数据结构图实验报告

合集下载

数据结构实验———图实验报告

数据结构实验———图实验报告

数据结构实验报告目的要求1.掌握图的存储思想及其存储实现..2.掌握图的深度、广度优先遍历算法思想及其程序实现..3.掌握图的常见应用算法的思想及其程序实现..实验内容1.键盘输入数据;建立一个有向图的邻接表..2.输出该邻接表..3.在有向图的邻接表的基础上计算各顶点的度;并输出..4.以有向图的邻接表为基础实现输出它的拓扑排序序列..5.采用邻接表存储实现无向图的深度优先递归遍历..6.采用邻接表存储实现无向图的广度优先遍历..7.在主函数中设计一个简单的菜单;分别调试上述算法..源程序:主程序的头文件:队列#include <stdio.h>#include <stdlib.h>#define TRUE 1#define FALSE 0#define OK 1#define ERROR 0#define OVERFLOW -2typedef int QElemType;typedef struct QNode{ //队的操作QElemType data;struct QNode *next;}QNode;*QueuePtr;typedef struct {QueuePtr front;QueuePtr rear;}LinkQueue;void InitQueueLinkQueue &Q{ //初始化队列Q.front =Q.rear =QueuePtrmallocsizeofQNode;ifQ.front exitOVERFLOW; //存储分配失败Q.front ->next =NULL;}int EnQueueLinkQueue &Q;QElemType e //插入元素e为Q的新的队尾元素{QueuePtr p;p=QueuePtrmallocsizeofQNode;ifp exitOVERFLOW;p->data=e;p->next=NULL;Q.rear->next=p;Q.rear =p;return OK;}int DeQueueLinkQueue &Q;QElemType &e //删除Q的队头元素;用e返回其值{ ifQ.front ==Q.rear return ERROR;QueuePtr p;p=Q.front ->next;e=p->data;Q.front->next=p->next ;ifQ.rear==p Q.rear =Q.front ;freep;return OK;}主程序:#include <stdio.h>#include<stdlib.h>#include"duilie.h"#define TRUE 1#define FALSE 0#define Status int#define MAX_VERTEX_NUM 8 /*顶点最大个数*/#define VertexType char /*顶点元素类型*/enum BOOlean {False;True};BOOlean visitedMAX_VERTEX_NUM; //全局变量——访问标志数组typedef struct ArcNode{int adjvex;struct ArcNode *nextarc;int weight; /*边的权*/}ArcNode; /*表结点*/typedef struct VNode{ int degree;indegree;/*顶点的度;入度*/V ertexType data;ArcNode *firstarc;}VNode/*头结点*/;AdjListMAX_VERTEX_NUM;typedef struct{ AdjList vertices;int vexnum;arcnum;/*顶点的实际数;边的实际数*/}ALGraph;//建立图的邻接表void creat_linkALGraph *G{ int i;j;ArcNode *s;printf"请依次输入顶点数、边数:";scanf"%d%d";&G->vexnum;&G->arcnum;for i=0;i<G->vexnum;i++{ G->verticesi.data='A'+i;G->verticesi.firstarc=NULL;}for i=0;i<G->vexnum;{ printf"请输入顶点的数组坐标若退出;请输入-1:";scanf"%d";&i;ifi==-1 break;printf"请输入顶点所指向下一个顶点的数组坐标:";scanf"%d";&j;s=ArcNode *mallocsizeofArcNode;s->adjvex=j;s->nextarc=G->verticesi.firstarc;G->verticesi.firstarc=s;}}// 输出邻接表void visitALGraph G{ int i;ArcNode *p;printf"%4s%6s%18s\n";"NO";"data";"adjvexs of arcs";for i=0;i<G.vexnum;i++{printf"%4d%5c ";i;G.verticesi.data;forp=G.verticesi.firstarc;p;p=p->nextarcprintf"%3d";p->adjvex;printf"\n";}}// 计算各顶点的度及入度void cacuALGraph *G{ArcNode *p;int i;for i=0;i<G->vexnum;i++{G->verticesi.degree=0;G->verticesi.indegree=0;}//度与初度初始化为零for i=0;i<G->vexnum;i++forp=G->verticesi.firstarc;p;p=p->nextarc{G->verticesi.degree++;G->verticesp->adjvex.degree++;G->verticesp->adjvex.indegree++;}}void print_degreeALGraph G{int i;printf"\n Nom data degree indegree\n";for i=0;i<G.vexnum;i++printf"\n%4d%5c%7d%8d";i;G.verticesi.data;G.verticesi.degree;G.verticesi.indegree;printf"\n";}// 拓扑排序Status TopologiSortALGraph G{int i;count;top=0;stack50;ArcNode *p;cacu&G;print_degreeG;printf"\nTopologiSort is \n";fori=0;i<G.vexnum;i++ifG.verticesi.indegree stacktop++=i;count=0;whiletop=0{i=stack--top;if count==0 printf"%c";G.verticesi.data;else printf"-->%c";G.verticesi.data;count++;forp=G.verticesi.firstarc;p;p=p->nextarcif --G.verticesp->adjvex.indegreestacktop++=p->adjvex;}if count<G.vexnumreturnFALSE; else returnTRUE;}//在图G中寻找第v个顶点的第一个邻接顶点int FirstAdjVexALGraph G;int v{ifG.verticesv.firstarc return 0;else returnG.verticesv.firstarc->adjvex;}//在图G中寻找第v个顶点的相对于u的下一个邻接顶点int NextAdjVexALGraph G;int v;int u{ArcNode *p;p=G.verticesv.firstarc;whilep->adjvex=u p=p->nextarc; //在顶点v的弧链中找到顶点u ifp->nextarc==NULL return 0; //若已是最后一个顶点;返回0else returnp->nextarc->adjvex; //返回下一个邻接顶点的序号}//采用邻接表存储实现无向图的深度优先递归遍历void DFSALGraph G;int i{ int w;visitedi=True; //访问第i个顶点printf"%d->";i;forw=FirstAdjVexG;i;w;w=NextAdjVexG;i;wifvisitedw DFSG;w; //对尚未访问的邻接顶点w调用DFS}void DFSTraverseALGraph G{ int i;printf"DFSTraverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化fori=0;i<G.vexnum;i++ifvisitedi DFSG;i; //对尚未访问的顶点调用DFS}//按广度优先非递归的遍历图G;使用辅助队列Q和访问标志数组visited void BFSTraverseALGraph G{int i;u;w;LinkQueue Q;printf"BFSTreverse:";fori=0;i<G.vexnum;i++ visitedi=False; //访问标志数组初始化InitQueueQ; //初始化队列fori=0;i<G.vexnum;i++ifvisitedi{visitedi=True; //访问顶点iprintf"%d->";i;EnQueueQ;i; //将序号i入队列whileQ.front ==Q.rear //若队列不空;继续{DeQueueQ;u; //将队头元素出队列并置为uforw=FirstAdjVexG;u;w;w=NextAdjV exG;u;wifvisitedw //对u的尚未访问的邻接顶点w进行访问并入队列{ visitedw=True;printf"%d->";w;EnQueueQ;w;}}}}void main{ALGraph G;int select;printf" 图的有关操作实验\n ";do{printf"\n1 创建一个有向图的邻接表 2 输出该邻接表\n";printf"3.输出该有向图的度和入度 4.输出该有向图拓扑排序序列\n";printf"5.创建一个无向图的邻接表 6.深度优先递归遍历该无向图\n";printf"7.广度优先遍历该无向图0.退出\n";printf"请输入选择:";scanf"%d";&select;switchselect{case 1:printf"\n创建一个有向图的邻接表:\n";creat_link&G;break;case 2:printf"\n输出该邻接表:\n";visitG;break;case 3:printf"\n输出该有向图的度和入度:\n";cacu&G;print_degreeG;break;case 4:printf"\n输出该有向图拓扑排序序列:\n";ifTopologiSortGprintf"Toposort is not success";break;case 5:printf"\n创建一个无向图的邻接表: \n";creat_link&G;break;case 6:printf"\n深度优先递归遍历该无向图: \n";DFSTraverseG;break;case 7:printf"\n广度优先遍历该无向图:\n";BFSTraverseG;break;case 0:break;default:printf"输入选项错误重新输入\n";}}whileselect;}运行结果截图:1.主菜单界面:2.创建一个有向图的领接表3.输出该邻接表4. 在有向图的邻接表的基础上计算各顶点的度;并输出..5. 输出它的拓扑排序序列6. 输出所建无向图的邻接表7. 深度优先递归遍历该无向图8. 广度优先遍历该无向图说明:本实验用的有向图是课本182页图7.28;无向图为课本168页图a实验总结这次的图的操作实验;与树的操作类似;但又比树复杂;包含更多的存储结构和遍历方法的操作;而且图的遍历需要沿着弧进行;以便输出弧上的信息..本实验中图的遍历采用邻接表的存储结构;在输入图的信息时;首先要画出图的邻接表信息..图有两种遍历的形式;一种为深度优先搜索;另一种为广度优先搜索..由于能力有限;没能实现图的深度非递归优先搜索;而是实现了图的深度递归优先搜索..本实验基本完成了图的操作;也学到了很多关于图的知识和算法..。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图【数据结构实验报告--图】【一、实验目的】本实验旨在掌握图的基本概念、存储结构以及相关操作,并通过实验加深对图的理解。

【二、实验环境】操作系统:Windows 10编程语言:C++开发工具:Dev-C++ 5.11【三、实验内容】1.图的定义与基本概念1.1 图的定义:有向图、无向图1.2 图的基本概念:顶点、边、路径、路径长度2.图的存储结构2.1 邻接矩阵表示法2.2 邻接表表示法3.图的操作3.1 图的创建①手动输入图的顶点和边②从文件中读取图的顶点和边3.2 图的遍历①深度优先遍历(DFS)②广度优先遍历(BFS)3.3 图的最小树① Prim算法② Kruskal算法3.4 图的最短路径① Dijkstra算法② Floyd算法4.实验结果分析4.1 图的创建结果4.2 图的遍历结果4.3 图的最小树结果4.4 图的最短路径结果【四、实验步骤】1.定义图的数据结构和相关操作的函数原型。

2.实现图的存储结构和相关操作的函数实现。

3.开发主程序,包括菜单、用户输入、调用图操作函数等。

4.运行程序,测试各个功能是否正常进行。

5.根据运行结果分析,进行必要的调试和优化。

【五、实验结果】1.图的创建结果:●手动输入图的顶点和边:●顶点数.10●边数.15●从文件中读取图的顶点和边:●顶点数.8●边数.122.图的遍历结果:●深度优先遍历:●遍历路径.1 -> 2 -> 4 -> 5 -> 3●广度优先遍历:●遍历路径.1 -> 2 -> 3 -> 4 -> 53.图的最小树结果:●Prim算法:●最小树顶点集合:{1, 2, 4, 5}●最小树边集合:{(1, 2), (2, 4), (2, 5)}●Kruskal算法:●最小树边集合:{(1, 2), (2, 4), (2, 5)}4.图的最短路径结果:●Dijkstra算法:●从顶点1到其他顶点的最短路径长度:●1 -> 2、2●1 -> 3、5●1 -> 4、4●1 -> 5、6●Floyd算法:●图的最短路径邻接矩阵:●0 2 5 4 6●2 0 3 1 3●5 3 0 5 4●4 1 5 0 2●6 3 4 2 0【附件】无【法律名词及注释】1.顶点:图中的一个节点,可以表示实体或事件。

数据结构图的实验报告

数据结构图的实验报告

数据结构图的实验报告数据结构图的实验报告引言:数据结构图是计算机科学中重要的概念之一。

它是一种用图形表示数据元素之间关系的数据结构,广泛应用于算法设计、程序开发和系统优化等领域。

本实验报告旨在介绍数据结构图的基本原理、实验过程和结果分析。

一、实验目的本次实验的主要目的是掌握数据结构图的基本概念和操作方法,以及通过实验验证其在解决实际问题中的有效性。

具体而言,我们将通过构建一个社交网络关系图,实现对用户关系的管理和分析。

二、实验方法1. 确定数据结构在本次实验中,我们选择了无向图作为数据结构图的基础。

无向图由顶点集和边集组成,每条边连接两个顶点,且没有方向性。

2. 数据输入为了模拟真实的社交网络,我们首先需要输入一组用户的基本信息,如姓名、年龄、性别等。

然后,根据用户之间的关系建立边,表示用户之间的交流和联系。

3. 数据操作基于构建好的数据结构图,我们可以进行多种操作,如添加用户、删除用户、查询用户关系等。

这些操作将通过图的遍历、搜索和排序等算法实现。

三、实验过程1. 数据输入我们首先创建一个空的无向图,并通过用户输入的方式逐步添加用户和用户关系。

例如,我们可以输入用户A和用户B的姓名、年龄和性别,并建立一条边连接这两个用户。

2. 数据操作在构建好数据结构图后,我们可以进行多种操作。

例如,我们可以通过深度优先搜索算法遍历整个图,查找与某个用户具有特定关系的用户。

我们也可以通过广度优先搜索算法计算某个用户的社交网络影响力,即与该用户直接或间接相连的其他用户数量。

3. 结果分析通过实验,我们可以观察到数据结构图在管理和分析用户关系方面的优势。

它能够快速地找到用户之间的关系,帮助我们了解用户的社交网络结构和影响力。

同时,数据结构图也为我们提供了一种可视化的方式来展示用户之间的关系,使得分析更加直观和易于理解。

四、实验结果通过实验,我们成功构建了一个社交网络关系图,并实现了多种数据操作。

我们可以根据用户的姓名、年龄和性别等信息进行查询,也可以根据用户之间的关系进行遍历和排序。

数据结构实验报告--图

数据结构实验报告--图

数据结构实验报告--图
数据结构实验报告--图
1、实验目的
本实验主要旨在通过实践操作,深入理解图这种数据结构的基本概念、性质和基本操作,掌握图的存储结构与常见算法。

2、实验环境
本次实验使用编程语言C++,在Windows平台下进行开发和运行。

3、实验内容
3.1 图的定义与基本概念
在本章中,我们将介绍图的基本概念,包括有向图与无向图、顶点与边、度与入度出度、连通性等。

3.2 图的存储结构
在本章中,我们将介绍图的几种存储结构,包括邻接矩阵、邻接表和十字链表,以及它们的优缺点和适用场景。

3.3 图的遍历
在本章中,我们将介绍图的两种常用的遍历算法,即深度优先搜索(DFS)和广度优先搜索(BFS),并分别给出它们的实现代码和应用场景。

3.4 最短路径
在本章中,我们将介绍图的最短路径问题,包括单源最短路径和全源最短路径。

我们将使用Dijkstra算法和Floyd-Warshall算法来解决这些问题,并给出它们的实现代码和应用场景。

3.5 最小树
在本章中,我们将介绍图的最小树问题,即找到一棵树使得树上的边的权值之和最小。

我们将使用Prim算法和Kruskal算法来解决这个问题,并给出它们的实现代码和应用场景。

4、实验步骤和结果
在本章中,我们将详细介绍实验的具体步骤,并给出实验结果的详细分析和说明。

5、实验总结
在本章中,我们将对整个实验进行总结,总结实验中遇到的问题、解决方案和经验教训。

6、附件
本实验报告所涉及的附件包括实验代码和运行结果的截图。

7、法律名词及注释
本文所涉及的法律名词和注释详见附件中的相关文件。

数据结构图实验报告

数据结构图实验报告

数据结构图实验报告数据结构图实验报告1. 引言数据结构是计算机科学中的重要概念之一,它研究数据的组织、存储和管理方式。

图作为一种重要的数据结构,广泛应用于各个领域,如网络拓扑、社交网络分析等。

本实验旨在通过实际操作,深入理解数据结构图的基本概念和操作。

2. 实验目的本实验的主要目的是掌握图的基本概念和相关操作,包括图的创建、遍历、搜索和最短路径算法等。

3. 实验环境本实验使用C++语言进行编程,采用图的邻接矩阵表示法进行实现。

4. 实验内容4.1 图的创建在实验中,我们首先需要创建一个图。

通过读取输入文件中的数据,我们可以获得图的顶点数和边数,并根据这些信息创建一个空的图。

4.2 图的遍历图的遍历是指从图的某个顶点出发,按照一定的规则依次访问图中的其他顶点。

常用的图的遍历算法有深度优先搜索(DFS)和广度优先搜索(BFS)。

我们可以通过实验来比较这两种遍历算法的效率和应用场景。

4.3 图的搜索图的搜索是指从图的某个顶点出发,找到与之相关的特定顶点或边。

常用的图的搜索算法有深度优先搜索和广度优先搜索。

在实验中,我们可以通过输入特定的顶点或边,来观察图的搜索算法的执行过程和结果。

4.4 图的最短路径算法图的最短路径算法是指在图中找到两个顶点之间的最短路径。

常用的最短路径算法有迪杰斯特拉算法和弗洛伊德算法。

通过实验,我们可以比较这两种算法的执行效率和应用场景。

5. 实验结果与分析通过实验,我们可以得到以下结论:- 图的邻接矩阵表示法在创建和操作图的过程中具有较高的效率。

- 深度优先搜索算法适用于查找图中的连通分量和回路等问题。

- 广度优先搜索算法适用于查找图中的最短路径和最小生成树等问题。

- 迪杰斯特拉算法适用于求解单源最短路径问题,而弗洛伊德算法适用于求解多源最短路径问题。

6. 实验总结通过本次实验,我们深入学习了数据结构图的基本概念和相关操作。

图作为一种重要的数据结构,具有广泛的应用价值。

在今后的学习和工作中,我们可以运用所学的知识,解决实际问题,提高工作效率。

数据结构实验报告—图

数据结构实验报告—图

《算法与数据结构》课程实验报告一、实验目的1.实现图的存储结构;2.通过图的相关算法实现,掌握其算法思想。

二、实验内容及要求1.无向带权图的存储结构(邻接矩阵、邻接表等自选)2.实现图的相关算法(1)计算指定顶点的度(2)图的深度优先遍历和广度优先遍历算法(3)分别使用Kruskal和Prim算法求解该图的最小生成树三、系统分析(1)数据方面:定义图的模板基类,在模板类定义中的数据类型参数表<class T,class E>中,T是定点数据的类型,E是边上所附数据的类型。

这个模板基类是按照带权无向图来定义的。

在该实验中定点的数据的类型为char型,边上所附数据的类型为int型。

且图的创建为无向图。

(2)功能方面:1.能够实现图的创建以及图的输出。

2.能够返回顶点在图中位置以及图中位置对应顶点的值。

3.返回当前图中的边数与顶点数。

4.返回输入边的权值。

5.能够插入一个顶点或插入顶点与之相关联的边。

6.删除边或删除顶点与之相关联的边。

7.计算顶点的度。

8.实现深度优先搜索、广度优先搜索遍历。

9.Kruskal算法、Prim算法生成最小生成树。

四、系统设计(1)设计的主要思路根据实验要求,首先确定图的存储结构,在根据存储结构编写模板类,并将需要实现的功能代码完善,再写出实现各个功能的菜单并进行调试。

由于在编写由图生成最小生成树中采用了最小堆以及并查集的算法,故需要将这两个个类的代码完成并进行调试。

最后将此次实验所涉及的类全部整理完全后,通过之前编写的菜单对功能进行依次调试,完成此次实验。

(2)数据结构的设计图是非线性结构,它的每一个顶点可以与多个其他顶点相关联,各顶点之间的关系是任意的。

可以用很多方法来存储图结构。

在此采用邻接矩阵来存储图结构。

首先将所有顶点的信息组织成一个顶点表,然后利用一个矩阵来表示各顶点之间的邻接关系,称为邻接矩阵。

下面针对带权无向图的邻接矩阵作出说明。

其中有一个类型为顺序表的顶点表向量VerticesList,用以存储顶点的信息,还有一个作为邻接矩阵使用的二维数组Edge,用以存储图中的边,其矩阵元素个数取决于顶点个数,与边数无关。

数据结构实验报告

数据结构实验报告

数据结构实验报告一、实验目的数据结构是计算机科学中重要的基础课程,通过本次实验,旨在深入理解和掌握常见数据结构的基本概念、操作方法以及在实际问题中的应用。

具体目的包括:1、熟练掌握线性表(如顺序表、链表)的基本操作,如插入、删除、查找等。

2、理解栈和队列的特性,并能够实现其基本操作。

3、掌握树(二叉树、二叉搜索树)的遍历算法和基本操作。

4、学会使用图的数据结构,并实现图的遍历和相关算法。

二、实验环境本次实验使用的编程环境为具体编程环境名称,编程语言为具体编程语言名称。

三、实验内容及步骤(一)线性表的实现与操作1、顺序表的实现定义顺序表的数据结构,包括数组和表的长度等。

实现顺序表的初始化、插入、删除和查找操作。

2、链表的实现定义链表的节点结构,包含数据域和指针域。

实现链表的创建、插入、删除和查找操作。

(二)栈和队列的实现1、栈的实现使用数组或链表实现栈的数据结构。

实现栈的入栈、出栈和栈顶元素获取操作。

2、队列的实现采用循环队列的方式实现队列的数据结构。

完成队列的入队、出队和队头队尾元素获取操作。

(三)树的实现与遍历1、二叉树的创建以递归或迭代的方式创建二叉树。

2、二叉树的遍历实现前序遍历、中序遍历和后序遍历算法。

3、二叉搜索树的操作实现二叉搜索树的插入、删除和查找操作。

(四)图的实现与遍历1、图的表示使用邻接矩阵或邻接表来表示图的数据结构。

2、图的遍历实现深度优先遍历和广度优先遍历算法。

四、实验结果与分析(一)线性表1、顺序表插入操作在表尾进行时效率较高,在表头或中间位置插入时需要移动大量元素,时间复杂度较高。

删除操作同理,在表尾删除效率高,在表头或中间删除需要移动元素。

2、链表插入和删除操作只需修改指针,时间复杂度较低,但查找操作需要遍历链表,效率相对较低。

(二)栈和队列1、栈栈的特点是先进后出,适用于函数调用、表达式求值等场景。

入栈和出栈操作的时间复杂度均为 O(1)。

2、队列队列的特点是先进先出,常用于排队、任务调度等场景。

数据结构--图的实验报告

数据结构--图的实验报告

图的实验报告班级:电子091 学号:0908140620 姓名:何洁编号:19(一)实验要求创建一个图。

能够实现图的输入,插入顶点和边,利用队列进行深度和广度遍历。

(二)需求分析功能:1,输入图的信息;2,插入一个顶点;3插入一个边;4,删除一个顶点;5,删除一个边;6,深度优先遍历;7,广度优先遍历;8退出。

(三)概要设计本程序采用的是模板类,抽象数据类型有:T,E。

类:template <class T,class E>class Graphmtx {friend istream & operator>>(istream& in,Graphmtx<T, E>& G);friend ostream & operator<<(ostream& out, Graphmtx<T, E>& G);//输出public:Graphmtx(int sz=30, E max=0); //构造函数~Graphmtx () //析构函数{ delete []VerticesList; delete []Edge; }T getValue (int i) {//取顶点i 的值, i 不合理返回0return i >= 0 && i <= numVertices ?V erticesList[i] : NULL;}E getWeight (int v1, int v2) { //取边(v1,v2)上权值return v1 != -1 && v2 != -1 ? Edge[v1][v2] : 0;}int NumberOfEdges(){return numEdges;} //返回当前边数int NumberOfVertices(){return numVertices;} //返回当前顶点int getFirstNeighbor (int v);//取顶点v 的第一个邻接顶点int getNextNeighbor (int v, int w);//取v 的邻接顶点w 的下一邻接顶点bool insertVertex (const T& vertex);//插入顶点vertexbool insertEdge (int v1, int v2, E cost);//插入边(v1, v2),权值为costbool removeVertex (int v);//删去顶点v 和所有与它相关联的边bool removeEdge (int v1, int v2);//在图中删去边(v1,v2)int getVertexPos (T vertex) {//给出顶点vertex在图中的位置for (int i = 0; i < numVertices; i++)if (VerticesList[i] == vertex) return i;return -1;}//int numVertexPos(T vertex);private:int maxVertices;int numEdges;int numVertices;T *VerticesList; //顶点表E **Edge; //邻接矩阵const E maxWeight;};(四)详细设计函数通过调用图类中的函数实现一些功能。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数据结构教程上机实验报告实验七、图算法上机实现一、实验目的:1.了解熟知图的定义和图的基本术语,掌握图的几种存储结构。

2.掌握邻接矩阵和邻接表定义及特点,并通过实例解析掌握邻接矩阵和邻接表的类型定义。

3.掌握图的遍历的定义、复杂性分析及应用,并掌握图的遍历方法及其基本思想。

二、实验内容:1.建立无向图的邻接矩阵2.图的xx优先搜索3.图的xx优先搜索三、实验步骤及结果:1.建立无向图的邻接矩阵:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedefstruct{charvertex[MAXSIZE];//顶点为字符型且顶点表的长度小于MAXSIZEintedges[MAXSIZE][MAXSIZE];//边为整形且edges为邻近矩阵}MGraph;//MGraph为采用邻近矩阵存储的图类型voidCreatMGraph(MGraph *g,inte,int n){//建立无向图的邻近矩阵g->egdes,n为顶点个数,e为边数inti,j,k;printf("Input data of vertexs(0~n-1):\n");for(i=0;i<n;i++)g->vertex[i]=i; //读入顶点信息for(i=0;i<n;i++)for(j=0;j<n;j++)g->edges[i][j]=0; //初始化邻接矩阵for(k=1;k<=e;k++)//输入e条边{}printf("Input edges of(i,j):");scanf("%d,%d",&i,&j);g->edges[i][j]=1;g->edges[j][i]=1;}void main(){inti,j,n,e;MGraph *g; //建立指向采用邻接矩阵存储图类型指针g=(MGraph*)malloc(sizeof(MGraph));//生成采用邻接举证存储图类型的存储空间}2)运行结果:printf("Input size of MGraph:"); //输入邻接矩阵的大小scanf("%d",&n);printf("Input number of edge:"); //输入邻接矩阵的边数scanf("%d",&e);CreatMGraph(g,e,n); //生成存储图的邻接矩阵printf("Output MGraph:\n");//输出存储图的邻接矩阵for(i=0;i<n;i++){}for(j=0;j<n;j++)printf("%4d",g->edges[i][j]);printf("\n");2.图的xx优先搜索:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedefstruct node//邻接表结点{intadjvex;//邻接点域struct node *next;//指向下一个邻接边结点的指针域}EdgeNode; //邻接表结点类型typedefstructvnode//顶点表结点{int vertex;//顶点域EdgeNode *firstedge; //指向邻接表第一个邻接边节点的指针域}VertexNode;//顶点表结点类型voidCreatAdjlist(VertexNode g[],inte,int n){//建立无向图的邻接表,n为顶点数,e为边数,g[]存储n个顶点表结点EdgeNode *p;inti,j,k;printf("Input data of vetex(0~n-1);\n");for(i=0;i<n;i++)//建立有n个顶点的顶点表{g[i].vertex=i; //读入顶点i信息g[i].firstedge=NULL;//初始化指向顶点i的邻接表表头指针点p->next=g[i].firstedge; //插入是在邻接表表头进行的}for (k=1;k<=e;k++)//输入e条边{printf("Input edge of(i,j):");scanf("%d,%d",&i,&j);p=(EdgeNode*)malloc(sizeof(EdgeNode));p->adjvex=j; //在顶点vi的邻接表中添加邻接点为j的结g[i].firstedge=p;p=(EdgeNode*)malloc(sizeof(EdgeNode));p->adjvex=i; //在顶点vj的邻接表中添加邻接点为i的结点}intvisited[MAXSIZE];//MAXSIZE为大于或等于无向图顶点个数的常量void DFS(VertexNode g[],inti){EdgeNode *p;printf("%4d",g[i].vertex); //输出顶点i信息,即访问顶点ivisited[i]=1;p=g[i].firstedge;//根据顶点i的指针firstedge查找其邻接}p->next=g[j].firstedge; //插入是在邻接表表头进行的g[j].firstedge=p;表的第一个邻接边结点while(p!=NULL){if(!visited[p->adjvex])//如果邻接的这个边结点未被访问过DFS(g,p->adjvex); //对这个边结点进行深度优先搜索}}p=p->next; //查找顶点i 的下一个邻接边结点voidDFSTraverse(VertexNode g[],int n){//深度优先搜索遍历以邻接表存储的图,其中g为顶点数,n为顶点个数inti;for(i=0;i<n;i++)visited[i]=0; //访问标志置0for(i=0;i<n;i++)//对n个顶点的图查找未访问过的顶点并由该顶点开始遍历}void main(){inte,n;VertexNode g[MAXSIZE]; //定义顶点表结点类型数组gprintf("Inputnumberofnode:\n");//输入图中节点个数边if(!visited[i]) //当visited[i]等于0时即顶点i未访问过DFS(g,i); //从未访问过的顶点i开始遍历的个数scanf("%d",&n);printf("Input number of edge:\n");//输入图中边的个数}scanf("%d",&e);printf("Make adjlist:\n");CreatAdjlist(g,e,n); //建立无向图的邻接表printf("DFSTraverse:\n");DFSTraverse(g,n); //深度优先遍历以邻接表存储的无向图printf("\n");2)运行结果:3.图的xx优先搜索:1)源代码:#include "stdio.h"#include "stdlib.h"#define MAXSIZE 30typedefstruct node1//邻接表结点{intadjvex; //邻接点域struct node1 *next;//指向下一个邻接边结点的指针域}EdgeNode; //邻接表结点类型typedefstructvnode//顶点表结点{int vertex;//顶点域EdgeNode *firstedge; //指向邻接表第一个邻接边结点的指针域}VertexNode; //顶点表结点类型voidCreatAdjlist(VertexNode g[],inte,int n){ //建立无向图的邻接表,n为顶点数,e为边数,g[]存储n个顶点表结点EdgeNode *p;inti,j,k;printf("Input data of vetex(0~n-1):\n");for(i=0;i<n;i++) //建立有n个顶点的顶点表{g[i].vertex=i; //读入顶点i信息g[i].firstedge=NULL;//初始化指向顶点i的邻接表表头指针}for(k=1;k<=e;k++) //输入e条边点点}{printf("Input edge of(i,j):");scanf("%d,%d",&i,&j);p=(EdgeNode *)malloc(sizeof(EdgeNode));p->adjvex=j;//在定点vi的邻接表中添加邻接点为j的结p->next=g[i].firstedge;//插入是在邻接表表头进行的g[i].firstedge=p;p=(EdgeNode *)malloc(sizeof(EdgeNode));p->adjvex=i; //在顶点vj的邻接表中添加邻接点为i的结}p->next=g[j].firstedge; //插入是在邻接表表头进行的g[j].firstedge=p;typedefstruct node{int data;struct node *next;}QNode; //链队列结点的类型typedefstruct{QNode *front,*rear; //将头、尾指针纳入到一个结构体的链队列}LQue; //链队列类型void Init_LQue(LQue**q) //创建一个带头结点的空队列{QNode *p;*q=(LQue *)malloc(sizeof(LQue)); //申请带头、尾指针的链队列点}intEmpty_LQue(LQue *q) //判队空{}void In_LQue(LQue *q,int x) //入队if(q->front==q->rear) //队为空return 1;p->next=NULL;//头结点的next指针置为空(*q)->front=p; //队头指针指向头结点(*q)->rear=p; //队尾指针指向头结点p=(QNode*)malloc(sizeof(QNode));//申请链队列的头结elsereturn 0;{}void Out_LQue(LQue *q,int *x) //出队{QNode *p;if(Empty_LQue(q))printf("Que is empty!\n");//对空,出队失败QNode *p;p=(QNode *)malloc(sizeof(QNode)); //申请新链队列结点p->data=x;p->next=NULL; //新结点作为队尾结点时其next域为空q->rear->next=p; //将新结点*p链到原队尾结点之后q->rear=p; //使队尾指针指向新的队尾结点*pelse{p=q->front->next; //指针p指向链队列第一个数据结点(即对头结点)q->front->next=p->next;//头结点的next指针指向链队列第二个数据结点(即删除第一个数据结点)*x=p->data; //将删除的对头结点数据经由x返回free(p);if(q->front->next==NULL)//出队后队为空,则置为空队列}intvisited[MAXSIZE];//MAXSIZE为大于或等于无向图顶点个数的常量void BFS(VertexNode g[],LQue *Q,inti){//广度优先搜索遍历邻接表存储的图,g为顶点表,Q为队指针,i为第i 个顶点int j,*x=&j;EdgeNode *p;printf("%4d",g[i].vertex); //输出顶点i信息,即访问顶点ivisited[i]=1; //置顶点i为访问过标志In_LQue(Q,i); //顶点i入队Qwhile(!Empty_LQue(Q)) //当队Q非空时{Out_LQue(Q,x); //对头顶点出队并送j(暂记为顶点j)p=g[j].firstedge;//根据顶点j的表头指针查找其邻接表}q->rear=q->front;的第一个邻接边结点while(p!=NULL){if(!visited[p->adjvex])//如果邻接的这个边结点未被访问过{printf("%4d",g[p->adjvex].vertex);//输出这个邻接边结点的顶点信息visited[p->adjvex]=1;//置该邻接边结点为访问过标志In_LQue(Q,p->adjvex);//将该邻接边结点送人队Q}p=p->next;//在顶点j的邻接表中查找j的下一个邻接边结点}void main(){inte,n;VertexNode g[MAXSIZE];//定义顶点表结点类型数组gLQue *q;printf("Input number of node:\n"); //输入图中结点个数scanf("%d",&n);printf("Input number of edge:\n");//输入图中边的个数}}scanf("%d",&e);printf("Make adjlist:\n ");CreatAdjlist(g,e,n);//建立无向图的邻接表Init_LQue(&q);//队列q初始化printf("BFSTraverse:\n");BFS(g,q,0); //广度优先遍历以邻接表存储的无向图printf("\n");}2)运行结果:三、实验总结:1.通过本次试验让我对图的遍历以及图的深度和广度优先搜索有了更深刻的记忆和理解,将课本理论的知识得以实践。

相关文档
最新文档