN的面积为S则S=PQ•PN=﹣x2+4x=﹣+3(0<x<3)所以当x=,即PE=时,矩形PQMN的面积最大,最大面积为3.【题4】(2014年浙江绍兴第25题)如图,在平面直角坐标系中,直线l平行x轴,交y轴于点A,第一象限内的点B在l上,连结OB,动点P满足∠APQ=90°,PQ交x轴于点C.(1)当动点P与点B重合时,若点B的坐标是(2,1),求P A的长.(2)当动点P在线段OB的延长线上时,若点A的纵坐标与点B的横坐标相等,求P A:PC的值.(3)当动点P在直线OB上时,点D是直线OB与直线CA的交点,点E是直线CP与y 轴的交点,若∠ACE=∠AEC,PD=2OD,求P A:PC的值.【考点】相似形综合题;全等三角形的判定与性质;角平分线的性质;等腰三角形的判定与性质;勾股定理;矩形的判定与性质;平行线分线段成比例;相似三角形的判定与性质.【专题】压轴题.【解答】解:(1)∵点P与点B重合,点B的坐标是(2,1),∴点P的坐标是(2,1).(2)过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,如图1所示.∵点A的纵坐标与点B的横坐标相等,∴OA=AB.∵∠OAB=90°,∴∠AOB=∠ABO=45°.∵∠AOC=90°,∴∠POC=45°.∵PM⊥x轴,PN⊥y轴,∴PM=PN,∠ANP=∠CMP=90°.∴∠NPM=90°.∵∠APC=90°.∴∠APN=90°﹣∠APM=∠CPM.在△ANP和△CMP中,∵∠APN=∠CPM,PN=PM,∠ANP=∠CMP,∴△ANP≌△CMP.∴P A=PC.∴P A:PC的值为1:1.(3)①若点P在线段OB的延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图2所示.∵∠APN=∠CPM,∠ANP=∠CMP,∴△ANP∽△CMP.∴.∵∠ACE=∠AEC,∴AC=AE.∵AP⊥PC,∴EP=CP.∵PM∥y轴,∴AF=CF,OM=CM.设OA=x,∵PF∥OA,∴△PDF∽△ODA.∴∵PD=2OD,∴PF=2OA=2x,FM=x.∴PM=x.∵∠APC=90°,AF=CF,∴AC=2PF=4x.∵∠AOC=90°,∴OC=x.∵∠PNO=∠NOM=∠OMP=90°,∴四边形PMON是矩形.∴PN=OM=x.∴P A:PC=PN:PM=x:x=.②若点P在线段OB的反向延长线上,过点P作PM⊥x轴,垂足为M,过点P作PN⊥y轴,垂足为N,PM与直线AC的交点为F,如图3所示.同理可得:PM=x,CA=2PF=4x,OC=x.∴PN=OM=OC=x.∴P A:PC=PN:PM=x:x=.综上所述:P A:PC的值为或.【题5】(2014•无锡第28题)如图1,已知点A(2,0),B(0,4),∠AOB的平分线交AB于C,一动点P从O点出发,以每秒2个单位长度的速度,沿y轴向点B作匀速运动,过点P且平行于AB的直线交x轴于Q,作P、Q关于直线OC的对称点M、N.设P运动的时间为t(0<t<2)秒.(1)求C点的坐标,并直接写出点M、N的坐标(用含t的代数式表示);(2)设△MNC与△OAB重叠部分的面积为S.①试求S关于t的函数关系式;②在图2的直角坐标系中,画出S关于t的函数图象,并回答:S是否有最大值?若有,写出S的最大值;若没有,请说明理由.,即=.,,即•2×+•×)﹣,x的横坐标为=(•(×=t+=.【题6】(2014•杭州第22题)菱形ABCD的对角线AC,BD相交于点O,AC=4,BD=4,动点P在线段BD上从点B向点D运动,PF⊥AB于点F,四边形PFBG关于BD对称,四边形QEDH与四边形PEBG关于AC对称.设菱形ABCD被这两个四边形盖住部分的面积为S1,未被盖住部分的面积为S2,BP=x.(1)用含x的代数式分别表示S1,S2;(2)若S1=S2,求x的值.=4===2,=BD=8.==.====.===4×ו==8,.==.=)=AF=)•)=)=4×(==8=8(==8=8(=(=8,=4==4=2<=8,=4==4,8+2<【题7】(2014.福州第21题)如图1,点O在线段AB上,AO=2,OB=1,OC为射线,且∠BOC=60°. 动点P以每秒2个单位长度的速度从点O出发,沿射线OC做匀速运动. 设运动时间为t秒.(1)当1t2=时,则OP= ▲ ,ABPS∆=▲ ;(2)当△ABP是直角三角形时,求t的值;(3)如图2,当AP=AB时,过点A作AQ∥BP,并使得∠QOP=∠B,求证:AP BP3⋅=.【考点】:1.单动点问题;2. 锐角三角函数定义;3.特殊角的三角函数值;4.相似三角形的判定和性质;5.分类思想的应用.【答案】(1)1;(2)1秒;(3)证明见解析【解析】[(3)∵AP=AB,∴∠APB=∠B.【题8】(2014•成都第28题)如图,已知抛物线y=(x+2)(x﹣4)(k为常数,且k >0)与x轴从左至右依次交于A,B两点,与x轴交于点C,经过点B的直线y=﹣x+b 与抛物线的另一交点为D.(1)若点D的横坐标为﹣5,求抛物线的函数表达式;(2)若在第一象限内的抛物线上有点P,使得以A,B,P为顶点的三角形与△ABC相似,求k的值;(3)在(1)的条件下,设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?=(=+,∴)在抛物线=(=3,====x=====3 ===,∴∠=++=2【题9】(2014•黄冈第25题)已知:如图,在四边形OABC中,AB∥OC,BC⊥x轴于点C,A(1,﹣1),B(3,﹣1),动点P从点O出发,沿着x轴正方向以每秒2个单位长度的速度移动.过点P作PQ垂直于直线OA,垂足为点Q,设点P移动的时间t秒(0<t<2),△OPQ与四边形OABC重叠部分的面积为S.(1)求经过O、A、B三点的抛物线的解析式,并确定顶点M的坐标;(2)用含t的代数式表示点P、点Q的坐标;(3)如果将△OPQ绕着点P按逆时针方向旋转90°,是否存在t,使得△OPQ的顶点O 或顶点Q在抛物线上?若存在,请求出t的值;若不存在,请说明理由;(4)求出S与t的函数关系式.=x=x=,轴的距离都是OP=×=,×=或=××=×﹣t=+=二、双动点问题【题1】(2014年山东烟台第25题)在正方形ABCD中,动点E,F分别从D,C两点同时出发,以相同的速度在直线DC,CB上移动.(1)如图①,当点E自D向C,点F自C向B移动时,连接AE和DF交于点P,请你写出AE与DF的位置关系,并说明理由;(2)如图②,当E,F分别移动到边DC,CB的延长线上时,连接AE和DF,(1)中的结论还成立吗?(请你直接回答“是”或“否”,不需证明)(3)如图③,当E,F分别在边CD,BC的延长线上移动时,连接AE,DF,(1)中的结论还成立吗?请说明理由;(4)如图④,当E,F分别在边DC,CB上移动时,连接AE和DF交于点P,由于点E,F的移动,使得点P也随之运动,请你画出点P运动路径的草图.若AD=2,试求出线段CP的最小值.【解答】解:(1)AE=DF,AE⊥DF.理由:∵四边形ABCD是正方形,∴AD=DC,∠ADC=∠C=90°.∵DE=CF,∴△ADE≌△DCF.∴AE=DF,∠DAE=∠CDF,由于∠CDF+∠ADF=90°,∴∠DAE+∠ADF=90°.∴AE⊥DF;(2)是;(3)成立.理由:由(1)同理可证AE=DF,∠DAE=∠CDF延长FD交AE于点G,则∠CDF+∠ADG=90°,∴∠ADG+∠DAE=90°.∴AE⊥DF;(4)如图:由于点P在运动中保持∠APD=90°,∴点P的路径是一段以AD为直径的弧,设AD的中点为O,连接OC交弧于点P,此时CP的长度最小,在Rt△ODC中,OC=,∴CP=OC﹣OP=.【题2】(2014•温州第24题)如图,在平面直角坐标系中,点A,B的坐标分别为(﹣3,0),(0,6).动点P从点O出发,沿x轴正方向以每秒1个单位的速度运动,同时动点C从B出发,沿射线BO方向以每秒2个单位的速度运动,以CP,CO为邻边构造▱PCOD,在线段OP延长线上取点E,使PE=AO,设点P运动的时间为t秒.(1)当点C运动到线段OB的中点时,求t的值及点E的坐标.(2)当点C在线段OB上时,求证:四边形ADEC为平行四边形.(3)在线段PE上取点F,使PF=1,过点F作MN⊥PE,截取FM=2,FN=1,且点M,N分别在一,四象限,在运动过程中▱PCOD的面积为S.①当点M,N中有一点落在四边形ADEC的边上时,求出所有满足条件的t的值;②若点M,N中恰好只有一个点落在四边形ADEC的内部(不包括边界)时,直接写出S 的取值范围.四边形综合题.===+3=(=,即=,==,===,==即=,≤<时,)+=≤,【题3】(2014年湖北随州第25题)平面直角坐标系中,四边形ABCD是菱形,点C 的坐标为(﹣3,4),点A在x轴的正半轴上,O为坐标原点,连接OB,抛物线y=ax2+bx+c 经过C、O、A三点.(1)直接写出这条抛物线的解析式;(2)如图1,对于所求抛物线对称轴上的一点E,设△EBO的面积为S1,菱形ABCD的面积为S2,当S1≤S2时,求点E的纵坐标n的取值范围;(3)如图2,D(0,﹣)为y轴上一点,连接AD,动点P从点O出发,以个单位/秒的速度沿OB方向运动,1秒后,动点Q从O出发,以2个单位/秒的速度沿折线O﹣A ﹣B方向运动,设点P运动时间为t秒(0<t<6),是否存在实数t,使得以P、Q、B为顶点的三角形与△ADO相似?若存在,求出相应的t值;若不存在,请说明理由.【考点】二次函数综合题.【解答】解:(1)根据题意得:,解得:,则抛物线的解析式是:y=x2﹣x;(2)设BC与y轴相交于点G,则S2=OG•BC=20,∴S1≤5,又OB所在直线的解析式是y=2x,OB==2,∴当S1=5时,△EBO的OB边上的高是.如图1,设平行于OB的直线为y=2x+b,则它与y轴的交点为M(0,b),与抛物线对称轴x=交于点E(,n).过点O作ON⊥ME,点N为垂足,若ON=,由△MNO∽△OGB,得OM=5,∴y=2x﹣5,由,解得:y=0,即E的坐标是(,0).∵与OB平行且到OB的距离是的直线有两条.∴由对称性可得另一条直线的解析式是:y=2x+5.则E′的坐标是(,10).由题意得得,n的取值范围是:0≤n≤10且n≠5.(3)如图2,动点P、Q按题意运动时,当1<t<3.5时,OP=t,BP=2﹣t,OQ=2(t﹣1),连接QP,当QP⊥OP时,有=,∴PQ=(t﹣1),若=,则有=,又∵∠QPB=∠DOA=90°,∴△BPQ∽△AOD,此时,PB=2PQ,即2﹣t=(t﹣1),10﹣t=8(t﹣1),∴t=2;当3.5≤t≤6时,QB=10﹣2(t﹣1)=12﹣2t,连接QP.若QP⊥BP,则有∠PBQ=∠ODA,又∵∠QPB=∠AOD=90°,∴△BPQ∽△DOA,此时,PB=PB,即12﹣2t=(2﹣t),12﹣2t=10﹣t,∴t=2(不合题意,舍去).若QP⊥BQ,则△BPQ∽△DAO,此时,PB=BQ,即2﹣t=(12﹣2t),2﹣t=12﹣2t,解得:t=.则t的值为2或.【题4】(2014•武汉第24题)如图,Rt△ABC中,∠ACB=90°,AC=6cm,BC=8cm,动点P从点B出发,在BA边上以每秒5cm的速度向点A匀速运动,同时动点Q从点C 出发,在CB边上以每秒4cm的速度向点B匀速运动,运动时间为t秒(0<t<2),连接PQ.(1)若△BPQ与△ABC相似,求t的值;(2)连接AQ,CP,若AQ⊥CP,求t的值;(3)试证明:PQ的中点在△ABC的一条中位线上.=,=,=,=,=,=,=,=;=,==4【题5】(2014•扬州第28题)已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.(1)如图1,已知折痕与边BC交于点O,连结AP、OP、OA.①求证:△OCP∽△PDA;②若△OCP与△PDA的面积比为1:4,求边AB的长;(2)若图1中的点P恰好是CD边的中点,求∠OAB的度数;(3)如图2,,擦去折痕AO、线段OP,连结BP.动点M在线段AP上(点M与点P、A不重合),动点N在线段AB的延长线上,且BN=PM,连结MN交PB 于点F,作ME⊥BP于点E.试问当点M、N在移动过程中,线段EF的长度是否发生变化?若变化,说明理由;若不变,求出线段EF的长度.========.==PQ+===4.==2.【题6】(2014昆明第23题)如图,在平面直角坐标系中,抛物线)0(32≠-+=a bx ax y 与x 轴交于点A (2-,0)、B (4,0)两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 从A 点出发,在线段AB 上以每秒3个单位长度的速度向B 点运动,同时点Q 从B 点出发,在线段BC 上以每秒1个单位长度向C 点运动.其中一个点到达终点时,另一个点也停止运动.当△PBQ 存在时,求运动多少秒使△PBQ 的面积最大,最多面积是多少?(3)当△PBQ 的面积最大时,在BC 下方的抛物线上存在点K ,使2:5S PBQ CBK =△△:S ,求K 点坐标.,垂直为D , 易证OCB ∆∽DQB ∆,【题7】(2014年四川巴中第31题)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx ﹣4与x轴交于点A(﹣2,0)和点B,与y轴交于点C,直线x=1是该抛物线的对称轴.(1)求抛物线的解析式;(2)若两动点M,H分别从点A,B以每秒1个单位长度的速度沿x轴同时出发相向而行,当点M到达原点时,点H立刻掉头并以每秒个单位长度的速度向点B方向移动,当点M 到达抛物线的对称轴时,两点停止运动,经过点M的直线l⊥x轴,交AC或BC于点P,设点M的运动时间为t秒(t>0).求点M的运动时间t与△APH的面积S的函数关系式,并求出S的最大值.【解答】解:(1)∵抛物线y=ax2+bx﹣4与x轴交于点A(﹣2,0),直线x=1是该抛物线的对称轴,∴,解得:,∴抛物线的解析式是:y=x2﹣x﹣4,(2)分两种情况:①当0<t≤2时,∵PM∥OC,∴△AMP∽△AOC,∴=,即=,∴PM=2t.解方程x2﹣x﹣4=0,得x1=﹣2,x2=4,∵A(﹣2,0),∴B(4,0),∴AB=4﹣(﹣2)=6.∵AH=AB﹣BH=6﹣t,∴S=PM•AH=×2t(6﹣t)=﹣t2+6t=﹣(t﹣3)2+9,当t=2时S的最大值为8;②当2<t≤3时,过点P作PM⊥x轴于M,作PF⊥y轴于点F,则△COB∽△CFP,又∵CO=OB,∴FP=FC=t﹣2,PM=4﹣(t﹣2)=6﹣t,AH=4+(t﹣2)=t+1,∴S=PM•AH=(6﹣t)(t+1)=﹣t2+4t+3=﹣(t﹣)2+,当t=时,S最大值为.综上所述,点M的运动时间t与△APQ面积S的函数关系式是S=,S的最大值为.三、几何图形运动问题【题1】(2014•苏州第28题)如图,已知l1⊥l2,⊙O与l1,l2都相切,⊙O的半径为2cm,矩形ABCD的边AD、AB分别与l1,l2重合,AB=4cm,AD=4cm,若⊙O与矩形ABCD沿l1同时向右移动,⊙O的移动速度为3cm,矩形ABCD的移动速度为4cm/s,设移动时间为t(s)(1)如图①,连接OA、AC,则∠OAC的度数为105°;(2)如图②,两个图形移动一段时间后,⊙O到达⊙O1的位置,矩形ABCD到达A1B1C1D1的位置,此时点O1,A1,C1恰好在同一直线上,求圆心O移动的距离(即OO1的长);(3)在移动过程中,圆心O到矩形对角线AC所在直线的距离在不断变化,设该距离为d (cm),当d<2时,求t的取值范围(解答时可以利用备用图画出相关示意图).=4=4===,=4===2===2=++=2+22+2.【题2】(2014年江苏盐城第28题)如图①,在平面直角坐标系中,一块等腰直角三角板ABC的直角顶点A在y轴上,坐标为(0,﹣1),另一顶点B坐标为(﹣2,0),已知二次函数y=x2+bx+c的图象经过B、C两点.现将一把直尺放置在直角坐标系中,使直尺的边A′D′∥y轴且经过点B,直尺沿x轴正方向平移,当A′D′与y轴重合时运动停止.(1)求点C的坐标及二次函数的关系式;(2)若运动过程中直尺的边A′D′交边BC于点M,交抛物线于点N,求线段MN长度的最大值;(3)如图②,设点P为直尺的边A′D′上的任一点,连接P A、PB、PC,Q为BC的中点,试探究:在直尺平移的过程中,当PQ=时,线段P A、PB、PC之间的数量关系.请直接写出结论,并指出相应的点P与抛物线的位置关系.(说明:点与抛物线的位置关系可分为三类,例如,图②中,点A在抛物线内,点C在抛物线上,点D′在抛物线外.)【考点】二次函数综合题.【解答】解:(1)如图1,过点C作CD⊥y轴于D,此时△CDA≌△AOB,∵△CDA≌△AOB,∴AD=BO=2,CD=AO=1,∴OD=OA+AD=3,∴C(﹣1,﹣3).将B(﹣2,0),C(﹣1,﹣3)代入抛物线y=x2+bx+c,解得b=,c=﹣3,∴抛物线的解析式为y=x2+x﹣3.(2)设l BC:y=kx+b,∵B(﹣2,0),C(﹣1,﹣3),∴,解得,∴l BC:y=﹣3x﹣6,设M(x M,﹣3x M﹣6),N(x N,x N2+x N﹣3),∵x M=x N(记为x),y M≥y N,∴线段MN长度=﹣3x﹣6﹣(x2+x﹣3)=﹣(x+)2+,(﹣2≤x≤﹣1),∴当x=﹣时,线段MN长度为最大值.(3)答:P在抛物线外时,BP2+CP2≥P A2;P在抛物线上时,BP+CP=AP;P在抛物线内,BP2+CP2≥P A2.分析如下:如图2,以Q点为圆心,为半径作⊙Q,∵OB=2,OA=1,∴AC=AB==,∴BC==,∴BQ=CQ=,∵∠BAC=90°,∴点B、A、C都在⊙Q上.①P在抛物线外,如图3,在抛物线外的弧BC上任找一点P,连接PB,PB,P A,∵BC为直径,∴BP2+CP2=BC2,BC≥P A,∴BP2+CP2≥P A2.②P在抛物线上,此时,P只能为B点或者C点,∵AC=AB=,∴AP=,∵BP+CP=BC=,∴BP+CP=AP.③P在抛物线内,同理①,∵BC为直径,∴BP2+CP2=BC2,BC≥P A,∴BP2+CP2≥P A2.【题3】(2014•怀化第24题)如图1,在平面直角坐标系中,AB=OB=8,∠ABO=90°,∠yOC=45°,射线OC以每秒2个单位长度的速度向右平行移动,当射线OC经过点B时停止运动,设平行移动x秒后,射线OC扫过Rt△ABO的面积为y.(1)求y与x之间的函数关系式;(2)当x=3秒时,射线OC平行移动到O′C′,与OA相交于G,如图2,求经过G,O,B 三点的抛物线的解析式;(3)现有一动点P在(2)中的抛物线上,试问点P在运动过程中,是否存在三角形POB 的面积S=8的情况?若存在,求出点P的坐标,若不存在,请说明理由.=x+=轴上方时,﹣+x ,,4+,轴下方时,﹣+x,,4+,﹣4+,4+2014年中考数学真题分类解析-平移旋转与对称一、选择题1. ( 2014•福建泉州,第5题3分)正方形的对称轴的条数为( )2. ( 2014•广东,第2题3分)在下列交通标志中,既是轴对称图形,又是中心对称图形的是( ) A .B .C .D .【考点】中心对称图形;轴对称图形.【解答】解:A、不是轴对称图形,不是中心对称图形.故此选项错误;B、不是轴对称图形,也不是中心对称图形.故此选项错误;C、是轴对称图形,也是中心对称图形.故此选项正确;D、是轴对称图形,不是中心对称图形.故此选项错误.故选C.3. (2014•广西贺州,第6题3分)下列图形中既是轴对称图形,又是中心对称图形的是()A.等边三角形B.平行四边形C.正方形D.正五边形【专题】常规题型.【解答】解:A、等边三角形是轴对称图形,不是中心对称图形,故本选项错误;B、平行四边形不是轴对称图形,是中心对称图形,故本选项错误;C、正方形是轴对称图形,也是中心对称图形,故本选项正确;D、正五边形是轴对称图形,不是中心对称图形,故本选项错误.故选C.点评:本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.4.(2014年天津市,第3 题3分)下列标志中,可以看作是轴对称图形的是()A.B.C.D.【考点】轴对称图形.【解答】解:A、不是轴对称图形,是中心对称图形,不符合题意;B、不是轴对称图形,是中心对称图形,不符合题意;C、不是轴对称图形,是中心对称图形,不符合题意;D、是轴对称图形,符合题意.故选:D.5.(2014•新疆,第9题5分)如图,四边形ABCD中,AD∥BC,∠B=90°,E为AB上一点,分别以ED,EC为折痕将两个角(∠A,∠B)向内折起,点A,B恰好落在CD边的点F处.若AD=3,BC=5,则EF的值是()2=2,DH.。

【解析版】2015年江苏省泰州市靖江市中考数学模拟试卷

【解析版】2015年江苏省泰州市靖江市中考数学模拟试卷

2015年江苏省泰州市靖江市中考数学模拟试卷一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题纸上)1.﹣的相反数是()A.B.﹣C.D.﹣2.下列运算正确的是()A.a2•a3=a6B.a3+a3=a6C.|﹣a2|=﹣a2D.(﹣a3)2=a63.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()甲乙丙丁7 8 8 7S2 1 1 1.2 1.8A.甲B.乙C.丙D.丁4.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.5.在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是()A.B.C.D.6.已知两点A(﹣3,y1),B(5,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y1>y2,则x0的取值范围是()A.x0<5 B.1<x0<5 C.﹣3≤x0<1 D.x0<1二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把正确答案直接填在答题纸相应的位置上)7.已知∠α的补角是130°,则∠α=度.8.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为.9.已知是二元一次方程组的解,则m+3n的值为.10.分解因式:a3b﹣2a2b2+ab3=.11.一个扇形的半径为6cm,圆心角为120°,用它做成一个圆锥的侧面,则该圆锥的底面圆的半径是cm.12.点O是矩形ABCD的对角线AC的中点,点M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为.13.已知⊙O1的半径r1=2,⊙O2的半径r2是方程3(x﹣1)=2x的根,⊙O1与⊙O2的圆心距为1,那么两圆的位置关系为.14.如图,直线y=k1+b与双曲线y=相交于A(m,2),B(﹣2,﹣1)两点.则不等式k1x+b>的解集为.15.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是分.16.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6且AE=2EB.则圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长为.三、解答题(本大题共10小题,共计102分.请在答题纸指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)1)计算:﹣4sin45°+(3﹣π)0+()﹣1.(2)先化简,再求值:÷(a+2﹣),其中a满足a2+3a=5.18.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.19.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).20.如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.(参考数据:sin8°≈,cos8°≈,tan8°≈)21.华联公司计划从商店购买同一品牌的手电筒和台灯,已知购买手电筒一个比购买一个台灯少用20元,若用160元购买手电筒和用400元购买台灯,则购买手电筒的个数是购买台灯个数的2倍.(1)求购买该品牌一个手电筒、一个台灯各需要多少元?(2)经商谈,商店给予华联公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果华联公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过1000元,那么华联公司最多可购买多少个该品牌台灯?22.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=°和∠AEB=°时,四边形ACED是正方形?请说明理由.23.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.24.在边长为10的正方形ABCD中,以AB为直径作半圆O,E是半圆上一动点,过点E作EF⊥AB,垂足为F,连结DE.(1)如图,当DE=10时,求证:DE与圆O相切;(2)求DE的最长距离和最短距离;(3)如图,建立平面直角坐标系,当DE=10时,试求点E的坐标.25.已知:Rt△A′BC′≌Rt△ABC,∠A′C′B=∠ACB=90°,∠A′BC′=∠ABC=60°,Rt△A′BC′可绕点B旋转,设旋转过程中直线CC′和AA′相交于点D.(1)如图1所示,当点C′在AB边上时,现有两个结论①A′A∥BC,②AD=A′D.判定这两个结论是否成立,如果成立请证明你的结论;(2)将Rt△A′BC′由图1的位置旋转到图2的位置时,(1)中的两个结论是否仍然成立?若成立,请给予证明;若不成立,请说明理由.26.我们将使得函数值为零的自变量的值称为函数的零点值,此时的点称为函数的零点.例如,对于函数y=x﹣1,令y=0,可得x=1,我们就说1是函数y=x﹣1的零点值,点(1,0)是函数y=x﹣1的零点.已知二次函数y=kx2﹣(4k+1)x+3k+3.(1)若函数的两个零点都是整数点,求整数k的值;(2)当k<0时,在(1)的条件下,二次函数的两个零点分别是点A,B(点A在点B的左侧),将直线y=﹣kx向下平移n个单位得直线l,若点B关于直线l的对称点C(异于点B)仍在二次函数上,求直线l的解析式;(3)在(2)中,记二次函数图象在直线l上方部分为G,线段EF=3且在直线l上,点M在图象G 上运动,求△MEF面积的最大值.2015年江苏省泰州市靖江市中考数学模拟试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分.在每小题所给的四个选项中,恰有一项是符合题目要求的,请将正确选项的序号填涂在答题纸上)1.﹣的相反数是()A.B.﹣C.D.﹣考点:相反数.分析:根据相反数的含义,可得求一个数的相反数的方法就是在这个数的前边添加“﹣”,据此解答即可.解答:解:根据相反数的含义,可得﹣的相反数等于:﹣(﹣)=.故选:A.点评:此题主要考查了相反数的含义以及求法,要熟练掌握,解答此题的关键是要明确:相反数是成对出现的,不能单独存在;求一个数的相反数的方法就是在这个数的前边添加“﹣”.2.下列运算正确的是()A.a2•a3=a6B.a3+a3=a6C.|﹣a2|=﹣a2D.(﹣a3)2=a6考点:幂的乘方与积的乘方;合并同类项;同底数幂的乘法.分析:A.根据同底数幂相乘的法则判断即可;B.根据合并同类项法则判断即可;C.根据绝对值的性质判断即可;D.根据幂的乘方法则判断即可.解答:解:A.a2•a3=a5,故本项错误;B.a3+a3=2a3,故本项错误;C.|﹣a2|=a2,故本项错误;D.(﹣a3)2=a6,故本项正确.故选D.点评:本题主要考查了同底数幂相乘、合并同类项、幂的乘方的法则以及绝对值的性质.3.四名运动员参加了射击预选赛,他们成绩的平均环数及其方差s2如表所示.如果选出一个成绩较好且状态稳定的人去参赛,那么应选()甲乙丙丁7 8 8 7S2 1 1 1.2 1.8A.甲B.乙C.丙D.丁考点:方差.分析:此题有两个要求:①成绩较好,②状态稳定.于是应选平均数大、方差小的运动员参赛.解答:解:由于乙的方差较小、平均数较大,故选乙.故选B.点评:本题考查平均数和方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.4.一个几何体的三视图如图所示,则这个几何体是()A.B.C.D.考点:由三视图判断几何体.分析:主视图、左视图、俯视图是分别从物体正面、左面和上面看,所得到的图形.结合图形,使用排除法来解答.解答:解:如图,俯视图为三角形,故可排除A、B.主视图以及左视图都是矩形,可排除C,故选:D.点评:本题考查了由三视图判断几何体的知识,难度一般,考生做此类题时可利用排除法解答.5.在Rt△ABC中,∠C=90°,sinA=,那么tanB的值是()A.B.C.D.考点:互余两角三角函数的关系.分析:设BC=2x,AB=3x,由勾股定理求出AC=x,代入tanB=求出即可.解答:解:∵sinA==,∴设BC=2x,AB=3x,由勾股定理得:AC==x,∴tanB===,故选:A.点评:本题考查了解直角三角形,勾股定理的应用,求锐角的三角函数值的方法:利用锐角三角函数的定义,通过设参数的方法求三角函数值,或者利用同角(或余角)的三角函数关系式求三角函数值.6.已知两点A(﹣3,y1),B(5,y2)均在抛物线y=ax2+bx+c(a≠0)上,点C(x0,y0)是该抛物线的顶点,若y0≥y1>y2,则x0的取值范围是()A.x0<5 B.1<x0<5 C.﹣3≤x0<1 D.x0<1考点:二次函数图象上点的坐标特征.分析:由于y1<y2≤y0,可判断抛物线开口向下,分类讨论:根据二次函数的性质得两点A(﹣3,y1),B(5,y2)都在对称轴右侧,此时x0≥﹣3;当两点A(﹣3,y1),B(5,y2)在对称轴两侧,则点(﹣3,y1)离对称轴要近,于是可判断x0<1,然后综合两种情况即可.解答:解:∵点C(x0,y0)是该抛物线的顶点,y0≥y1>y2,∴抛物线开口向下,当两点A(﹣3,y1),B(5,y2)都在对称轴右侧,则x0≤﹣3;当两点A(﹣3,y1),B(5,y2)在对称轴两侧,则点(﹣3,y1)离对称轴要近,所以﹣3≤x0<1,∴x0<1.故选D.点评:本题考查了二次函数图象上点的坐标特征,主要利用了二次函数的增减性与对称性,根据顶点的纵坐标最大确定出抛物线开口方向是解题的关键.二、填空题(本大题共10小题,每小题3分,共30分.不需写出解答过程,请把正确答案直接填在答题纸相应的位置上)7.已知∠α的补角是130°,则∠α=50度.考点:余角和补角.分析:根据补角的和等于180°列式计算即可得解.解答:解:∵∠α的补角是130°,∴∠α=180°﹣130°=50°.故答案为:50.点评:本题考查了余角与补角的定义,熟记补角的和等于180°是解题的关键.8.PM 2.5是指大气中直径小于或等于0.0000025m的颗粒物,将0.0000025用科学记数法表示为2.5×10﹣6.考点:科学记数法—表示较小的数.分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.解答:解:0.0000025=2.5×10﹣6,故答案为:2.5×10﹣6.点评:本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.9.已知是二元一次方程组的解,则m+3n的值为3.考点:二元一次方程组的解.分析:根据方程组的解满足方程,把解代入,可得关于m、n的二元一次方程组,根据两方程相加,可得答案.解答:解:把代入得,①+②得m+3n=3,故答案为:3.点评:本题考查了二元一次方程组的解,先把解代入得到关于m、n得二元一次方程组,再把两方程相加.10.分解因式:a3b﹣2a2b2+ab3=ab(a﹣b)2.考点:提公因式法与公式法的综合运用.专题:因式分解.分析:先提取公因式ab,再根据完全平方公式进行二次分解即可求得答案.完全平方公式:a2±2ab+b2=(a±b)2.解答:解:a3b﹣2a2b2+ab3=ab(a2﹣2ab+b2)=ab(a﹣b)2.故填:ab(a﹣b)2.点评:本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.11.一个扇形的半径为6cm,圆心角为120°,用它做成一个圆锥的侧面,则该圆锥的底面圆的半径是2cm.考点:圆锥的计算.分析:利用圆锥的侧面展开图中扇形的弧长等于圆锥底面的周长可得.解答:解:设此圆锥的底面半径为r,由题意,得2πr=,解得r=2cm.故答案为:2.点评:本题考查了圆锥的计算,圆锥的侧面展开图是一个扇形,此扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长.本题就是把扇形的弧长等于圆锥底面周长作为相等关系,列方程求解.12.点O是矩形ABCD的对角线AC的中点,点M是AD的中点,若AB=5,AD=12,则四边形ABOM的周长为20.考点:矩形的性质.专题:计算题.分析:根据矩形的性质得出DC=AB=5,∠D=∠ABC=90°,根据勾股定理求出AC,求出AM、OM、BO,即可求出答案.解答:解:∵四边形ABCD是矩形,∴DC=AB=5,∠D=∠ABC=90°,由勾股定理得:AC==13,∵点O是矩形ABCD的对角线AC的中点,点M是AD的中点,∴OM=CD=,BO=AC=,AM=AD=6,∴四边形ABOM的周长为:AB+BO+OM+AM=5+++6=20,故答案为:20.点评:本题考查了矩形的性质,直角三角形斜边上中线,三角形的中位线的应用,解此题的关键是求出四边形ABOM的各个边的长度.13.已知⊙O1的半径r1=2,⊙O2的半径r2是方程3(x﹣1)=2x的根,⊙O1与⊙O2的圆心距为1,那么两圆的位置关系为内切.考点:圆与圆的位置关系;解一元一次方程.分析:由⊙O2的半径r2是方程3(x﹣1)=2x的根,可求得半径r2的长,又由⊙O1的半径r1=2,⊙O1与⊙O2的圆心距为1,根据两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系得出两圆位置关系.解答:解:∵3(x﹣1)=2x,∴3x﹣3=2x,解得:x=3,∵⊙O2的半径r2是方程3(x﹣1)=2x的根,∴r2=3,∵⊙O1的半径r1=2,⊙O1与⊙O2的圆心距为1,∴两圆的位置关系为:内切.故答案为:内切.点评:此题考查了圆与圆的位置关系.注意掌握两圆位置关系与圆心距d,两圆半径R,r的数量关系间的联系是解此题的关键.14.如图,直线y=k1+b与双曲线y=相交于A(m,2),B(﹣2,﹣1)两点.则不等式k1x+b>的解集为x>1或﹣2<x<0.考点:反比例函数与一次函数的交点问题.分析:先把B点坐标代入y=求出k2=2,得到双曲线的解析式为y=,再把A(m,2)代入y=确定A点坐标,然后观察函数图象得到当x>1或﹣2<x<0时,一次函数图象都在反比例函数图象上方,即k1x+b>.解答:解:∵双曲线y=经过点B(﹣2,﹣1),∴k2=2,∴双曲线的解析式为y=;∵点A(m,2)在双曲线y=上,∴2=,解得m=1,∴A点坐标为(1,2),由图可知x>1或﹣2<x<0.点评:本题考查了反比例函数与一次函数的交点问题:反比例函数与一次函数图象的交点坐标满足两函数解析式.也考查了待定系数法求函数解析式以及观察函数图象的能力.15.甲、乙、丙三位同学进行报数游戏,游戏规则为:甲报1,乙报2,丙报3,再甲报4,乙报5,丙报6,…依次循环反复下去,当报出的数为2015时游戏结束,若报出的数是偶数,则该同学得1分,当报数结束时甲同学的得分是336分.考点:规律型:数字的变化类.分析:根据题意可得甲报出的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1),由于1+3(n﹣1)=2015,解得n=672…1,则甲报出了673个数,再观察甲报出的数总是一奇一偶,所以偶数有672÷2=336个,由此得出答案即可.解答:解:甲报的数中第一个数为1,第2个数为1+3=4,第3个数为1+3×2=7,第4个数为1+3×3=10,…,第n个数为1+3(n﹣1)=3n﹣2,3n﹣2=2015,则n=672…1,甲报出了672个数,一奇一偶,所以偶数有672÷2=336个,得336分.故答案为:336.点评:本题考查数字的变化规律:通过从一些特殊的数字变化中发现不变的因素或按规律变化的因素,然后推广到一般情况.16.如图,在矩形ABCD中,AD=8,直线DE交直线AB于点E,交直线BC于F,AE=6且AE=2EB.则圆心在直线BC上,且与直线DE、AB都相切的⊙O的半径长为或6.考点:切线的性质;勾股定理;矩形的性质.专题:分类讨论.分析:分两种情况讨论:若⊙O1与直线DE、AB都相切,且圆心O1在AB的左侧,过点O1作O1G1⊥DF 于G1,若⊙O2与直线DE、AB都相切,且圆心O2在AB的右侧,过点O2作O2G2⊥DF于G2,求出即可.解答:解:∵AD∥BC,∴△EBF∽△EAD,∴==,∴EF=5,BF=4,如图1,若⊙O1与直线DE、AB都相切,且圆心O1在AB的左侧,过点O1作O1G1⊥DF于G1,则可设O1G1=O1B=r1,∵S△EO1F+S△EBO1=S△EBF,∴r1×5+r1×3=×3×4,解得:r1=,若⊙O2与直线DE、AB都相切,且圆心O2在AB的右侧,过点O2作O2G2⊥DF于G2,则可设O2G2=O2B=r2,∵S△FO2D=FO2×DC=DF×O2G2,∴×(4+r2)×(6+3)=×(10+5)×r2,解得:r2=6,即满足条件的圆的半径为或6;故答案为:或6.点评:此题主要考查了圆的综合应用以及切线的性质以及相似三角形的判定与性质等知识,利用分类讨论得出是解题关键.三、解答题(本大题共10小题,共计102分.请在答题纸指定区域内作答,解答时应写出必要的演算步骤、证明过程或文字说明)1)计算:﹣4sin45°+(3﹣π)0+()﹣1.(2)先化简,再求值:÷(a+2﹣),其中a满足a2+3a=5.考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值.专题:计算题.分析:(1)原式第一项化为最简二次根式,第二项利用特殊角的三角函数值计算,第三项利用零指数幂法则计算,最后一项利用负整数指数幂法则计算即可得到结果;(2)原式括号中两项通分并利用同分母分式的减法法则计算,同时利用除法法则变形,约分得到最简结果,把已知等式代入计算即可求出值.解答:解:(1)原式=3﹣4×+1+4=+5;(2)原式=÷=•=,当a2+3a=5时,原式=.点评:此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.18.一只不透明的箱子里共有3个球,其中2个白球,1个红球,它们除颜色外均相同.(1)从箱子中随机摸出一个球是白球的概率是多少?(2)从箱子中随机摸出一个球,记录下颜色后不将它放回箱子,搅匀后再摸出一个球,求两次摸出的球都是白球的概率,并画出树状图.考点:列表法与树状图法.专题:压轴题;图表型.分析:(1)根据概率的意义列式即可;(2)画出树状图,然后根据概率公式列式计算即可得解.解答:解:(1)∵共有3个球,2个白球,∴随机摸出一个球是白球的概率为;(2)根据题意画出树状图如下:一共有6种等可能的情况,两次摸出的球都是白球的情况有2种,所以,P(两次摸出的球都是白球)==.点评:本题考查了列表法与树状图法,用到的知识点为:概率=所求情况数与总情况数之比.19.作为宁波市政府民生实事之一的公共自行车建设工作已基本完成,某部门对今年4月份中的7天进行了公共自行车日租车量的统计,结果如图:(1)求这7天日租车量的众数、中位数和平均数;(2)用(1)中的平均数估计4月份(30天)共租车多少万车次;(3)市政府在公共自行车建设项目中共投入9600万元,估计2014年共租车3200万车次,每车次平均收入租车费0.1元,求2014年租车费收入占总投入的百分率(精确到0.1%).考点:条形统计图;加权平均数;中位数;众数.专题:计算题.分析:(1)找出租车量中车次最多的即为众数,将数据按照从小到大顺序排列,找出中间的数即为中位数,求出数据的平均数即可;(2)由(1)求出的平均数乘以30即可得到结果;(3)求出2014年的租车费,除以总投入即可得到结果.解答:解:(1)根据条形统计图得:出现次数最多的为8,即众数为8;将数据按照从小到大顺序排列为:7.5,8,8,8,9,9,10,中位数为8;平均数为(7.5+8+8+8+9+9+10)÷7=8.5;(2)根据题意得:30×8.5=255(万车次),则估计4月份(30天)共租车255万车次;(3)根据题意得:=≈3.3%,则2014年租车费收入占总投入的百分率为3.3%.点评:此题考查了条形统计图,加权平均数,中位数,以及众数,熟练掌握各自的定义是解本题的关键.20.如图所示,张伯伯利用假日在某钓鱼场钓鱼,风平浪静时,鱼漂露出水面部分AB=6cm,微风吹来,假设铅垂P不动,鱼漂移动了一段距离BC,且顶端恰好与水面齐平,(即PA=PC)水平l与OC的夹角α为8°(点A在OC上),求铅锤P处的水深h.(参考数据:sin8°≈,cos8°≈,tan8°≈)考点:解直角三角形的应用.专题:计算题;压轴题.分析:在Rt△ABC中,已知∠ACB=α=8°,AB=6,根据三角函数就可以求出BC的长;在直角△ABC 中,根据已知条件,利用勾股定理就可以求出水深h.解答:解:∵l∥BC,∴∠ACB=α=8°,在Rt△ABC中,∵tanα=,∴BC===42(cm),根据题意,得h2+422=(h+6)2,∴h=144(cm).答:铅锤P处的水深约为144cm.点评:本题考查了学生运用三角函数知识解决实际问题的能力,又让学生感受到生活处处有数学,数学在生产生活中有着广泛的作用.21.华联公司计划从商店购买同一品牌的手电筒和台灯,已知购买手电筒一个比购买一个台灯少用20元,若用160元购买手电筒和用400元购买台灯,则购买手电筒的个数是购买台灯个数的2倍.(1)求购买该品牌一个手电筒、一个台灯各需要多少元?(2)经商谈,商店给予华联公司购买一个该品牌台灯赠送一个该品牌手电筒的优惠,如果华联公司需要手电筒的个数是台灯个数的2倍还多8个,且该公司购买台灯和手电筒的总费用不超过1000元,那么华联公司最多可购买多少个该品牌台灯?考点:分式方程的应用;一元一次不等式的应用.分析:(1)设购买该品牌一个手电筒需要x元,则购买一个台灯需要(x+20)元.则根据等量关系:购买手电筒的个数是购买台灯个数的2倍,列出方程;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8)个,则根据“该公司购买台灯和手电筒的总费用不超过1000元”列出不等式.解答:解:(1)设一个台灯各需要x元,则一个手电筒(x﹣20)元,由题意得:=×2,解得:x=25,经检验:x=25是分式方程的解,x﹣20=5,答:一个台灯各需要25元,则一个手电筒5元;(2)设公司购买台灯的个数为a,则还需要购买手电筒的个数是(2a+8﹣a)个,由题意得25a+5(2a+8﹣a)≤1000,解得a≤32,∴荣庆公司最多可购买32个该品牌的台灯.点评:此题主要考查了一元一次不等式和分式方程的应用.解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量(不等量)关系.22.已知:如图,▱ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.(1)求证:△AOD≌△EOC;(2)连接AC,DE,当∠B=45°和∠AEB=45°时,四边形ACED是正方形?请说明理由.考点:平行四边形的性质;全等三角形的判定与性质;正方形的判定.分析:(1)首先根据O是CD的中点,可得DO=CO,再证明∠D=∠OCE,然后可利用ASA定理证明△AOD≌△EOC;(2)当∠B=45°和∠AEB=45°时,四边形ACED是正方形;首先证明∠BAE=90°,然后证明AC是BE边上的中线,根据直角三角形的性质可得AC=CE,然后利用等腰三角形的性质证明AC⊥BE,可得结论.解答:(1)证明:∵O是CD的中点,∴DO=CO,∵四边形ABCD是平行四边形,∴AD∥BC,∴∠D=∠OCE,在△ADO和△ECO中,∴△AOD≌△EOC(ASA);(2)解:当∠B=45°和∠AEB=45°时,四边形ACED是正方形,∵∠B=45°和∠AEB=45°,∴∠BAE=90°,∵△AOD≌△EOC,∴AO=EO,∵DO=CO,∴四边形ACED是平行四边形,∴AD=CE,∵四边形ABCD是平行四边形,∴AD=BC,∴BC=CE,∵∠BAE=90°,∴AC=CE,∴平行四边形ACED是菱形,∵∠B=∠AEB,BC=CE,∴AC⊥BE,∴四边形ACED是正方形.故答案为:45,45.点评:此题主要考查了全等三角形的判定与性质,以及正方形的判定,关键是掌握邻边相等的矩形是正方形.23.如图,在平面直角坐标系中,反比例函数y=(x>0)的图象和矩形ABCD在第一象限,AD平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).(1)直接写出B、C、D三点的坐标;(2)若将矩形向下平移,矩形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求矩形的平移距离和反比例函数的解析式.考点:反比例函数综合题.分析:(1)根据矩形性质得出AB=CD=2,AD=BC=4,即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.解答:解:(1)∵四边形ABCD是矩形,平行于x轴,且AB=2,AD=4,点A的坐标为(2,6).∴AB=CD=2,AD=BC=4,∴B(2,4),C(6,4),D(6,6);(2)A、C落在反比例函数的图象上,设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),∵A、C落在反比例函数的图象上,∴k=2(6﹣x)=6(4﹣x),x=3,即矩形平移后A的坐标是(2,3),代入反比例函数的解析式得:k=2×3=6,即A、C落在反比例函数的图象上,矩形的平移距离是3,反比例函数的解析式是y=.点评:本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.24.在边长为10的正方形ABCD中,以AB为直径作半圆O,E是半圆上一动点,过点E作EF⊥AB,垂足为F,连结DE.(1)如图,当DE=10时,求证:DE与圆O相切;(2)求DE的最长距离和最短距离;(3)如图,建立平面直角坐标系,当DE=10时,试求点E的坐标.考点:圆的综合题.分析:(1)如图1,连接OE,OD,由题意得,DE=DA=10,利用(SSS)判定△AOD≌△EOD,从可得∠OED=∠OAD=90°即可.(2)当点E运动到与B点重合的位置时,如图2,DE为正方形ABCD的对角线,所以此时DE最长,利用勾股定理求得DE,证明当点E运动到线段OD与半圆O的交点处时,DE最短.然后求得DE=OD﹣OE即可.(3)当点E与点A重合时,DE=DA=10,此时,直线DE的解析式为y=10;如图4,当点E与点A 不重合时,过点E作GH⊥x轴,分别交AD,x轴于点G,H,连接OE.则四边形AFEG是矩形,且DE为圆O的切线,求证△OFE∽△DGE,利用其对应边成比例,设E(m,n),则有:EF=m,OF=OB﹣FB=5﹣n求得即可.解答:证明:(1)如图1,连接OE,OD,由题意得,DE=DA=10,OA=OE=AB=5,OD为公共边,在△AOD与△EOD中,,∴△AOD≌△EOD(SSS),∴∠OED=∠OAD=90°∴OE⊥DE,∴DE与圆O相切;(2)当点E运动到与B点重合的位置时,如图2,DE为正方形ABCD的对角线,所以此时DE最长,有:DE==10,当点E运动到线段OD与半圆O的交点处时,DE最短,证明如下:在半圆O上任取一个不与点E重合的点E′,连接OE′,DE′.如图3,在△ODE′中,∵OE′+DE′>OD即:OE′+DE′>OE+DE,∵OE′=OE,∴DE′>DE∵点E′是任意一个不与点E重合的点,∴此时DE最短.∴DE=OD﹣OE=﹣OE=﹣5;(3)当点E与点A重合时,DE=DA=10,此时,直线DE的解析式为y=10;如图4,当点E与点A不重合时,过点E作GH⊥x轴,分别交AD,x轴于点G,H,连接OE.则四边形AFEG是矩形,连接OD,∵AD=DE,OA=OE,OD=OD,∴△AOD≌△EOD,∴∠OED=90°,∴DE为圆O的切线∴∠FEG=∠OED=90°。

2015泰州数学中考卷分析

2015泰州数学中考卷分析

2015年泰州市中考数学试卷分析一、真题试卷概述:综合泰州市中考试卷可知,泰州市中考试题主题方向没有变化,主要围绕“认识概念”、“理解概念”、“运用知识”、“解决问题”四个方面展开。

试卷格式基本没有变化,总分150分,分为选择题和非选择题两个部分。

其中选择题18分,非选择题132分。

主要考察内容分为三个部分:数与代数、图形与几何、统计与概率,具体如下表:内容数与代数图形与几何统计与概率全卷题号分值题号分值题号分值分值选择题1,2,3 9 4,5,6 9 18填空题7,8,9,15 12 10,11,12,14,16 15 13 3 30解答题17,18,21,22,26 54 23,24,25 32 19,20 16 102合计75 56 19 150分值百分率50.00% 37.33% 12.67% 100%对比2014年数学中考试卷,我们能够从中找到非常多的共性,不少题目都能互相从中找到影子,体现为一种知识考查、思想方法的延续和传承。

在试题内容安排方面,与以往相比,呈现出以下一些变化:1、试卷格式没有变化,试卷难度有所下降;2、其中函数综合题将去年实际问题改为函数性质与相似结合,题型从3小问减少到2小问,分值没有变化,每小问分值有所增加但难度略有下降;3、几何证明压轴题将圆与坐标改为正方形的综合性质运用,题型依旧是3小问,每一小问之间的练习更加紧密,更加容易想到;最后一道函数压轴题将反比例函数与正方形改为一次函数性质的运用,题型仍是3小问,主要考察的是初中数学思想中的分类讨论思想。

2015泰州中考数学试卷试题解析第一部分选择题(18分)一、选择题(本大题共有5小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.分析:本题考察的是绝对值,学生只要细心,基本都能拿分;2.分析:本题考察的是无理数的概念,只要知道什么是无理数,基本都能拿分;3.分析:本题考察的是数据的集中与离散程度,只要了解这4个数的概念基本都能拿分;4.分析:本题考察的是几何体展开图,只要学生有一定的空间想象能力,本题都能得分;5.分析:本题考察的是坐标系中图形的旋转中心如何确定。

江苏省13市2015年中考数学试题分类解析汇编 专题13 动态几何问题

江苏省13市2015年中考数学试题分类解析汇编 专题13 动态几何问题

专题13:动态几何问题1. (2015年江苏泰州3分)如图,在平面直角坐标系xOy 中,△'''C B A 由△ABC 绕点P 旋转得到,则点P 的坐标为【 】A. ()0,1B. ()1,1 -C. ()0,1 -D. ()1,0【答案】B.【考点】旋转的性质;旋转中心的确定;线段垂直平分线的性质.【分析】根据“旋转不改变图形的形状与大小”和“垂直平分线上的点到线段两端的距离相等”的性质,确定图形的旋转中心的步骤为:1.把这两个三角形的对应点连接起来;2.作每条线的垂直平分线;3.这三条垂直平分线交于一点,此点为旋转中心. 因此,作图如答图, 点P 的坐标为()1,1 -.故选B.2. (2015年江苏盐城3分)如图,在边长为2的正方形ABCD 中剪去一个边长为1的小正方形CEFG ,动点P 从点A 出发,沿A →D →E →F →G →B 的路线绕多边形的边匀速运动到点B 时停止(不含点A 和点B ),则△ABP 的面积S 随着时间t 变化的函数图像大致为【 】A. B. C. D.【答案】B.【考点】单动点问题;函数图象的分析;正方形的性质;三角形的面积;分类思想和数形结合思想的应用.【分析】根据题意,可知△ABP的面积S随着时间t变化的函数图像分为五段:当点P从A→D时,△ABP的面积S是t的一次函数;当点P从D→E时,△ABP的面积S不随t的变化而变化,图象是平行于t轴的一线段;当点P从E→F时,△ABP的面积S是t的一次函数;当点P从F→G时,△ABP的面积S不随t的变化而变化,图象是平行于t轴的一线段;当点P从G→B时,△ABP的面积S是t的一次函数.故选B.3. (2015年江苏扬州3分)如图,在平面直角坐标系中,点B、C、E在y轴上,Rt△ABC经过变换得到Rt△ODE,若点C的坐标为(0,1),AC=2,则这种变换可以是【】01·c·n·03A. △ABC绕点C顺时针旋转90°,再向下平移3B. △ABC绕点C顺时针旋转90°,再向下平移1C. △ABC绕点C逆时针旋转90°,再向下平移1D. △ABC绕点C逆时针旋转90°,再向下平移3【答案】A.【考点】图形的旋转和平移变换.【分析】按各选项的变换画图(如答图),与题干图形比较得出结论. 故选A.1. (2015年江苏扬州3分)如图,已知Rt △ABC 中,∠ABC =90°,AC =6,BC =4,将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,若点F 是DE 的中点,连接AF ,则AF = ▲ .2-1-07【答案】5.【考点】面动旋转问题;直角三角形斜边上中线的性质;等腰三角形的性质;三角形中位线定理;勾股定理.【分析】如答图,连接CF ,过点F 作FG AC ⊥于点G ,∵在Rt △ABC 中,∠ABC =90°,点F 是DE 的中点, ∴12CF EF DF DE ===.∴CEF ∆是等腰三角形. ∵将△ABC 绕直角顶点C 顺时针旋转90°得到△DEC ,BC =4,AC =6,∴4,6CE CD == .∵FG AC ⊥,∴122EG CG CE ===.∴4AG AC CG =-= 又∵G F 、分别是EC ED 、的中点,∴GF 是△DEC 的中位线.∴132GF CD ==. 在Rt △AGF 中,∵4AG =,3GF =,∴由勾股定理,得AF =5.2. (2015年江苏宿迁3分)如图,在平面直角坐标系中,点P 的坐标为(0,4),直线334y x =-与x 轴、y 轴分别交于点A ,B ,点M 是直线AB 上的一个动点,则PM 长的最小值为 ▲ .【答案】285. 【考点】单动点问题;直线上点的坐标与方程的关系;垂线段最短的性质;勾股定理;相似三角形的判定和性质.【分析】根据垂线段最短得出PM ⊥AB 时线段PM 最短,分别求出PB 、OB 、OA 、AB 的长度,利用△PBM ∽△ABO ,即可求出答案如答图,过点P 作PM ⊥AB ,则:∠PMB =90°,当PM ⊥AB 时,P M 最短, ∵直线334y x =-与x 轴、y 轴分别交于点A ,B , ∴点A 的坐标为(4,0),点B 的坐标为(0,﹣3).在Rt △AOB 中,∵AO =4,BO =3,∴根据勾股定理,得AB =5.∵∠BMP =∠AOB =90°,∠ABO =∠PBM ,∴△PBM ∽△ABO . ∴PB PM AB AO =,即:4354PM +=,解得285PM =. 3. (2015年江苏镇江2分)如图,将等边△OAB 绕O 点按逆时针方向旋转150°,得到△OA ′B ′(点A ′,B ′分别是点A ,B 的对应点),则∠1= ▲ °.【答案】150.【考点】旋转的性质;等边三角形的性质.【分析】∵等边△OAB 绕点O 按逆时针旋转了150°,得到△OA ′B ′,∴∠AOA ′=150°,∵∠A ′OB ′=60°,∴∠1=360°﹣∠AOA ′﹣∠A ′OB ′=360°﹣150°﹣60°=150°.4. (2015年江苏镇江2分)如图,△ABC 和△DBC 是两个具有公共边的全等三角形,AB =AC =3cm ,BC =2cm ,将△DBC 沿射线BC 平移一定的距离得到△D 1B 1C 1,连接AC 1,BD 1.如果四边形ABD 1C 1是矩形,那么平移的距离为 ▲ cm .【答案】7.【考点】面动平移问题;相似三角形的判定和性质;等腰三角形的性质;矩形的性质;平移的性质.【分析】如答图,过点A 作AE ⊥BC 于点E ,∵∠AEB =∠AEC 1=90°,∴∠BAE +∠ABC =90°.∵AB =AC ,BC =2,∴BE =CE =12BC =1, ∵四边形ABD 1C 1是矩形,∴∠BAC 1=90°.∴∠ABC +∠AC 1B =90°. ∴∠BAE =∠AC 1B .∴△ABE ∽△C 1BA . ∴1BE AE AB BC =. ∵AB =3,BE =1,∴1133BC =.∴BC 1=9. ∴CC 1=BC 1﹣BC =9﹣2=7,即平移的距离为7.1. (2015年江苏连云港12分)在数学兴趣小组活动中,小明进行数学探究活动,将边长为2的正方形ABCD与边长为AEFG 按图1位置放置,AD 与AE 在同一直线上,AB 与A G 在同一直线上.(1)小明发现DG ⊥BE ,请你帮他说明理由.(2)如图2,小明将正方形ABCD 绕点A 逆时针旋转,当点B 恰好落在线段DG 上时,请你帮他求出此时BE 的长.(3)如图3,小明将正方形ABCD 绕点A 继续逆时针旋转,将线段DG 与线段BE 相交,交点为H ,写出△G HE 与△BHD 面积之和的最大值,并简要说明理由.【答案】解:(1)∵四边形ABCD 和四边形AEFG 都为正方形,∴AD =AB ,∠DAG =∠BAE =90°,AG =AE ,∴△ADG ≌△ABE (SAS ).∴∠AGD =∠AEB .如答图1,延长EB 交DG 于点H ,在△ADG 中,∵∠AGD +∠ADG =90°,∴∠AEB +∠ADG =90°.在△EDH 中,∵∠AEB +∠ADG +∠DHE =180°,∴∠DH E=90°. ∴DG ⊥BE .(2)∵四边形ABCD 和四边形AEFG 都为正方形,∴AD =AB ,∠DAB =∠GAE =90°,AG =AE ,∴∠DAB +∠BAG =∠GAE +∠BAG ,即∠DAG =∠BAE ,∴△ADG ≌△ABE (SAS ).∴DG =BE .如答图2,过点A 作AM ⊥DG 交DG 于点M ,则∠AMD =∠AMG =90°,∵BD 为正方形AB CD 的对角线,∴∠MDA =45°.在Rt △AMD 中,∵∠MDA =45°,AD =2,∴DM AM =在Rt △AMG 中,根据勾股定理得:GM =,∵DG DM GM =+,∴BE DG ==(3)△GHE 和△BHD 面积之和的最大值为6,理由如下:∵对于△EGH ,点H 在以E G 为直径的圆上,∴当点H 与点A 重合时,△EGH 的高最大;∵对于△BDH ,点H 在以BD 为直径的圆上,∴当点H 与点A 重合时,△BDH 的高最大.∴△GHE 和△BHD 面积之和的最大值为2+4=6.【考点】面动旋转问题;正方形的性质;全等三角形的判定和性质;三角形内角和定理;等腰直角三角形的性质,勾股定理;数形结合思想的应用.【分析】(1)由四边形ABCD 与四边形AEFG 为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS 得到△ADG ≌△ABE ,利用全等三角形对应角相等得∠AGD =∠AEB ,作辅助线“延长EB 交DG 于点H ”,利用等角的余角相等得到∠DHE =90°,从而利用垂直的定义即可得DG ⊥BE .(2)由四边形ABCD 与四边形AEFG 为正方形,利用正方形的性质得到两对边相等,且夹角相等,利用SAS 得到△ADG ≌△ABE ,利用全等三角形对应边相等得到DG =BE ,作辅助线“过点A 作AM ⊥DG 交DG 于点M ”,则∠AMD =∠AMG =90°,在Rt △AMD 中,根据等腰直角三角形的性质求出AM 的长,即为DM 的长,根据勾股定理求出GM 的长,进而确定出DG 的长,即为BE 的长.(3)△GHE 和△BHD 面积之和的最大值为6,理由为:对两个三角形,点H 分别在以EG 为直径的圆上和以BD 为直径的圆上,当点H 与点A 重合时,两个三角形的高最大,即可确定出面积的最大值.2. (2015年江苏苏州10分)如图,在矩形ABCD 中,AD =a cm ,AB =b cm (a >b >4),半径为2cm 的⊙O 在矩形内且与AB 、AD 均相切.现有动点P 从A 点出发,在矩形边上沿着A →B →C →D 的方向匀速移动,当点P 到达D 点时停止移动;⊙O 在矩形内部沿AD 向右匀速平移,移动到与CD 相切时立即沿原路按原速返回,当⊙O 回到出发时的位置(即再次与AB 相切)时停止移动.已知点P 与⊙O 同时开始移动,同时停止移动(即同时到达各自的终止位置).(1)如图①,点P 从A →B →C →D ,全程共移动了 ▲ cm (用含a 、b 的代数式表示);(2)如图①,已知点P 从A 点出发,移动2s 到达B 点,继续移动3s ,到达BC 的中点.若点P 与⊙O 的移动速度相等,求在这5s 时间内圆心O 移动的距离;(3)如图②,已知a =20,b =10.是否存在如下情形:当⊙O 到达⊙O 1的位置时(此时圆心O 1在矩形对角线BD 上),DP 与⊙O 1恰好相切?请说明理由.【答案】解:(1)2a b +.(2)∵在整个运动过程中,点P 移动的距离为()2a b +cm ,圆心移动的距离为()24a -cm ,∴由题意得()224a b a +=-①.∵点P 移动2s 到达B 点,即点P 用2s 移动了b cm ,点P 继续移动3s 到达BC 的中点,即点P 用3s 移动了12a cm ,【出处:218名师】∴1223a b =②. 联立①②,解得248a b =⎧⎨=⎩. ∵点P 移动的速度与⊙O 移动的速度相等,∴⊙O 移动的速度为42b =(cm/s ). ∴这5s 时间内圆心O 移动的距离为5420⨯=(cm ).(3)存在这样的情形.设点P 移动的速度为P v cm/s ,⊙O 移动的速度为O v cm/s , 根据题意,得()()22021052422044P O v a b v a ++⨯===++. 如答图,设直线OO 1与AB 交于点E ,与CD 交于点E ,⊙O 1与AD 相切于点PG .若PD 与⊙O 1相切,切点为H ,则11O G O H =.易得△DO 1G ≌△DO 1H ,∴∠ADB=∠BDP .∵BC ∥AD ,∴∠ADB=∠CBD . ∴∠BDP =∠CBD .∴BP=DP .设BP x =cm ,则DP x =cm ,()20PC x =-cm ,在Rt PCD ∆中,由勾股定理,得222PC CD PD +=,即()2222010x x -+=,解得252x =. ∴此时点P 移动的距离为25451022+=(cm ). ∵EF ∥AD ,∴△BEO 1∽△BAD . ∴1EO BE AD BA =,即182010EO =. ∴116EO =cm ,114OO =cm.①当⊙O 首次到达⊙O 1的位置时,⊙O 与移动的距离为14cm.∴此时点P 移动的速度与⊙O 移动的速度比为454521428=. ∴此时DP 与⊙O 1恰好相切.②当⊙O 在返回途中到达⊙O 1的位置时,⊙O 与移动的距离为()22041418⨯--=cm.∴此时点P 移动的速度与⊙O 移动的速度比为45455218364==. ∴此时DP 与⊙O 1不可能相切.【考点】单动点和动圆问题;矩形的性质;直线与圆的位置关系;全等三角形的判定和性质;勾股定理;相似三角形的判定和性质;方程思想和分类思想的应用.【7:2105j*y.co*m 】【分析】(1)根据矩形的性质可得:点P 从A →B →C →D ,全程共移动了2a b +cm.(2)根据“在整个运动过程中,点P 移动的距离等于圆心移动的距离”和“点P 用2s 移动了b cm ,点P 用3s 移动了12a cm ”列方程组求出a ,b ,根据点P 移动的速度与⊙O 移动的速度相等求得⊙O 移动的速度,从而求得这5s 时间内圆心O 移动的距离.(3)分⊙O 首次到达⊙O 1的位置和⊙O 在返回途中到达⊙O 1的位置两种情况讨论即可.6. (2015年江苏泰州12分)如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE =BF =CG =DH .(1)求证:四边形EFGH 是正方形;(2)判断直线EG 是否经过一个定点,并说明理由;(3)求四边形EFGH 面积的最小值.【答案】解:(1)证明:∵四边形ABCD 是正方形,∴90,A B C D AB BC CD DA ∠=∠=∠=∠=︒=== .∵AE BF CG DH ===,∴BE CF DG AH ===.∴()AEH BFE CGF DHG SAS ∆∆∆∆≌≌≌.∴,EH FE GF HG AHF BEF ===∠=∠ .∴四边形EFGH 是菱形.∵90AHF AEH ∠+∠=︒,∴90BEF AEH ∠+∠=︒.∴90HEF ∠=︒.∴四边形EFGH 是正方形.(2)直线EG 经过定点-----正方形ABCD 的中心. 理由如下:如答图,连接,,,DE BG BD EG ,BD 、EG 相交于点O ,∵四边形ABCD 是正方形,∴AB ∥DC .∵BE DG =,∴四边形BGDE 是平行四边形.∴BO DO =,即点O 是正方形ABCD 的中心.∴直线EG 经过定点----正方形ABCD 的中心.(3)设AE BF CG DH x ====,则8BE CF DG AH x ====-,∵()()22222228216642432EFGH S EF BE BF x x x x x ==+=+-=-+=-+四边形,∴当4x =时,四边形EFGH 面积的最小值为32.【考点】单动点和定值问题;正方形的判定和性质;全等三角形的判定和性质;平行四边形的判定和性质;勾股定理;二次函数的应用(实际问题).【分析】(1)由SAS 证明AEH BFE CGF DHG ∆∆∆∆≌≌≌,即可证明四边形EFGH 是一个角是直角的菱形----正方形.(2)作辅助线“连接,,,DE BG BD EG ,BD 、EG 相交于点O ”构成平行四边形BGDE ,根据平行四边形对角线互分的性质即可证明直线EG 经过定点-----正方形ABCD 的中心.(3)设AE BF CG DH x ====,根据正方形的性质和勾股定理得到EFGH S 四边形关于x 的二次函数,应用二次函数最值原理求解即可.7. (2015年江苏无锡10分)如图,C 为∠AOB 的边OA 上一点,OC =6,N 为边OB 上异于点O 的一动点,P 是线段05上一点,过点P 分别作PQ ∥OA 交OB 于点Q ,PM ∥OB 交OA 于点M .(1)若∠AOB =60º,OM =4,OQ =1,求证:05⊥OB ;(2)当点N 在边OB 上运动时,四边形OMPQ 始终保持为菱形; ①问:11OM ON-的值是否发生变化?如果变化,求出其取值范围;如果不变,请说明理由; ②设菱形OMPQ 的面积为S 1,△NOC 的面积为S 2,求12S S 的取值范围.【答案】解:(1)证明:如答图,过点P 作PE ⊥OA 于点E ,∵PQ ∥OA ,PM ∥OB , ∴四边形OMPQ 为平行四边形. ∵OQ =1,∠AOB =60°, ∴PM =OQ =1,∠PME =∠AOB =60°.∴1602PE PM sin ME =⋅︒==. ∴32CE OC OM ME =--=.∴PE tan PCE CE ∠==∴∠PCE =30°. ∴∠CPM =90°, 又∵PM ∥OB ,∴∠05O =∠CPM =90°,即05⊥OB . (2)①11OM ON-的值不发生变化,理由如下: 设OM x ON y ==,,∵四边形OMPQ 为菱形,∴OQ QP OM x NQ y x ====-,. ∵PQ ∥OA ,∴∠NQP =∠O .又∵∠QNP =∠ONC ,∴△NQP ∽△NOC . ∴QP NQOC ON=,即6x y x y -=, 化简,得111166y x xy x y -=⇒-=. ∴1116OM ON -=不变化. ②如答图,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OA 于点F ,设OM x =, 则1212S OM PE S OC NF =⋅=⋅,,∴123S xPE S NF =.∵PM ∥OB ,∴∠MCP =∠O .又∵∠PCM =∠NCO ,∴△CPM ∽△05O. ∴66PE CM xNF CO -==. ∴()()212611318182x x S x S -==--+ ∵0<x <6,∴根据二次函数的图象可知, 1210<2S S ≤. 【考点】相似形综合题;单动点问题;定值问题;锐角三角函数定义;特殊角的三角函数值;相似三角形的判定和性质;二次函数的性质;平行四边形的判定和性质;菱形的性质.【2:218】【分析】(1)作辅助性线,过点P 作PE ⊥OA 于E ,利用两组对边平行的四边形为平行四边形得到OMPQ 为平行四边形,利用平行四边形的对边相等,对角相等得到PM =OQ =1,∠PME =∠AOB =60°,进而求出PE 与ME 的长,得到CE 的长,求出tan ∠PCE 的值,利用特殊角的三角函数值求出∠PCE 的度数,得到PM 于NC 垂直,而PM 与ON 平行,即可得到05与OB 垂直.(2)①11OM ON-的值不发生变化,理由如下:设OM =x ,ON =y ,根据OMPQ 为菱形,得到PM =PQ =OQ =x ,QN=y ﹣x ,根据平行得到△NQP 与△NOC 相似,由相似得比例即可确定出所求式子的值.②作辅助性线,过点P 作PE ⊥OA 于点E ,过点N 作NF ⊥OA 于点F ,表示出菱形OMPQ 的面积为S 1,△NOC 的面积为S 2,得到12S S ,由PM 与OB 平行,得到△CPM 与△05O 相似,由相似得比例求出所求式子12SS 的范围即可.8. (2015年江苏徐州8分)如图,平面直角坐标系中,将含30°的三角尺的直角顶点C 落在第二象限. 其斜边两端点A 、B 分别落在x 轴、y 轴上,且AB =12cm (1)若OB =6cm . ①求点C 的坐标;②若点A 向右滑动的距离与点B 向上滑动的距离相等,求滑动的距离; (2)点C 与点O 的距离的最大值= ▲ cm.【答案】解:(1)①如答图1,过点C 作y 轴的垂线,垂足为D ,在Rt △ABC 中,AB =12,∠BAC =30°,∴BC =6. 在Rt △AOB 中,AB =12, OB =6, ∴∠BAO =30°,∠ABO =60°.又∵∠CBA =60°,∴∠CBD =60°,∠BCD =30°.∴BD =3,CD =OD =9.∴点C 的坐标为()9-.②如答图2,设点A 向右滑动的距离'AA x =, 根据题意得点B 向动的距离'BB x =.∵在Rt △AOB 中,AB =12, OB =6,∴AO =∴','6,''12A O x B O x A B AB ==+== .在△A 'O B '中,由勾股定理得,()()222612x x ++=,解得,126,0x x == (舍去).∴滑动的距离为6. (2)12.【考点】面动问题;含30度角直角三角形的性质;勾股定理;点的坐标;二次函数最值的应用;方程思想的应用.【分析】(1)①作辅助线“过点C 作y 轴的垂线,垂足为D ”,应用含30度角直角三角形的性质求出CD 和BD 的长,即可求出点C 的坐标.②设点A 向右滑动的距离'AA x =,用表示出'A O 和'B O 的长,在△A 'O B '中,应用勾股定理列方程求解即可.(2)设点C 的坐标为(),x y ,如答图3,过点C 作CE ⊥x 轴,CD ⊥y 轴, 垂足分别为E ,D ,则OE =-x ,OD =y .∵∠ACE +∠BCE =90°,∠DCB +∠BCE =90°, ∴∠ACE =∠DCB .又∵∠AEC =∠BDC =90°,∴△ACE ∽△BCD .∴CE ACCD BC=,即y x =-.∴y =. ∴())2222224OC x y x x =-+=+=.∴当x 取最大值,即点C 到y 轴距离最大时,2OC 有最大值,即OC 取最大值,如图,即当''C B 转到与y 轴垂时. 此时OC =12.9. (2015年江苏徐州8分)如图,在矩形OABC 中,OA =3,OC =5,分别以OA 、OC 所在直线为x 轴、y 轴,建立平面直角坐标系,D 是边CB 上的一个动点(不与C 、B 重合),反比例函数()>0ky k x=的图像经过点D 且与边BA 交于点E ,连接DE .(1)连接OE ,若△EOA 的面积为2,则k = ▲ ; (2)连接CA 、DE 与CA 是否平行?请说明理由;(3)是否存在点D ,使得点B 关于DE 的对称点在OC 上?若存在,求出点D 的坐标;若不存在,请说明理由.【答案】解:(1)4.(2)平行,理由如下:如答图1,连接AC , 设()(),5,3,D a E b , ∵()(),5,3,D a E b 在()>0ky k x=上, ∴5533k k a a k k b b ⎧⎧==⎪⎪⎪⎪⇒⎨⎨⎪⎪==⎪⎪⎩⎩.∵BC =OA =3,AB =O C =5,∴BD =3-5k ,BE =5-3k.∴3335,5553kBC BD k AB BE -===- .∴BC BD AB BE =,即BC AB BD BE =. ∴DE ∥AC . (3)存在.假设存在点D 满足条件.设,5,3,53k k D E ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭, 则CD =5k ,BD =3-5k ,AE =3k ,BE =5-3k. 如答图2,过点E 作EF ⊥OC ,垂足为F , 易证△B 'CD ∽△EFB ',∴'''B E B F B D CD =,即5'3355k B F k k -=-.∴'3k B F =. ∴2'''55333k k kCB OC B F OF OC B F AE =--=--=--=-. 在Rt △B 'CD 中,CB '= 253k -,CD =5k ,B 'D =BD =3-5k,由勾股定理得,CB '²+CD ²= B 'D ²,∴222253355k k k ⎛⎫⎛⎫⎛⎫-+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,整理得2101233600k k -+=.解得,122415,52k k == (不合题意,舍去).∴24,525D ⎛⎫⎪⎝⎭. ∴满足条件的点D 存在,D 的坐标为24,525⎛⎫⎪⎝⎭. 【考点】反比例函数综合题;单动和轴对称问题; 曲线上点的坐标与方程的关系;平行的判定;相似三角形的判定和性质;勾股定理;方程思想的应用. 【分析】(1)设3,3k E ⎛⎫ ⎪⎝⎭,则OA =3, AE =3k . ∵△EOA 的面积为2,∴132423kk ⋅⋅=⇒=. (2)设()(),5,3,D a E b ,由()(),5,3,D a E b 在k y x =上,得到,5,3,53k k D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,从而求得BC BD AB BE =,即BC ABBD BE=,进而证得DE ∥AC . (3)设,5,3,53k k D E ⎛⎫⎛⎫⎪ ⎪⎝⎭⎝⎭,作辅助线“过点E 作EF ⊥OC ,垂足为F ”,由△B 'CD ∽△EFB '得到'''B E B F B D CD =而求得'3kB F =,从而在Rt △B 'CD 中,应用勾股定理列方程求解即可.905·06·4 10. (2015年江苏徐州12分)如图,在平面直角坐标系中,点A (10,0),以OA 为直径在第一象限内作半圆,B 为半圆上一点,连接AB 并延长至C ,使BC =AB ,过C 作CD ⊥x 轴于点D ,交线段OB 于点E ,已知CD =8,抛物线经过O 、E 、A 三点. (1)∠OBA = ▲ °; (2)求抛物线的函数表达式;(3)若P 为抛物线上位于第一象限内的一个动点,以P 、O 、A 、E 为顶点的四边形面积记作S ,则S 取何值时,相应的点P 有且只有....3个?【答案】解:(1)90.(2)如答图1,连接OC ,∵由(1)知OB ⊥AC ,又AB =BC , ∴OB 是的垂直平分线. ∴OC =OA =10.在Rt △OCD 中,OC =10,CD =8,∴OD =6. ∴C (6,8),B (8,4). ∴OB 所在直线的函数关系为12y x =. 又E 点的横坐标为6,∴E 点纵坐标为3,即E (6,3). ∵抛物线过O (0,0),E (6,3) ,A (10,0),∴设此抛物线的函数关系式为()10y ax x =-, 把E 点坐标代入得()36610a =-,解得18a =-. ∴此抛物线的函数关系式为()1108y x x =--,即21584y x x =-+. (3)设点15²84P p p p ⎛⎫-+ ⎪⎝⎭,, ①若点P 在CD 的左侧,延长OP 交CD 于Q ,如答图2, ∵OP 所在直线函数关系式为:1584y x ⎛⎫=-+ ⎪⎝⎭, ∴当x =6时,31542y p =-+,即Q 点纵坐标为31542p -+. ∴3153934242QE p p =-+-=-+. ∴S 四边形POAE = S △OAE +S △OPE = S △OAE +S △OQE -S △PQE =()111222x x x OA DE QE D QE D P ⋅⋅+⋅⋅-⋅⋅- =()()221139139393571036615622422428482p p p p p p ⎛⎫⎛⎫⋅⋅+⋅-+⋅-⋅-+⋅-=-++=--+ ⎪ ⎪⎝⎭⎝⎭.②若点P 在CD 的右侧,延长AP 交CD 于Q ,如答图3,15²84P p p p ⎛⎫-+⎪⎝⎭,,A (10,0), ∴设AP 所在直线方程为:y =kx +b ,把P 和A 坐标代入得,21001584k b pk b p p +=⎧⎪⎨+=-+⎪⎩,解得1854k p b p ⎧=-⎪⎪⎨⎪=⎪⎩.∴AP 所在直线方程为:1584y px p =-+.∴当x =6时,651842y p p p =-+=,即Q 点纵坐标为12p .∴QE =132p -. ∴S 四边形POAE = S △OAE +S △APE = S △OAE +S △AQE -S △PQE =()111222x x OA DE QE DA QE P D ⋅⋅+⋅⋅-⋅⋅- =()()221111111103343648162222244p p p p p p ⎛⎫⎛⎫⋅⋅+⋅-⋅-⋅-⋅-=-+=--+ ⎪ ⎪⎝⎭⎝⎭. ∴当P 在CD 右侧时,四边形POAE 的面积最大值为16,此时点P 的位置就一个,令239151684p p -++=,解得,3p =∴当P 在CD 左侧时,四边形POAE 的面积等于16的对应P 的位置有两个.综上知,以P 、O 、A 、E 为顶点的四边形面积S 等于16时,相应的点P 有且只有3个.【考点】二次函数综合题;单动点问题;圆周角定理;线段垂直平分线的性质;勾股定理;待定系数洪都拉斯应用;曲线上点的坐标与方程的关系;分类思想、转换思想和方程思想的应用.218名师原创作品 【分析】(1)根据直径所对的圆周角定理直接得出结论.(2)作辅助线:连接OC ,根据线段垂直平分线的性质和勾股定理求出点E 、A 的坐标,从而应用待定系数法求出抛物线的函数关系式.21*04*4(3)设点15²84P p p p ⎛⎫-+ ⎪⎝⎭,,分点P 在CD 的左侧和右侧两种情况求出S 四边形POAE 关于p 的二次函数关系式,根据二次函数的最值原理求解即可.11. (2015年江苏盐城10分)如图,把△EFP 按图所示的方式放置在菱形ABCD 中,使得顶点E 、F 、P 分别在线段AB 、AD 、AC 上.已知EP =FP =4,EF =,∠BAD =60°,且AB >(1)求∠EPF 的大小; (2)若AP =6,求AE +AF 的值;(3)若△EFP 的三个顶点E 、F 、P 分别在线段AB 、AD 、AC 上运动,请直接写出AP 长的最大值和最小值.【答案】解:(1)如答图1,过点P 作PG EF ⊥于点G ,∵EP =FP =4,PG EF ⊥,EF =,∴12EG FG FPG EPG EPF ==∠=∠=∠.在Rt FPG ∆中,sin FG FPG PF ∠=∵60FPG ∠=︒.∴2120EPF FPG ∠=∠=︒.(2)如答图2,过点P 作PM AB ⊥于点M ,过点P 作PN AD ⊥于点N ,在菱形ABCD 中,∵,,AD AB DC BC AC AC === ,∴()ADC ABC SSS ∆∆≌.∴DAC BAC ∠=∠. ∴根据角平分线上的点到角的两边距离相等的性质,得PM PN =.在Rt PEM ∆和Rt PFN ∆中,∵,PM PN EP FP == , ∴Rt PEM ∆≌()Rt PFN HL ∆.∴EM FN =.∵在菱形ABCD 中,∠BAD =60°,∴1302PAM BAD ∠=∠=︒.在Rt PAM ∆中,∵30,6PAM AP ∠=︒= ,∴cos 6AM AP PAM =⋅∠==.同理,AN =.∴()()AE AF AM EN AN FN AM AN +=-++=+=(3)AP 长的最大值是8,最小值是4.【考点】多动点问题;菱形的性质;全等三角形的判定和性质;锐角三角函数定义;特殊角的三角函数值;数形结合思想的应用【分析】(1)作辅助线“过点P 作PG EF ⊥于点G ”,根据等腰三角形三线合一的性质,得到FG =,12FPG EPF ∠=∠,在Rt FPG ∆中,根据正弦函数定义和60°的三角函数值求得FPG ∠,进而求得EPF ∠.(2)作辅助线“过点P 作PM AB ⊥于点M ,过点P 作PN AD ⊥于点N ”,构成一对全等三角形Rt PEM ∆≌()Rt PFN HL ∆,得到EM FN =,在Rt PAM ∆和Rt PAN ∆中,分别求得AM AN ==,从而根据()()A E A F A M EN A N F NA M A N+=-++=+求解即可. (3)如答图3,当EF AC ⊥,点P 在EF 的右侧时,AP 有最大值,当EF AC ⊥,点P 在EF 的左侧时,AP 有最小值.设EF 与AC 相交于点O ,∵EP =FP ,∴12OF EF ==∵60,4EPA PE ∠=︒= ,∴2OP =.∵30,PAE OE ∠=︒= ,∴6AO =. ∴628AP AO OP =+=+=. 同理,''624AP AO OP =-=-=. ∴AP 长的最大值是8,最小值是4.12. (2015年江苏盐城12分)如图,在平面直角坐标系xOy 中,将抛物线2y x =的对称轴绕着点P (0,2)顺时针旋转45°后与该抛物线交于A 、B 两点,点Q 是该抛物线上的一点. (1)求直线AB 的函数表达式;(2)如图①,若点Q 在直线AB 的下方,求点Q 到直线AB 的距离的最大值;(3)如图②,若点Q 在y 轴左侧,且点T (0,t )(t <2)是直线PO 上一点,当以P 、B 、Q 为顶点的三角形与△PAT 相似时,求所有满足条件的t 的值.【答案】解:(1)如答图1,设直线AB 与x 轴的交点为M ,∵45OPA ∠=︒,P (0,2),∴()2,0M - . 设直线AB 的解析式为y kx b =+,则202k b b -+=⎧⎨=⎩,解得12k b =⎧⎨=⎩.∴直线AB 的解析式为2y x =+.(2)如答图2,过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为点D ,根据条件可知,QDC ∆是等腰直角三角形.∴2QD =. 设()2,Q m m ,则(),2C m m + ,∴22QC m m =+-.∴)22122228QD m m m ⎫=+-=--+⎪⎝⎭∴当12m =时,点Q 到直线AB . (3)∵45APT ∠=︒,∴PBQ ∆中必有一角等于45°.①由图可知,45BPQ ∠=︒不合题意.②若45PBQ ∠=︒,如答图3,过点B 作x 轴的平行线与y 轴和抛物线分别交于点F Q 、,此时,45PBQ ∠=︒.根据抛物线的轴对称性质,知45PQB ∠=︒,∴BPQ ∆是等腰直角三角形.∵PAT ∆与BPQ ∆相似,且45APT ∠=︒,∴PAT ∆也是等腰直角三角形.i )若90PAT ∠=︒,联立22y x y x ⎧=⎨=+⎩,解得11x y =-⎧⎨=⎩或24x y =⎧⎨=⎩.∴()1,1A - . ∴AP ==.∴2PT =,此时,0t =.ii )若90PTA ∠=︒,1PT AT ==,此时,1t =.③若45PQB ∠=︒,②是情况之一,答案同上.如答图4,5,过点B 作x 轴的平行线与y 轴和抛物线分别交于点1F Q 、,以点F 为圆心,FB 为半径画圆,则1P B Q 、、都在Fe 上,设F e 与y 轴左侧的抛物线交于另一点2Q .∵根据圆周角定理,2145PQ B PQ B ∠=∠=︒,∴点2Q 也符合要求.设()()22,2<<0Q n n n - ,由22FQ =得()222242n n +-=解得23n =或24n =,而2<<0n -,故n =.∴()23Q .可证2PFQ ∆是等边三角形,∴260PFQ ∠=︒. ∴221302PBQ PFQ ∠=∠=︒. 则在2PQ B ∆中,2230,45PBQ PQ B ∠=︒∠=︒ .i )若30PTA ∠=︒,如答图4,过点A 作AE y ⊥轴于点E ,则1ET OE ==,∴1ET OE ==.∴1OT =,此时,1t =-ii )若30PAT ∠=︒,如答图5,过点T 作TG AB ⊥轴于点G ,设TG a =,则,PG TG a AG === .∵AP =a =a =.∴1PT ===.∴)213OT OP PT =-=-=3t =综上所述,所有满足条件的t 的值为0t =或1t =或1t =-3t =-【考点】二次函数综合题;线动旋转和相似三角形存在性问题;待定系数法的应用;曲线上点的坐标与方程的关系;等腰直角三角形的判定和性质;含30度角直角三角形的性质;二次函数最值;勾股定理;圆周角定理;分类思想、数形结合思想、方程思想的应用.【分析】(1)根据旋转的性质得到等腰直角三角形PMO ,从而得到解决点M 的坐标,进而应用待定系数法即可求得直线AB 的解析式.(2)作辅助线“过点Q 作x 轴的垂线QC ,交AB 于点C ,再过点Q 作直线AB 的垂线,垂足为点D ”,设()2,Q m m ,求出QD 关于m 的二次函数,应用二次函数最值原理即可求解.(3)分45BPQ ∠=︒,45PBQ ∠=︒,45PQB ∠=︒三种情况讨论即可.13. (2015年江苏扬州10分)如图,已知⊙O 的直径AB =12cm ,AC 是⊙O 的弦,过点C 作⊙O 的切线交BA 的延长线于点P ,连接BC .(1)求证:∠PCA =∠B ;(2)已知∠P =40°,点Q 在优弧ABC 上,从点A 开始逆时针运动到点C 停止(点Q 与点C 不重合),当△ABQ 与△ABC 的面积相等时,求动点Q 所经过的弧长.【答案】解:(1)证明:如答图1,连接OC ,∵AB 是O e 的直径,∴2390ABC ∠=∠+∠=︒.∵PC 是O e 的切线,∴OC PC ⊥.∴1390PCO ∠=∠+∠=︒.∴12∠=∠.∵OC OB =,∴2B ∠=∠.∴1B ∠=∠,即PCA B ∠=∠.(2)如答图1,∵PC 是O e 的切线,∠P =40°,∴50POC ∠=︒.∵AB =12cm ,∴AO =6cm.当△ABQ 与△ABC 的面积相等时,动点Q 在优弧ABC 上有三个位置:①如答图2,在O e 上作点C 关于AB 的对称点,该点即是满足△ABQ 与△ABC 的面积相等的点Q ,由轴对称性知,50AOQ POC ∠=∠=︒,∴»50651803AQ ππ⋅⋅==. ②如答图3,在O e 上作点C 关于点O 的对称点,该点即是满足△ABQ 与△ABC 的面积相等的点Q ,由中心对称性知,50BOQ POC ∠=∠=︒,∴130AOQ ∠=︒.∴»1306131803AQ ππ⋅⋅==. ③如答图4,在O e 上作点C 关于AB 中垂线的对称点,该点即是满足△ABQ 与△ABC 的面积相等的点Q ,由轴对称性知,50BOQ POC ∠=∠=︒,∴优角230AOQ ∠=︒.∴优弧»2306231803AQ ππ⋅⋅==.综上所述,动点Q 所经过的弧长为53π或133π或233π.【考点】圆周角定理;切线的性质;等腰三角形的性质;同底等高三角形的性质;弧长的计算;轴对称和中心对称的性质;分类思想的应用.【分析】(1)如答图1,作辅助线“连接OC ”,一方面,由AB 是O e 的直径和PC 是O e 的切线得到2390ABC ∠=∠+∠=︒和1390PCO ∠=∠+∠=︒,从而得到12∠=∠;另一方面,由OC OB =,根据等腰三角形等边对等角的性质得到2B ∠=∠,进而得到PCA B ∠=∠的结论.(2)根据同底等高三角形面积相等的性质,分三种情况讨论即可:在O e 上作点C 关于AB 的对称点Q ,在O e 上作点C 关于点O 的对称点Q ,在O e 上作点C 关于AB 中垂线的对称点Q .14. (2015年江苏扬州12分)如图,直线l ⊥线段AB 于点B ,点C 在AB 上,且:2:1AC CB =,点M 是直线l 上的动点,作点B 关于直线CM 的对称点'B ,直线'AB 与直线CM 相交于点P ,连接PB .(1)如图1,若点P 与点M 重合,则PAB ∠= ▲ °,线段PA 与PB 的比值为 ▲ ;(2)如图2,若点P 与点M 不重合,设过P B C 、、三点的圆与直线AP 相交于D ,连接CD .求证:①'CD CB =;②2PA PB =;(3)如图3,2,1AC BC == ,则满足条件2PA PB =的点都在一个确定的圆上,在以下两小题中选做一题: ①如果你能发现这个确定圆的圆心和半径,那么不必写出发现过程,只要证明这个圆上的任意一点Q ,都满足QA =2QB ;②如果你不能发现这个确定圆的圆心和半径,那么请取几个特殊位置的P 点,如点P 在直线AB 上、点P 与点M 重合等进行探究,求这个圆的半径.【答案】解:(1)30;2.(2)证明:①∵点B 关于直线CM 的对称点'B ,∴'BPC B PC ∆∆≌.∴'PBC PB C ∠=∠.∵'B DC ∠是圆内接四边形CBPD 的外角,∴'B DC PBC ∠=∠.∴''B DC PB C ∠=∠.∴'CD CB =.②如答图1,连接'BB 交CM 于点E ,过点'B 作'B F ∥MC 交于点F ,∵点B 关于直线CM 的对称点'B ,∴CM 是'BB 的垂直平分线.∴'BE EB =,'BP B P =.∴FC CB =.∵:2:1AC CB =,∴AF FC CB ==.∴''AB B P =.∴''AB B P BP ==.∴2PA PB =.(3)两小题中选做一题:①如答图2,在AB 的延长线上取点O ,使1OB =,以点O 为圆心,2为半径画圆,取圆上任一点Q ,连接,,QC QA QB ,在QA 上取点1B ,使1QB QB =,连接1BB ,作点B 关于直线QC 的对称点'B ,连接'BB 交QC 于点G ,过点'B 作'B F ∥QC 交于点F ,【7:96·800】 ∵点B 关于直线QC 的对称点'B ,∴QC 是'BB 的垂直平分线. ∴'BG GB =.又∵1QB QB =,∴11QB B QBB ∠=∠.∴点1B 、'B 重合.∵1BC CF AF ===,∴''AB B Q BQ ==.∴2QA QB =.②若点P 在线段AB 上,由2PA PB =知,点P 与点C 重合,点'B 与点B 重合,这个圆的半径为2.若点P 在射线AB 的延长线上,由2PA PB =知,点'B 与点B 重合,这个圆的半径为2.等.【考点】开放型;单动点和轴对称问题;轴对称的性质;锐角三角函数定义;特殊角的三角函数值;圆内接四边形的性质;等腰三角形的判定;线段垂直平分线的性质;平行线分线段成比例的性质.【分析】(1)∵'1sin 2BM B C PAB AM AC ∠===,∴30PAB ∠=︒. ∵30PAB ∠=︒,∴线段PA 与PB 的比值为2.(2)①一方面证明'BPC B PC ∆∆≌得到'PBC PB C ∠=∠;另一方面,由'B DC ∠是圆内接四边形CBPD 的外角得到'B DC PBC ∠=∠,从而得到''B DC PB C ∠=∠,进而根据等角对等边的判定得证.②作辅助线“连接'BB 交CM 于点E ,过点'B 作'B F ∥MC 交于点F ”,应用线段垂直平分线的性质和平行线分线段成比例的性质证明.(3)①如答图2,在AB 的延长线上取点O ,使1OB =,以点O 为圆心,2为半径画圆,取圆上任一点Q ,连接,,QC QA QB ,在QA 上取点1B ,使1QB QB =,连接1BB ,作点B 关于直线QC 的对称点'B ,连接'BB 交QC 于点G ,过点'B 作'B F ∥QC 交于点F ,此圆即为所求定圆.②取特殊点探讨,答案不唯一.15. (2015年江苏常州10分)如图,一次函数4y x =-+的图象与x 轴、y 轴分别相交于点A 、B ,过点A 作x 轴的垂线l ,点P 为直线l 上的动点,点Q 为直线AB 与△OAP 外接圆的交点,点P 、Q 与点A 都不重合.(1)写出点A 的坐标;(2)当点P 在直线l 上运动时,是否存在点P 使得△OQB 与△APQ 全等?如果存在,求出点P 的坐标;如果不存在,请说明理由.(3)若点M 在直线l 上,且∠POM =90°,记△OAP 外接圆和△OAM 外接圆的面积分别是S 1、S 2,求1211S S +的值.【答案】解(1)(4,0).(2)存在.理由如下:如答图1所示:将x =0代入4y x =-+得:4y =,∴OB =4.由(1)可知OA=4.。

江苏省13市2015年中考数学试题分类解析汇编专题12:圆的问题

江苏省13市2015年中考数学试题分类解析汇编专题12:圆的问题

江苏省13市2015年中考数学试题分类解析汇编(20专题)专题12:圆的问题1. (2015年江苏南京2分)如图,在矩形ABCD 中,AB =4,AD =5,AD 、AB 、BC 分别与⊙O 相切于E 、F 、G 三点,过点D 作⊙O 的切线交BC 于点M ,则DM 的长为【 】A.133 B. 92 C.D. 【答案】A.【考点】矩形的性质;切线的性质;正方形的判定和性质;切线长定理;勾股定理;方程思想的应用.【分析】如答图,连接,,OE OF OG ,则根据矩形和切线的性质知,四边形,AEOF FOGB 都是正方形. ∵AB =4,∴2AE AF BF BG ====. ∵AD =5,∴3DE DN ==.设GM=NM=x ,则3,3CM BC BG GM x DM DN NM x =--=-=+=+ .在Rt CDM ∆中,由勾股定理得:222DM CD CM =+,即()()222343 x x +=+-,解得,43x =. ∴133DM =. 故选A.2. (2015年江苏苏州3分)如图,AB 为⊙O 的切线,切点为B ,连接AO ,AO 与⊙O 交于点C ,BD 为⊙O 的直径,连接CD .若∠A =30°,⊙O 的半径为2,则图中阴影部分的面积为【 】A .43π B .43π- C .π D .23π- 【答案】A .【考点】切线的性质;三角形外角性质;垂径定理;三角形和扇形面积的计算;转换思想的应用. 【分析】如答图,过O 点OH ⊥CD 作于点H ,∵AB 为⊙O 的切线,∴OB ⊥AB ,即∠OBA =90°. 又∵∠A =30°,∴∠COD =120°. 在△ODH 中,∵∠ODH =30°,OD=2,∴1,OH DH =∴2120214136023OCD OCD S S S ππ∆⋅⋅=-=-⋅=阴影部分扇形故选A .3. (2015年江苏扬州3分)如图,若锐角△ABC 内接于⊙O ,点D 在⊙O 外(与点C 在AB 同侧), 则下列三个结论:①D C ∠>∠sin sin ;②D C ∠>∠cos cos ;③D C ∠>∠tan tan 中,正确的结论为【 】A. ①②B. ②③C. ①②③D. ①③ 【答案】D.【考点】圆周角定理;三角形外角性质;锐角三角函数的性质.【分析】如答图,设AD 与⊙O 相交于点E ,连接BE .∵,>C AEB AEB D ∠=∠∠∠ ,∴>C D ∠∠.∵正弦、正切函数值随锐角的增大而增大,余弦函数值随锐角的增大而减小, ∴sin sin C D ∠>∠, cos <cos C D ∠∠, tan tan C D ∠>∠. ∴正确的结论为①③. 故选D.4. (2015年江苏淮安3分)如图,四边形ABCD 是圆O 的内接四边形,若70A ∠=︒,则∠C 的度数是【 】A. 100°B. 110°C. 120°D. 130° 【答案】B.【考点】圆内接四边形的性质.【分析】∵四边形ABCD 是圆O 的内接四边形, 70A ∠=︒,∴根据圆内接四边形对角互补的性质,得110C ∠=︒. 故选B.5. (2015年江苏南通3分)如图,AB 为⊙O 的直径,C 为⊙O 上一点,弦AD 平分∠BAC ,交BC 于点E ,AB =6,AD =5,则AE 的长为【 】A. 2.5B. 2.8C. 3D. 3.2 【答案】B.【考点】圆周角定理;勾股定理;相似三角形的判定和性质. 【分析】如答图,连接BD 、CD ,∵AB 为⊙O 的直径,∴∠ADB =90°.∴BD∵弦AD 平分∠BAC ,∴CD =BD ∴∠CBD =∠DAB .在△ABD 和△BED 中,∵∠BAD =∠EBD ,∠ADB =∠BDE ,∴△ABD ∽△BED . ∴DE DBDB AD =1155DE =⇒=. ∴115 2.85AE AB DE =-=-=. 故选B.1. (2015年江苏连云港3分)如图是一个几何体的三视图,其中主视图与左视图都是边长为4的等边三角形,则这个几何体的侧面展开图的面积为 ▲ .【答案】8π.【考点】由三视图判断几何体;几何体的展开图;扇形面积的计算. 【分析】∵这个几何体为圆锥,圆锥的母线长为4,底面圆的直径为4,∴这个几何体的侧面展开图的面积=14482ππ⨯⨯=.2. (2015年江苏南京2分)如图,在⊙O 的内接五边形ABCDE 中,∠CAD =35°,则∠B +∠E = ▲ .【答案】215°.【考点】圆内接四边形的性质;圆周角定理. 【分析】如答图,连接BD ,∵∠1和∠2是圆内接四边形的对角,∴∠1+∠2=180°.又∵∠3和∠4是同圆中同弧所对的圆周角,且∠4=35°,∴∠3=∠4=35°.∴∠CBA +∠DEA =215°.3. (2015年江苏泰州3分)圆心角为120° ,半径为6cm 的扇形面积为 ▲ cm 2. 【答案】12π【考点】扇形面积的计算.【分析】直接根据扇形面积公式计算:2120612360S ππ⋅⋅== cm 2. 4. (2015年江苏泰州3分)如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD 等于 ▲ °.【答案】130.【考点】圆内接四边形的性质;圆周角定理. 【分析】∵⊙O 的内接四边形ABCD 中,∠A =115°,∴根据圆内接四边形对角互补的性质,得18065C A ∠=︒-∠=︒. ∵C ∠与BOD ∠是同圆中同弧所对的圆周角和圆心角, ∴2130BOD C ∠=∠=︒.5. (2015年江苏徐州3分)如图,AB 是⊙O 的直径,点C 在AB 的延长线上,CD 与⊙O 相切于点D ,若∠C =20°,则∠CDA = ▲ °.【答案】125° .【考点】切线的性质;三角形内角和定理;圆周角定理.【分析】如答图,连接OD ,∵CD 与⊙O 相切于点D ,∴CD OD ⊥. ∴90CDO ∠=︒.∵∠C =20°,∴70COD ∠=︒. ∴35A ∠=︒. ∴180125CDA C A ∠=︒-∠-∠=︒.6.(2015年江苏徐州3分)如图,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,连接AC ,若∠CAB =22.5°,CD =8cm ,则⊙O 的半径为 ▲ cm .【答案】【考点】垂径定理;圆周角定理;等腰直角三角形的判定和性质. 【分析】如答图,连接OC ,∵AB 是⊙O 的直径,弦CD ⊥AB ,CD =8cm ,∴4CE DE cm ==. ∵∠CAB =22.5°,∴45COE ∠=︒.∴COE ∆是等腰直角三角形.∴OC =∴⊙O 的半径为.7. (2015年江苏徐州3分)用一个圆心角为90°,半径为4的扇形围成一个圆锥的侧面,该圆锥底面圆的半径 ▲ . 【答案】1.【考点】圆锥和扇形的计算。

江苏省泰州市中考数学试卷word解析版

江苏省泰州市中考数学试卷word解析版

江苏省泰州市中考数学试卷word解析版————————————————————————————————作者:————————————————————————————————日期:2015年江苏省泰州市中考数学试卷一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2015•泰州)﹣的绝对值是()D.3A.﹣3 B.C.﹣2.(3分)(2015•泰州)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()03.(3分)(2015•泰州)描述一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差4.(3分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱5.(3分)(2015•泰州)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)6.(3分)(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)(2015•泰州)2﹣1等于.8.(3分)(2015•泰州)我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为.9.(3分)(2015•泰州)计算:﹣2等于.10.(3分)(2015•泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=.11.(3分)(2015•泰州)圆心角为120°,半径长为6cm的扇形面积是cm2.12.(3分)(2015•泰州)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于.13.(3分)(2015•泰州)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是.14.(3分)(2015•泰州)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为.15.(3分)(2015•泰州)点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是.16.(3分)(2015•泰州)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为.三、解答题(本大腿共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)17.(12分)(2015•泰州)(1)解不等式:(2)计算:÷(a+2﹣)18.(8分)(2015•泰州)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.19.(8分)(2015•泰州)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.20.(8分)(2015•泰州)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.21.(10分)(2015•泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?22.(10分)(2015•泰州)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.23.(10分)(2015•泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)24.(10分)(2015•泰州)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.25.(12分)(2015•泰州)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.26.(14分)(2015•泰州)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.2015年江苏省泰州市中考数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,满分18分,在每小题所给出的四个选项中,恰有一项符合题目要求的,请将正确的选项的字母代号填涂在答题卡相应位置上)1.(3分)(2015•泰州)﹣的绝对值是()D.3A.﹣3 B.C.﹣考点:绝对值.分析:根据负数的绝对值等于它的相反数即可求解.解答:解:﹣的绝对值是,故选B点评:考查了绝对值,计算绝对值要根据绝对值的定义求解.第一步列出绝对值的表达式;第二步根据绝对值定义去掉这个绝对值的符号.2.(3分)(2015•泰州)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()0考点:无理数;零指数幂.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无理数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.3.(3分)(2015•泰州)描述一组数据离散程度的统计量是()A.平均数B.众数C.中位数D.方差考点:统计量的选择.分析:根据方差的意义可得答案.方差反映数据的波动大小,即数据离散程度.解答:解:由于方差反映数据的波动情况,所以能够刻画一组数据离散程度的统计量是方差.故选D.点评:此题主要考查统计的有关知识,主要包括平均数、中位数、众数、方差的意义.反映数据集中程度的统计量有平均数、中位数、众数方差等,各有局限性,因此要对统计量进行合理的选择和恰当的运用.4.(3分)(2015•泰州)一个几何体的表面展开图如图所示,则这个几何体是()A.四棱锥B.四棱柱C.三棱锥D.三棱柱考点:几何体的展开图.分析:根据四棱锥的侧面展开图得出答案.解答:解:如图所示:这个几何体是四棱锥.故选:A.点评:此题主要考查了几何体的展开图,熟记常见立体图形的平面展开图的特征是解决此类问题的关键.5.(3分)(2015•泰州)如图,在平面直角坐标系xOy中,△A′B′C′由△ABC绕点P旋转得到,则点P的坐标为()A.(0,1)B.(1,﹣1)C.(0,﹣1)D.(1,0)考点:坐标与图形变化-旋转.分析:根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心.解答:解:由图形可知,对应点的连线CC′、AA′的垂直平分线过点(0,﹣1),根据旋转变换的性质,点(0,﹣1)即为旋转中心.故旋转中心坐标是P(0,﹣1).故选C.点评:本题考查了利用旋转变换作图,旋转变换的旋转以及对应点连线的垂直平分线的交点即为旋转中心,熟练掌握网格结构,找出对应点的位置是解题的关键.6.(3分)(2015•泰州)如图,△ABC中,AB=AC,D是BC的中点,AC的垂直平分线分别交AC、AD、AB于点E、O、F,则图中全等三角形的对数是()A.1对B.2对C.3对D.4对考点:全等三角形的判定;线段垂直平分线的性质;等腰三角形的性质.分析:根据已知条件“AB=AC,D为BC中点”,得出△ABD≌△ACD,然后再由AC的垂直平分线分别交AC、AD、AB于点E、O、F,推出△AOE≌△EOC,从而根据“SSS”或“SAS”找到更多的全等三角形,要由易到难,不重不漏.解答:解:∵AB=AC,D为BC中点,∴CD=BD,∠BDO=∠CDO=90°,在△ABD和△ACD中,,∴△ABD≌△ACD;∵EF垂直平分AC,∴OA=OC,AE=CE,在△AOE和△COE中,,∴△AOE≌△COE;在△BOD和△COD中,,∴△BOD≌△COD;在△AOC和△AOB中,,∴△AOC≌△AOB;故选D.点评:本题考查的是全等三角形的判定方法;这是一道考试常见题,易错点是漏掉△ABO≌△ACO,此类题可以先根据直观判断得出可能全等的所有三角形,然后从已知条件入手,分析推理,对结论一个个进行论证.二、填空题(本大题共有10小题,每小题3分,共30分,请把答案直接填写在答题卡相应位置上)7.(3分)(2015•泰州)2﹣1等于.考点:负整数指数幂.分析:负整数指数幂:a﹣p=()p,依此计算即可求解.解答:解:2﹣1=1=.故答案是:.点评:本题考查了负整数指数幂.负整数指数为正整数指数的倒数.8.(3分)(2015•泰州)我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为 2.2×1011.考点:科学记数法—表示较大的数.分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.解答:解:将220 000 000 000用科学记数法表示为2.2×1011.故答案为:2.2×1011.点评:此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.9.(3分)(2015•泰州)计算:﹣2等于2.考点:二次根式的加减法.分析:先把各根式化为最简二次根式,再合并同类项即可.解答:解:原式=3﹣=2.故答案为:2.点评:本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.10.(3分)(2015•泰州)如图,直线l1∥l2,∠α=∠β,∠1=40°,则∠2=140°.考点:平行线的性质.专题:计算题.分析:先根据平行线的性质,由l1∥l2得∠3=∠1=40°,再根据平行线的判定,由∠α=∠β得AB∥CD,然后根据平行线的性质得∠2+∠3=180°,再把∠1=40°代入计算即可.解答:解:如图,∵l1∥l2,∴∠3=∠1=40°,∵∠α=∠β,∴AB∥CD,∴∠2+∠3=180°,∴∠2=180°﹣∠3=180°﹣40°=140°.故答案为140°.点评:本题考查了平行线性质:两直线平行,同位角相等;两直线平行,同旁内角互补;两直线平行,内错角相等.11.(3分)(2015•泰州)圆心角为120°,半径长为6cm的扇形面积是12πcm2.考点:扇形面积的计算.分析:将所给数据直接代入扇形面积公式S扇形=进行计算即可得出答案.解答:解:由题意得,n=120°,R=6cm,故=12π.故答案为12π.点评:此题考查了扇形面积的计算,属于基础题,解答本题的关键是熟记扇形的面积公式及公式中字母所表示的含义,难度一般.12.(3分)(2015•泰州)如图,⊙O的内接四边形ABCD中,∠A=115°,则∠BOD等于150°.考点:圆内接四边形的性质;圆周角定理.分析:根据圆内接四边形的对角互补求得∠C的度数,再根据圆周角定理求解即可.解答:解:∵∠A=115°∴∠C=180°﹣∠A=75°∴∠BOD=2∠C=150°.故答案为:150°.点评:本题考查的是圆内接四边形的性质,熟知圆内接四边形的对角互补是解答此题的关键.13.(3分)(2015•泰州)事件A发生的概率为,大量重复做这种试验,事件A平均每100次发生的次数是10.考点:概率的意义.分析:根据概率的意义解答即可.解答:解:事件A发生的概率为,大量重复做这种试验,则事件A平均每100次发生的次数为:100×=10.故答案为:10.点评:本题考查了概率的意义,熟记概念是解题的关键.14.(3分)(2015•泰州)如图,△ABC中,D为BC上一点,∠BAD=∠C,AB=6,BD=4,则CD的长为5.考点:相似三角形的判定与性质.分析:易证△BAD∽△BCA,然后运用相似三角形的性质可求出BC,从而可得到CD的值.解答:解:∵∠BAD=∠C,∠B=∠B,∴△BAD∽△BCA,∴=.∵AB=6,BD=4,∴=,∴BC=9,∴CD=BC﹣BD=9﹣4=5.故答案为5.点评:本题主要考查的是相似三角形的判定与性质,由角等联想到三角形相似是解决本题的关键.15.(3分)(2015•泰州)点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k>0)的图象上,若y1<y2,则a的范围是﹣1<a<1.考点:反比例函数图象上点的坐标特征.分析:根据反比例函数的性质分两种情况进行讨论,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上时,②当点(a﹣1,y1)、(a+1,y2)在图象的两支上时.解答:解:∵k>0,∴在图象的每一支上,y随x的增大而减小,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1<y2,∴a﹣1>a+1,解得:无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1<y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故答案为:﹣1<a<1.点评:此题主要考查了反比例函数的性质,关键是掌握当k>0时,在图象的每一支上,y 随x的增大而减小.16.(3分)(2015•泰州)如图,矩形ABCD中,AB=8,BC=6,P为AD上一点,将△ABP 沿BP翻折至△EBP,PE与CD相交于点O,且OE=OD,则AP的长为 4.8.考点:翻折变换(折叠问题);勾股定理;矩形的性质.分析:由折叠的性质得出EP=AP,∠E=∠A=90°,BE=AB=8,由ASA证明△ODP≌△OEG,得出OP=OG,PD=GE,设AP=EP=x,则PD=GE=6﹣x,DG=x,求出CG、BG,根据勾股定理得出方程,解方程即可.解答:解:如图所示:∵四边形ABCD是矩形,∴∠D=∠A=∠C=90°,AD=BC=6,CD=AB=8,根据题意得:△ABP≌△EBP,∴EP=AP,∠E=∠A=90°,BE=AB=8,在△ODP和△OEG中,,∴△ODP≌△OEG(ASA),∴OP=OG,PD=GE,∴DG=EP,设AP=EP=x,则PD=GE=6﹣x,DG=x,∴CG=8﹣x,BG=8﹣(6﹣x)=2+x,根据勾股定理得:BC2+CG2=BG2,即62+(8﹣x)2=(x+2)2,解得:x=4.8,∴AP=4.8;故答案为:4.8.点评:本题考查了矩形的性质、折叠的性质、全等三角形的判定与性质、勾股定理;熟练掌握翻折变换和矩形的性质,并能进行推理计算是解决问题的关键.三、解答题(本大腿共10小题,满分102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明,证明过程或演算步骤)17.(12分)(2015•泰州)(1)解不等式:(2)计算:÷(a+2﹣)考点:分式的混合运算;解一元一次不等式组.分析:(1)根据一元一次不等式组的解法,首先求出每个不等式的解集,再求出这些解集的公共部分即可.(2)根据分式的混合运算顺序,首先计算小括号里面的,然后计算除法,求出算式÷(a+2﹣)的值是多少即可.解答:解:(1)由x﹣1>2x,可得x<﹣1,由,可得x<﹣8,∴不等式的解集是:x<﹣8.(2)÷(a+2﹣)=÷=﹣点评:(1)此题主要考查了一元一次不等式组的解法,要熟练掌握,解答此题的关键是要明确:解一元一次不等式组时,一般先求出其中各不等式的解集,再求出这些解集的公共部分,利用数轴可以直观地表示不等式组的解集.方法与步骤:①求不等式组中每个不等式的解集;②利用数轴求公共部分.(2)此题还考查了分式的混合运算,要注意运算顺序,分式与数有相同的混合运算顺序;先乘方,再乘除,然后加减,有括号的先算括号里面的.18.(8分)(2015•泰州)已知:关于x的方程x2+2mx+m2﹣1=0(1)不解方程,判别方程根的情况;(2)若方程有一个根为3,求m的值.考点:根的判别式;一元二次方程的解.分析:(1)找出方程a,b及c的值,计算出根的判别式的值,根据其值的正负即可作出判断;(2)将x=3代入已知方程中,列出关于系数m的新方程,通过解新方程即可求得m 的值.解答:解:(1)∵a=1,b=2m,c=m2﹣1,∵△=b2﹣4ac=(2m)2﹣4×1×(m2﹣1)=4>0,∴方程x2+2mx+m2﹣1=0有两个不相等的实数根;(2)∵x2+2mx+m2﹣1=0有一个根是3,∴32+2m×3+m2﹣1=0,解得,m=﹣4或m=﹣2.点评:此题考查了根的判别式,一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.也考查了一元二次方程的解的定义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.即用这个数代替未知数所得式子仍然成立.19.(8分)(2015•泰州)为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查,图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项)根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数(2)该市2012年抽取的学生中,参加体育类与理财类社团的学生共有多少人?(3)该市2014年共有50000名学生,请你估计该市2014年参加社团的学生人数.考点:折线统计图;用样本估计总体;扇形统计图.分析:(1)用1减去其余四个部分所占百分比得到“科技类”所占百分比,再乘以360°即可;(2)由折线统计图得出该市2012年抽取的学生一共有300+200=500人,再乘以体育类与理财类所占百分比的和即可;(3)先求出该市2014年参加社团的学生所占百分比,再乘以该市2014年学生总数即可.解答:解:(1)“科技类”所占百分比是:1﹣30%﹣10%﹣15%﹣25%=20%,α=360°×20%=72°;(2)该市2012年抽取的学生一共有300+200=500人,参加体育类与理财类社团的学生共有500×(30%+10%)=200人;(3)50000×=28750.即估计该市2014年参加社团的学生有28750人.点评:本题考查的是折线统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.折线统计图不但可以表示出数量的多少,而且能够清楚地表示出数量的增减变化情况;扇形统计图可以很清楚地表示出各部分数量同总数之间的关系.也考查了利用样本估计总体.20.(8分)(2015•泰州)一只不透明袋子中装有1个红球,2个黄球,这些球除颜色外都相同,小明搅匀后从中任意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球,用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率.考点:列表法与树状图法.分析:首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次摸出的球都是红球的情况,再利用概率公式即可求得答案.解答:解:画树状图得:∵共有9种等可能的结果,两次摸出的球都是红球的只有1种情况,∴两次摸出的球都是红球的概率为:.点评:此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.21.(10分)(2015•泰州)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件,并以每件120元的价格销售了400件,商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标?考点:一元一次方程的应用.专题:销售问题.分析:设每件衬衫降价x元,根据销售完这批衬衫正好达到盈利45%的预期目标,列出方程求解即可.解答:解:设每件衬衫降价x元,依题意有120×400+(120﹣x)×100=80×500×(1+45%),解得x=20.答:每件衬衫降价20元时,销售完这批衬衫正好达到盈利45%的预期目标.点评:本题考查了一元一次方程的应用,解答本题的关键是读懂题意,找出合适的等量关系,列出方程求解.22.(10分)(2015•泰州)已知二次函数y=x2+mx+n的图象经过点P(﹣3,1),对称轴是经过(﹣1,0)且平行于y轴的直线.(1)求m、n的值;(2)如图,一次函数y=kx+b的图象经过点P,与x轴相交于点A,与二次函数的图象相交于另一点B,点B在点P的右侧,PA:PB=1:5,求一次函数的表达式.考点:待定系数法求二次函数解析式;待定系数法求一次函数解析式.分析:(1)利用对称轴公式求得m,把P(﹣3,1)代入二次函数y=x2+mx+n得出n=3m ﹣8,进而就可求得n;(2)根据(1)得出二次函数的解析式,根据已知条件,利用平行线分线段成比例定理求得B的纵坐标,代入二次函数的解析式中求得B的坐标,然后利用待定系数法就可求得一次函数的表达式.解答:解:∵对称轴是经过(﹣1,0)且平行于y轴的直线,∴﹣=﹣1,∴m=2,∵二次函数y=x2+mx+n的图象经过点P(﹣3,1),∴9﹣3m+n=1,得出n=3m﹣8.∴n=3m﹣8=﹣2;(2)∵m=2,n=﹣2,∴二次函数为y=x2+2x﹣2,作PC⊥x轴于C,BD⊥x轴于D,则PC∥BD,∴=,∵P(﹣3,1),∴PC=1,∵PA:PB=1:5,∴=,∴BD=6,∴B的纵坐标为6,代入二次函数为y=x2+2x﹣2得,6=x2+2x﹣2,解得x1=2,x2=﹣4(舍去),∴B(2,6),∴,解得,∴一次函数的表达式为y=x+4.点评:本题考查了待定系数法求二次函数的解析式和一次函数的解析式,根据已知条件求得B的坐标是解题的关键.23.(10分)(2015•泰州)如图,某仓储中心有一斜坡AB,其坡度为i=1:2,顶部A处的高AC为4m,B、C在同一水平地面上.(1)求斜坡AB的水平宽度BC;(2)矩形DEFG为长方体货柜的侧面图,其中DE=2.5m,EF=2m,将该货柜沿斜坡向上运送,当BF=3.5m时,求点D离地面的高.(≈2.236,结果精确到0.1m)考点:解直角三角形的应用-坡度坡角问题.分析:(1)根据坡度定义直接解答即可;(2)作DS⊥BC,垂足为S,且与AB相交于H.证出∠GDH=∠SBH,根据=,得到GH=1m,利用勾股定理求出DH的长,然后求出BH=5m,进而求出HS,然后得到DS.解答:解:(1)∵坡度为i=1:2,AC=4m,∴BC=4×2=8m.(2)作DS⊥BC,垂足为S,且与AB相交于H.∵∠DGH=∠BSH,∠DHG=∠BHS,∴∠GDH=∠SBH,∴=,∵DG=EF=2m,∴GH=1m,∴DH==m,BH=BF+FH=3.5+(2.5﹣1)=5m,设HS=xm,则BS=2xm,∴x2+(2x)2=52,∴x=m,∴DS=+=2m.点评:本题考查了解直角三角形的应用﹣﹣坡度坡角问题,熟悉坡度坡角的定义和勾股定理是解题的关键.24.(10分)(2015•泰州)如图,△ABC中,AB=AC,以AB为直径的⊙O与BC相交于点D,与CA的延长线相交于点E,过点D作DF⊥AC于点F.(1)试说明DF是⊙O的切线;(2)若AC=3AE,求tanC.考点:切线的判定.分析:(1)连接OD,根据等边对等角得出∠B=∠ODB,∠B=∠C,得出∠ODB=∠C,证得OD∥AC,证得OD⊥DF,从而证得DF是⊙O的切线;(2)连接BE,AB是直径,∠AEB=90°,根据勾股定理得出BE=2AE,CE=4AE,然后在RT△BEC中,即可求得tanC的值.解答:(1)证明:连接OD,∵OB=OD,∴∠B=∠ODB,∵AB=AC,∴∠B=∠C,∴∠ODB=∠C,∴OD∥AC,∵DF⊥AC,∴OD⊥DF,∴DF是⊙O的切线;(2)解:连接BE,∵AB是直径,∴∠AEB=90°,∵AB=AC,AC=3AE,∴AB=3AE,CE=4AE,∴BE==2AE,在RT△BEC中,tanC===.点评:本题考查了等腰三角形的性质,平行线的判定和性质,切线的判定,勾股定理的应用以及直角三角函数等,是一道综合题,难度中等.25.(12分)(2015•泰州)如图,正方形ABCD的边长为8cm,E、F、G、H分别是AB、BC、CD、DA上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH是正方形;(2)判断直线EG是否经过一个定点,并说明理由;(3)求四边形EFGH面积的最小值.考点:四边形综合题.分析:(1)由正方形的性质得出∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,证出AH=BE=CF=DG,由SAS证明△AEH≌△BFE≌△CGF≌△DHG,得出EH=FE=GF=GH,∠AEH=∠BFE,证出四边形EFGH是菱形,再证出∠HEF=90°,即可得出结论;(2)连接AC、EG,交点为O;先证明△AOE≌△COG,得出OA=OC,证出O为对角线AC、BD的交点,即O为正方形的中心;(3)设四边形EFGH面积为S,BE=xcm,则BF=(8﹣x)cm,由勾股定理得出S=x2+(8﹣x)2=2(x﹣4)2+32,S是x的二次函数,容易得出四边形EFGH面积的最小值.解答:(1)证明:∵四边形ABCD是正方形,∴∠A=∠B=∠C=∠D=90°,AB=BC=CD=DA,∵AE=BF=CG=DH,∴AH=BE=CF=DG,在△AEH、△BFE、△CGF和△DHG中,,∴△AEH≌△BFE≌△CGF≌△DHG(SAS),∴EH=FE=GF=GH,∠AEH=∠BFE,∴四边形EFGH是菱形,∵∠BEF+∠BFE=90°,∴∠BEF+∠AEH=90°,∴∠HEF=90°,∴四边形EFGH是正方形;(2)解:直线EG经过一个定点,这个定点为正方形的中心(AC、BD的交点);理由如下:连接AC、EG,交点为O;如图所示:∵四边形ABCD是正方形,∴AB∥CD,∴∠OAE=∠OCG,在△AOE和△COG中,,∴△AOE≌△COG(AAS),∴OA=OC,即O为AC的中点,∵正方形的对角线互相平分,∴O为对角线AC、BD的交点,即O为正方形的中心;(3)解:设四边形EFGH面积为S,设BE=xcm,则BF=(8﹣x)cm,根据勾股定理得:EF2=BE2+BF2=x2+(8﹣x)2,∴S=x2+(8﹣x)2=2(x﹣4)2+32,∵2>0,∴S有最小值,当x=4时,S的最小值=32,∴四边形EFGH面积的最小值为32cm2.点评:本题是四边形综合题目,考查了正方形的性质与判定、菱形的判定、全等三角形的判定与性质、勾股定理、二次函数的最值等知识;本题综合性强,有一定难度,特别是(2)(3)中,需要通过作辅助线证明三角形全等和运用二次函数才能得出结果.26.(14分)(2015•泰州)已知一次函数y=2x﹣4的图象与x轴、y轴分别相交于点A、B,点P在该函数的图象上,P到x轴、y轴的距离分别为d1、d2.(1)当P为线段AB的中点时,求d1+d2的值;(2)直接写出d1+d2的范围,并求当d1+d2=3时点P的坐标;(3)若在线段AB上存在无数个P点,使d1+ad2=4(a为常数),求a的值.考点:一次函数综合题.专题:综合题.分析:(1)对于一次函数解析式,求出A与B的坐标,即可求出P为线段AB的中点时d1+d2的值;(2)根据题意确定出d1+d2的范围,设P(m,2m﹣4),表示出d1+d2,分类讨论m 的范围,根据d1+d2=3求出m的值,即可确定出P的坐标;(3)设P(m,2m﹣4),表示出d1与d2,由P在线段上求出m的范围,利用绝对值的代数意义表示出d1与d2,代入d1+ad2=4,根据存在无数个点P求出a的值即可.解答:解:(1)对于一次函数y=2x﹣4,令x=0,得到y=﹣4;令y=0,得到x=2,∴A(2,0),B(0,﹣4),∵P为AB的中点,∴P(1,﹣2),则d1+d2=3;(2)①d1+d2≥2;②设P(m,2m﹣4),∴d1+d2=|m|+|2m﹣4|,当0≤m≤2时,d1+d2=m+4﹣2m=4﹣m=3,解得:m=1,此时P1(1,2);当m>2时,d1+d2=m+2m﹣4=3,解得:m=,此时P2(,);当m<0时,不存在,综上,P的坐标为(1,2)或(,);(3)设P(m,2m﹣4),∴d1=|2m﹣4|,d2=|m|,∵P在线段AB上,∴0≤m≤2,∴d1=4﹣2m,d2=m,∵d1+ad2=4,∴4﹣2m+am=4,即(a﹣2)m=0,∵有无数个点,∴a=2.点评:此题属于一次函数综合题,涉及的知识有:一次函数与坐标轴的交点,线段中点坐标公式,绝对值的代数意义,以及坐标与图形性质,熟练掌握绝对值的代数意义是解本题的关键.参与本试卷答题和审题的老师有:1987483819;2300680618;sjzx;HLing;zjx111;张其铎;dbz1018;caicl;CJX;gsls;守拙;1160374;sd2011;wdzyzmsy@;放飞梦想;HJJ;zcx;sks(排名不分先后)菁优网2015年6月24日。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年江苏泰州中考数学真题卷第一部分 选择题(共18分)一、选择题(本大题共有5小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的)1.31-的绝对值是( ) A.-3 B.31 C.31- D.3【考查内容】绝对值的定义. 【答案】B【解析】根据绝对值的定义,可得选B.2.下列 4 个数:()0229π37, , ,其中无理数是( )A.9B.722C.πD.()3【考查内容】有理数和无理数的定义. 【答案】C【解析】根据9=3,22=3.3337…,π,()3=1,π为无理数,所以可得选C.3.描述一组数据离散程度的统计量是( )A.平均数B.众数C.中位数D.方差 【考查内容】有关统计的考察. 【答案】D【解析】根据平均数,众数,中位数,方差的作用,可得选D. 4.一个几何体的表面展开图如图所示,则这个几何体是( )第4题图A.四棱锥B.四棱柱C.三棱锥D.三棱柱【考查内容】空间几何体的考察. 【答案】A【解析】根据几何体的表面展开图可知该几何体为四棱锥,故选A.5.如图,在平面直角坐标系xOy 中,△A B C '''由△ABC 绕点P 旋转得到,则点P 的坐标为( )第5题图A.( 0,1)B.( 1,-1)C.(0,-1)D.(1,0) 【考查内容】图形的变换. 【答案】B【解析】旋转中心点P 应位于AA '、BB '、CC '的垂直平分线的交点上,BB '的垂直平分线是x =1,所以P 的横坐标为1,在x =1上找一点使PA PA '=、PC PC '=,可得P 的坐标为(1,-1).6.如图,△ABC 中,AB =AC ,D 是BC 的中点,AC 的垂直平分线分别交 AC 、AD 、AB 于点E 、O 、F ,则图中全等的三角形的对数是 ( )第6题图A.1对B.2对C.3对D.4对 【考查内容】全等三角形. 【答案】D【解析】由题可知△AOE ≌△COE ()SAS ,△COD ≌△BOD ()SAS ,△ACD ≌△ABD ()SAS , △ACO ≌△ABO ()SAS第二部分 非选择题(共132分)二、 填空题7.12-=_____.【考查内容】数的运算. 【答案】12【解析】12-=12. 8.我市2014年固定资产投资约为220 000 000 000元,将220 000 000 000用科学记数法表示为___________.【考查内容】科学记数法. 【答案】2.21110⨯【解析】根据科学记数法得220 000 000 000=2.21110⨯. 9.计算:21218-等于__________. 【考查内容】根式的运算. 【答案】22【解析】原式=32222-=.10.如图,直线 1l ∥2l ,∠α=∠β,∠1=40°,则∠2=_____________°.第10题图【考查内容】平行线的性质.【答案】140 【解析】第10题图由题可知直线 1l ∥2l ,∠α=∠β,∠1=40°,所以∠1+∠2=180°,故∠2=140°.分别过α∠和β∠的顶点作平行于1l 的直线,13,45,67∠=∠∠=∠∠=∠,又因为αβ∠=∠, 所以36∠=∠,∴1740∠=∠=,∴21807140∠=-∠= 11.圆心角为120° ,半径为6cm 的扇形面积为__________cm 2. 【考查内容】扇形面积的考查. 【答案】12π【解析】由扇形的面积公式21 2S r α==212π6=23⋅⨯12π(cm 2). 12.如图,⊙O 的内接四边形ABCD 中,∠A =115°,则∠BOD 等于__________°.第12题图 【考查内容】圆周角和圆心角. 【答案】130【解析】因为∠A +∠BCD =180°且∠A =115°,所以∠BCD =65°,∠BOD =2∠BCD =130°. 13.事件A 发生的概率为201,大量重复做这种试验,事件A 平均每100次发生的次数是__________. 【考查内容】概率. 【答案】5次【解析】由事件A 发生的概率为201,所以事件A 平均每100次发生的次数是201⨯100=5次.14.如图,△ABC 中,D 为BC 上一点,∠BAD =∠C ,AB =6,BD =4,则CD 的长为_________.第14题图 【考查内容】相似三角形. 【答案】5【解析】由∠BAD =∠C ,∠ABD =∠CBA 所以△CBA ∽ △ABD ,所以AB BDCB BA=所以9CB = 又因为BD =4,故CD =CB -BD =5.15.点()1,1y a -、()2,1y a +在反比例函数()0>=k xky 的图像上,若21y y <,则a 的范围是 .【考查内容】反比例函数的性质. 【答案】11a -<< 【解析】由反比例函数()0>=k xky ,则图像在一,三象限,且每一支内单调递减,11a a +>-,若存在12y y <,则要使1010a a -<⎧⎨+>⎩,即11a -<<.16.如图, 矩形ABCD 中,AB =8,BC =6,P 为AD 上一点, 将△ABP 沿BP 翻折至△EBP , PE 与CD 相交于点O ,且OE=OD ,则AP 的长为__________.第16题图 【考查内容】全等三角形,相似三角形的考察. 【答案】245【解析】如图所示,DC 与BE 交与点Q .由题AB =8,BC =6,设OD=OE=a ,DP=b,由题将△ABP 沿BP 翻折至△EBP ,故∠ODP =∠OEQ =90°,P A=PE=6-PD =6-b ,在△ODP 与△OEQ 中,DOP EOQ OD OEODP OEQ ∠=∠⎧⎪=⎨⎪∠=∠⎩,所以()DPO EQO ASA △≌△,故DP EQ b ==,由勾股定理得,OP=OQ==OQE 和△BQC 中,根据对顶角相等,OQE BQC ∠=∠根据矩形性质,90OEQ BCQ ∠=∠=︒,所以△OQE ∽△BQC 根据相似三角形的性质,OE BCQE Q=,所以6BC QE bCQ OE a⋅==.而根据边的等量关系,AD=P A+PD=OP+OE+PD6a b +=①,且CD=OD+OQ+CQ=68b a a =②.由②-①得62b b a -=通分化简得2,6a b a =-将其b266a a a +=-,化简得()2264,a a a =--解得369164a ==,于是2665a b a ==-,所以P A =6-PD =245. 三、解答题17.(1)解不等式组:⎪⎩⎪⎨⎧-<+>-132121x xx【考查内容】 不等式组【解】12 13 1 2x x x ->⎧⎪⎨+<-⎪⎩①②,先解不等式①1x <-.再解不等式② 8x <-. 所以不等式组得解为8x <-. (2)计算:⎪⎭⎫⎝⎛--+÷--252423a a a a .【考查内容】多项式的运算【解】原式=()2322245a a a a --⎛⎫⨯ ⎪---⎝⎭=()()31233a a a ⎡⎤-⨯⎢⎥+-⎣⎦=()123a -+.18.已知:关于x 的方程01222=-++m mx x . (1)不解方程:判断方程根的情况; (2)若方程有一个根为3,求m 的值. 【考查内容】一元二次方程【解】(1)22=44440m m ∆-+=>,∴方程有两个不相等的实数根.(2)3x =为根,29610m m ∴++-=,2680m m ++=,()()24m m ++=0,122,4m m ∴=-=-.19.为了解学生参加社团的情况,从2010年起,某市教育部门每年都从全市所有学生中随机抽取2000名学生进行调查.图①、图②是部分调查数据的统计图(参加社团的学生每人只能报一项,根据统计图提供的信息解决下列问题:(1)求图②中“科技类”所在扇形的圆心角α的度数;(2)该市 2012 年抽取的学生中,参加体育类与理财类社团的学生共有多少人? (3)该市 2014 年共有 50000 名学生,请你估计该市2014年参加社团的学生人数. 每年抽取的学生中参加社团的男、女生 2012年抽取的学生中参加各类社团人数折线统计图 学生情况扇形统计图图① 图② 第19题图【考查内容】统计【解】(1)360°⨯20%=72°,答:圆心角α的度数72°.(2)(300+200)⨯(30%+10%)=200(人), 答:参加体育类与理财类社团的学生共有200人. (3)50000⨯5506002000+=2875(人),答:参加社团的学生人数为2875人.20.一只不透明袋子中装有1个红球、2个黄球,这些球除颜色外都相同.小明搅匀后从中意摸出一个球,记录颜色后放回、搅匀,再从中任意摸出1个球.用画树状图或列表法列出摸出球的所有等可能情况,并求两次摸出的球都是红球的概率. 【解】树状图如下:第20题图 P =19, 答:摸出的球都是红球的概率为19. 21.(本题满分10分)某校七年级社会实践小组去商场调查商品销售情况,了解到该商场以每件80元的价格购进了某品牌衬衫500件, 并以每件120元的价格销售了400件.商场准备采取促销措施,将剩下的衬衫降价销售.请你帮商场计算一下,每件衬衫降价多少元时,销售完这批衬衫正好达到盈利45%的预期目标? 【考查内容】方程.【解】设降价x 元,则 400⨯120+100(120-x )=500⨯80⨯(1+45%) 解得x =20答:每件衬衫降价20元.22.已知二次函数n mx x y ++=2的图像经过点()1,3-P ,对称轴是经过()0,1-且平行于y 轴的直线.(1)求m 、n 的值;(2)如图,一次函数b kx y +=的图像经过点P ,与x 轴相交于点A ,与二次函数的图像相交于另一点B ,点B 在点P 的右侧,5:1:=PB PA , 求一次函数的表达式.第22题图 【考查内容】一元二次方程与一次函数. 【解】①2y x mx n =++的对称轴为1x =-,121m∴-=-⨯,2m ∴=. 22y x x n ∴=++,1=96n ∴-+,2n =-.②222y x x ∴=+-,作PC ⊥x 轴于C ,BD ⊥x 轴于D ,PC BD ∴∥ , APC ABD ∴△∽△,16PC AP BD AB ∴==, 1PC =,6BD ∴=, 6B y ∴=, 2226x x ∴+-=,()()240x x -+=,122,4x x ∴==-(舍去),y kx b =+过(-3,1),(2,6),1=362k b k b -+⎧∴⎨=+⎩ , 14k b =⎧∴⎨=⎩. ∴一次函数的表达式 4.y x =+23.如图,某仓储中心有一斜坡AB ,其坡度为2:1=i ,顶部A 处的高AC 为4m ,B 、C 在同一水平地面上.(1)求斜坡AB 的水平宽度BC ;(2)矩形DEFG 为长方形货柜的侧面图,其中DE =2.5m ,EF =2m.将该货柜沿斜坡向上运送,当BF =3.5m 时,求点D 离地面的高.(236.25≈,结果精确到0.1m )第23题图 【考查内容】相似三角形 【解】(1)12AB ACi BC==, AC =4, 8BC ∴=.故斜坡AB 的水平宽度BC 为8m.(2)延长DG 交BC 于M ,作DN ⊥BC 于N 交AB 于H , DM AB ⊥, ∠ACB =90°, 90MGB ACB ∴=︒∠=∠,B B ∠=∠,BGM BCA ∴△∽△, BG BCGM AC∴=, ∵AC =4, BC =8, BG =3.5+2.5=6, ∴GM =3,∵DE =EF=2 ∴DM =5,由DMN BAC ∴△∽△得DN =25. ∴点D 离地面的高为5.24.如图,△ABC 中,AB=AC ,以AB 为直径的⊙O 与BC 相交于点D ,与CA 的延长线相交于点E ,过点D 作DF ⊥AC 于点F . (1)试说明DF 是⊙O 的切线; (2)若 AC=3AE ,求C tan .第24题图【考查内容】圆的有关问题.【解】(1)连接OD ,,AB AC OB OD ==,1=B ∴∠∠,B C ∠=∠,1=C ∴∠∠,OD AC ∴∥,DF AC ⊥,OD DF ∴⊥,∴DF 为⊙O 切线(2)连接AD,DE ,,E B B C ∠=∠∠=∠,E C ∴∠=∠,CD DE ∴=,又DF CE ⊥,∴F 为CE 的中点.3AC AE =,设AE =m ,∴AC =3m ,∴CE=4m ,∵F 为CE 的中点.∴CF=2m , ∴AF =m ,∵AB 为直径,∴AD BC ⊥,DF AC ⊥,223m AD AF AC ∴=⋅=,∴3m AD =,6m AD =,32tan ==.26C 25.如图,正方形ABCD 的边长为8cm ,E 、F 、G 、H 分别是AB 、BC 、CD 、DA 上的动点,且AE=BF=CG=DH.(1)求证:四边形EFGH 是正方形;(2)判断直线EG 是否经过一个定点,并说明理由;(3)求四边形EFGH 面积的最小值.第25题图【考查内容】正方形的判定动点问题.【解】(1)证明:∵四边形ABCD 是正方形,∴∠A =∠B =∠C =∠D =90°,AB=BC=CD=DA ,∵AE=BF=CG=DH .∴BE=CF=DG=AH ,∴△AEH ≌△BFE ≌△CGF ≌△DHG ,∴EH=EF=FG=GH ,∠1=∠2, ∴四边形EFGH 是菱形.13=90∠+∠︒,∠1=∠2,23=90∴∠+∠︒,90HEF ∴∠=︒.∵四边形EFGH 是菱形.∴四边形EFGH 是正方形.(2)连接BD,EG ,∵BE ∥DG 且BE =DG ,∴四边形BGDE 是平行四边形.∴BD,EG 互相平分交于O ,而O 为正方形的中心.∴EG 必过正方形中心O .(3)设AE=BF=CG=DH=x , ∴BE=CF=DG=AH =8-x , ∴()1=64482EFGH S x x -⨯-四边形=264162x x -+=()22832x x -+=()22432x -+. 所以当x =4时,四边形EFGH 面积的最小为32.26.已知一次函数42-=x y 的图像与x 轴、y 轴分别相交于点A 、B ,点P 在该函数图像上, P 到x 轴、y 轴的距离分别为1d 、2d .(1)当P 为线段AB 的中点时,求21d d +的值;(2)直接写出21d d +的范围,并求当321=+d d 时点P 的坐标;(3)若在线段AB 上存在无数个P 点,使421=+ad d (a 为常数), 求a 的值.备用图 第26题图【考查内容】一次函数的有关问题.【解】(1)()()20 0.4A B -,,∴()12P -,,12=3d d +.(2)① 12d d +≥2.②设(),24P m m -,∴12=24d d m m ++-.当02x ≤≤时,12=423d d m m ++-=,∴()111,2m P =∴.当2m > 时,12=423d d m m +-+=.∴2772,333m P ⎛⎫=∴ ⎪⎝⎭. 当0m <时,不存在. 综上所述:()11,2P , 272,33P ⎛⎫ ⎪⎝⎭. (3)设(),24P m m -,∴1=24d m -,2=d m ,∵P 在线段AB 上,∴02m ≤≤, ∴1=42d m -,2=d m ,∵12=4d ad +,∴424am m +-= , ∴()20a m -=,∵在线段AB 上存在无数个P 点 ∴ 2.a =。

相关文档
最新文档