小型蒸发器计算方法
(全版本)蒸发器的热量与面积计算方法

(全版本)蒸发器的热量与面积计算方法1. 引言本文档旨在提供一种详细的计算方法,用于确定蒸发器的热量和所需的面积。
蒸发器是一种设备,用于在热力学过程中从流体中去除热量,从而实现冷却。
为了确保蒸发器的性能和效率,需要对其热量和面积进行精确计算。
本文将介绍如何根据流体的物性和操作条件进行这些计算。
2. 热量计算方法蒸发器的热量可以通过以下公式计算:\[ Q = U \cdot A \cdot \Delta T \cdot n \]其中:- \( Q \) 是热量(单位:千瓦或千焦耳)- \( U \) 是热传递系数(单位:瓦特/平方米·开尔文)- \( A \) 是蒸发器的传热面积(单位:平方米)- \( \Delta T \) 是流体在蒸发器进出口之间的温差(单位:开尔文)- \( n \) 是流体在蒸发器中的流量(单位:立方米/小时)2.1 热传递系数 \( U \) 的确定热传递系数 \( U \) 取决于流体的物性、流动状况和换热表面的特性。
通常,可以通过实验或文献查询获得 \( U \) 的值。
如果需要进行计算,可以使用努塞尔特数(Nusselt number,\( Nu \))来关联\( U \)、流体的普朗特数(Prandtl number,\( Pr \))和雷诺数(Reynolds number,\( Re \)):\[ Nu = \frac{U \cdot L}{h} \]其中:- \( L \) 是换热表面的特征长度(单位:米)- \( h \) 是对流传热系数(单位:瓦特/平方米·开尔文)通过对 \( Nu \)、\( Pr \) 和 \( Re \) 的关系图或公式查找相应的\( U \) 值。
2.2 传热面积 \( A \) 的计算传热面积 \( A \) 取决于蒸发器的几何形状和尺寸。
对于规则形状的蒸发器,可以直接测量其面积。
对于不规则形状的蒸发器,可以使用积分方法或计算机辅助设计(CAD)软件来计算。
蒸发器的设计计算

蒸发器的设计计算蒸发器是一种用于蒸发液体的设备,广泛应用于化工、制药、食品等行业。
它通过提供适当的温度和压力条件,将液体转化为气体,并将其中的溶质分离出来。
蒸发器的设计计算是确保蒸发器能够有效地工作并达到预期性能的重要一环。
1.蒸发器的传热计算:蒸发过程是通过传热实现的,因此需要计算蒸发器的传热表面积和传热系数。
传热表面积的确定涉及到物料的传热需求以及蒸发器的设计参数,例如液体和气体的温度差,气体速度等。
传热系数的计算可以通过经验公式或者通过实验测定得到。
2.蒸发器的蒸汽消耗计算:蒸发过程需要提供适当的蒸汽量来提供传热热量,因此需要计算蒸汽的需求量。
蒸汽消耗的计算涉及到蒸发器的传热效率、物料的传热需求以及蒸汽的热量等因素。
3.蒸发器的液体供给计算:蒸发器是通过液体供给来进行蒸发的,因此需要计算液体的供给量。
液体供给的计算涉及到物料的蒸发速率、液体的流量以及液体的浓度等因素。
4.蒸发器的驱动力计算:蒸发器需要提供适当的驱动力来推动蒸发过程,因此需要计算驱动力的大小。
驱动力的计算涉及到物料的浓度差、压力差以及温度差等因素。
除了以上几个方面,蒸发器的设计还需要考虑到其他因素,例如材料的选择、操作条件的确定以及设备的尺寸等。
蒸发器的设计计算需要综合考虑这些因素,并根据实际情况进行优化。
总结起来,蒸发器的设计计算是一个复杂的过程,需要综合考虑传热、蒸汽消耗、液体供给以及驱动力等因素。
这些计算是确保蒸发器能够有效地工作并达到预期性能的关键。
通过合理的设计计算,可以提高蒸发器的效率,提高生产能力,降低能源消耗,并确保产品质量的稳定性。
各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是热力工程中常见的设备,用于蒸发和冷凝流体。
本文将介绍各种蒸发器和冷凝器的计算方法。
一、蒸发器蒸发器是将液体转化为蒸汽的设备。
根据蒸发器的类型有多种不同的计算方法。
1.蒸发器内换热面积计算蒸发器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。
2.各种蒸发器的计算常见蒸发器种类有多效蒸发器、喷雾式蒸发器、蒸镜式蒸发器等。
这些蒸发器的计算方法略有不同。
多效蒸发器的换热器内换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为蒸气侧的换热系数,ΔTmd为蒸汽的平均温差。
喷雾式蒸发器的蒸发速率计算可以使用以下公式:W = (G × H) / (λ × (hlg - hgf))量蒸发潜热,hlg为蒸汽的焓值,hgf为液体的焓值。
蒸镜式蒸发器的换热面积和蒸发速率计算方法类似多效蒸发器。
二、冷凝器冷凝器是将蒸汽或气体转变为液体的设备。
根据冷凝器的类型有多种不同的计算方法。
1.冷凝器的内换热面积计算冷凝器的内换热面积可以通过以下公式计算:A=Q/(U×ΔTm)其中,A为内换热面积,Q为传热量,U为换热系数,ΔTm为平均温差。
2.各种冷凝器的计算常见冷凝器种类有冷却管束冷凝器、冷凝器冷凝管束冷凝器等。
这些冷凝器的计算方法略有不同。
冷却管束冷凝器的换热面积计算可以使用以下公式:A = Q / (Ud × ΔTmd)其中,A为内换热面积,Q为传热量,Ud为冷却侧的换热系数,ΔTmd为冷却水的平均温差。
冷凝器冷凝管束冷凝器的冷凝速率计算可以使用以下公式:W = (G × H) / (λ × (hgf - hfg))量冷凝潜热,hgf为蒸汽的焓值,hfg为液体的焓值。
以上就是各种蒸发器和冷凝器的计算方法。
(完全版本)蒸发器热量和面积的计算法则

(完全版本)蒸发器热量和面积的计算法则1. 介绍本文档提供了一种用于计算蒸发器热量和面积的方法,该方法可以帮助用户根据具体需求设计蒸发器,以确保其高效、稳定地运行。
2. 热量计算法则2.1 基本原理蒸发器的热量主要由输入热量、损失热量和有效热量组成。
输入热量是指蒸发器从外界接收的热量,损失热量是指在热量传递过程中产生的热量损失,有效热量是指实际用于蒸发器工作的热量。
2.2 计算公式蒸发器的热量计算公式如下:\[ Q = Q_{\text{输入}} - Q_{\text{损失}} \]\[ Q_{\text{有效}} = Q_{\text{输入}} - Q_{\text{损失}} \]其中:- \( Q \) 表示蒸发器的热量(单位:千瓦时,kWh);- \( Q_{\text{输入}} \) 表示蒸发器的输入热量(单位:千瓦时,kWh);- \( Q_{\text{损失}} \) 表示蒸发器的损失热量(单位:千瓦时,kWh);- \( Q_{\text{有效}} \) 表示蒸发器的有效热量(单位:千瓦时,kWh)。
3. 面积计算法则3.1 基本原理蒸发器的面积主要由传热面积和辅助面积组成。
传热面积是指蒸发器中进行热量传递的面积,辅助面积是指用于支持蒸发器运行的面积。
3.2 计算公式蒸发器的面积计算公式如下:\[ A = A_{\text{传热}} + A_{\text{辅助}} \]其中:- \( A \) 表示蒸发器的总面积(单位:平方米,m²);- \( A_{\text{传热}} \) 表示蒸发器的传热面积(单位:平方米,m²);- \( A_{\text{辅助}} \) 表示蒸发器的辅助面积(单位:平方米,m²)。
4. 应用示例以下是一个简单的应用示例,用于计算一个特定蒸发器的热量和面积。
4.1 假设条件- 输入热量:1000 kWh;- 损失热量:200 kWh;- 传热面积:50 m²;- 辅助面积:10 m²。
各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是热交换器的一种特殊类型,广泛应用于许多工业领域。
蒸发器用于将液体蒸发成气体,而冷凝器则用于将气体冷凝成液体。
在本文中,将讨论各种蒸发器和冷凝器的计算方法。
首先,我们将探讨蒸发器的计算方法。
蒸发器的设计有许多方面需要考虑,包括传热面积、传热系数、蒸发速率等。
1.传热面积计算:传热面积是蒸发器设计的重要参数,它取决于传递热量的需求。
通常,传热面积可以通过以下公式计算:A = Q/(U × ∆Tlm)其中,A表示传热面积,Q表示传热量,U表示传热系数,∆Tlm表示温度差的对数平均值。
传热系数和温度差的对数平均值需要根据具体的蒸发器设计和工作条件进行估算。
2. 传热系数计算:传热系数是蒸发器设计的另一个重要参数,它是传导、对流和辐射传热的综合结果。
传热系数可以通过经验公式或实验数据来估算。
一种广泛应用的经验公式是Dittus-Boelter公式:Nu=0.023×Re⁰⁸³⁴⁻⁵⁹!其中,Nu表示Nusselt数,Re表示雷诺数。
雷诺数可以通过液体和气体的运动速度、密度和粘度来计算。
3.蒸发速率计算:蒸发速率是蒸发器设计的关键参数之一,它取决于工作流体的性质和蒸发器的传热性能。
一种简单的估算方法是基于能量平衡:Q = m × h_fg其中,Q表示传热量,m表示蒸发液体的质量流量,h_fg表示蒸发潜热。
接下来,我们将探讨冷凝器的计算方法。
与蒸发器类似,冷凝器的设计也需要考虑传热面积、传热系数和冷凝速率等因素。
1.传热面积计算:传热面积与冷凝速率密切相关,可以通过以下公式计算:A = Q/(U × ∆Tlm)其中,A表示传热面积,Q表示传热量,U表示传热系数,∆Tlm表示温度差的对数平均值。
传热系数和温度差的对数平均值需要根据具体的冷凝器设计和工作条件进行估算。
2. 传热系数计算:传热系数可以通过经验公式或实验数据来估算。
各种蒸发器冷凝器计算

各种蒸发器冷凝器计算蒸发器和冷凝器是蒸发冷凝循环系统的两个重要组成部分。
蒸发器用于将液体转化为蒸汽,冷凝器则将蒸汽重新转化为液体。
在工业生产或空调系统中,蒸发器和冷凝器的设计和计算十分重要,因为它们的效率和性能直接影响到系统的运行效果。
下面将对各种蒸发器和冷凝器的计算进行详细介绍。
一、蒸发器的计算蒸发器的主要作用是通过向环境中提供热量,将液体转变为蒸汽。
在计算蒸发器时,需要考虑以下参数:1.蒸发器的热负荷:即单位时间内从蒸发器中蒸发的液体的热量。
热负荷可以通过以下公式计算:热负荷=蒸发流量×蒸发潜热2.蒸发器的换热面积:蒸发器的换热面积决定了热量的传递效率。
一般而言,换热面积越大,热量传递效率越高。
换热面积的计算常采用多种方法,如LMTD法和效能法。
3. 蒸发器的传热系数:传热系数是指单位面积上的热量传递速率。
蒸发器的传热系数一般由蒸发器的材料和工况条件决定。
常见的计算方法有Nu数法和Kern法。
4.蒸发器的风速:蒸发器通过风速来增加传热效果。
风速的选择应根据具体的应用环境和蒸发器的性能来确定。
二、冷凝器的计算冷凝器的主要作用是将蒸汽重新冷凝为液体。
在计算冷凝器时,需要考虑以下参数:1.冷凝器的冷负荷:即单位时间内从冷凝器中冷凝的蒸汽的热量。
冷负荷可以通过以下公式计算:冷负荷=冷凝流量×冷凝潜热2.冷凝器的换热面积:冷凝器的换热面积决定了热量的传递效率。
一般而言,换热面积越大,热量传递效率越高。
换热面积的计算方法与蒸发器类似。
3. 冷凝器的传热系数:传热系数是指单位面积上的热量传递速率。
冷凝器的传热系数一般由冷凝器的材料和工况条件决定。
常见的计算方法也是采用Nu数法和Kern法。
4.冷凝器的冷却水流量和温差:冷凝器通过冷却水来吸收蒸汽的热量。
冷却水的流量和温差会影响冷凝器的性能和效率。
一般而言,冷却水的流量越大,温差越小,冷凝器的工作效果越好。
综上所述,不同类型的蒸发器和冷凝器在计算时,需要考虑的参数有所差异。
(实战版)蒸发器热量及面积的实用计算公式

(实战版)蒸发器热量及面积的实用计算公式在工程和制冷领域,准确计算蒸发器的热量和面积对于系统设计和效率至关重要。
本文档提供了一套实用的计算方法,旨在帮助工程师和相关专业人士在设计、优化和评估蒸发器系统时做出更加精准的决策。
1. 热量计算蒸发器的热量损失或吸收可以通过以下公式进行估算:\[ Q = U \cdot A \cdot (T_{in} - T_{out}) \]- \( Q \) - 热量(单位:千瓦或千焦)- \( U \) - 热传递系数(单位:W/(m²·K))- \( A \) - 热交换面积(单位:m²)- \( T_{in} \) - 进口温度(单位:摄氏度或开尔文)- \( T_{out} \) - 出口温度(单位:摄氏度或开尔文)a. 热传递系数 (U)热传递系数 \( U \) 取决于流体的性质、流速、管壁材料以及换热器的类型。
通常,它可以通过经验公式或者实验数据获得。
在缺乏准确数据的情况下,可以参考行业标准表格进行选取。
b. 热交换面积 (A)热交换面积 \( A \) 是指蒸发器内部可供热量传递的表面积。
这个值可以通过蒸发器的设计图纸或者制造商提供的规格来确定。
c. 进出口温度差温度差 \( (T_{in} - T_{out}) \) 是热量传递的关键驱动因素。
它受到流体性质、流速、换热器的设计以及操作条件的影响。
实际操作中,这个值可以通过测量或者模拟得到。
2. 面积计算在确定了热量需求后,可以通过以下公式计算所需的蒸发器面积:\[ A_{required} = \frac{Q_{required}}{U \cdot (T_{in} - T_{out})} \]- \( A_{required} \) - 所需蒸发器面积(单位:m²)- \( Q_{required} \) - 所需热量(单位:千瓦或千焦)- \( U \), \( T_{in} \), \( T_{out} \) - 含义同前a. 考虑其他因素实际工程中,还需要考虑其他因素,如翅片间距、翅片高度、管子直径、管子排列方式等,这些都可能影响实际的有效换热面积。
制冷技术:蒸发器的选择计算

蒸发器的选择计算一、蒸发器选择计算的方法蒸发器的选择计算首先选择蒸发器的形式,然后计算所需的传热面积、被冷却介质的流量和流动阻力。
对于冷却液体的蒸发器,其计算方法与水冷式冷凝器相同。
1、蒸发器型式的选择开式冷水系统采用冷水箱式蒸发器(如制冰)。
冷藏库中根据各类冷间的要求不同,采用冷却排管和冷风机。
1.蒸发器传热面积的计算 蒸发器传热面积F 的计算式为F =Fq Qt K Q 00=∆⋅(m 2) (6-1) 式中 Q 0——制冷装置的制冷量,即蒸发器的负荷。
它等于制冷量与制冷装置的冷量损失之和(kW );K ——蒸发器的传热系数(W /m 2·℃); t ∆——平均传热温差(℃);F q ——蒸发器的单位面积热负荷,即热流密度(W /m 2); 平均传热温差:t ∆=)()(ln ln 020121min max min max t t t t t t t t t t ---=∆∆∆-∆ (6-2)t 1——被冷却介质进入蒸发器的温度(℃); t 2——被冷却介质出蒸发器的温度(℃); t 0——蒸发温度(℃);蒸发器选型计算时,蒸发器的传热系数K 按经验选取,对排管有相应的计算公式。
对于冷却液体的蒸发器,蒸发温度一般比被冷却水的出口温度低3~5℃。
被冷却液体的进出口温差取5℃左右,这样,平均传热温差为5~6℃。
对于冷却空气的蒸发器,由于空气侧的放热系数很低而使传热系数很低,为了设备的初投资,选取较大的平均传热温差,一般蒸发温度比空气的出口温度低10℃左右,平均传热温差为15℃左右。
各种蒸发器的传热系数K 值等参数见表6-7。
3、 被冷却介质(水或空气)流量的计算与冷凝器中冷却介质流量的计算方法相同,不再重复。
蒸发器的传热系数和单位面积热负荷 表6-7二、冷风机选型计算(一)根据冷间冷却设备负荷,按公式(6-1)计算所需冷风机的冷却面积; 注意△t 取冷间温度与制冷剂温度差。
传热系数K 见表6-8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.小型蒸发器的特点:
(1)土壤蒸发,用自制的Micro-Lysimeters(小型棵间蒸发器)进行测定。
Micro-Lysimeters 由PVC(聚氯乙烯)圆管制成(选择PVC材料是为了尽量减小热传导的影响), 高15cm,壁厚3mm, 内径为10.4cm。
为了避免操作时破坏附近的土体结构,用内径稍大为12cm的PVC管做成外套,固定于行间。
(2)每次取土时,将micro- lysimeter从土壤表面按下, 按进土壤, 留0.5 cm露出地面, 然后取出盛有未扰动原状土柱的micro- lysimeter, 削去底部多余的土壤, 用聚乙烯胶带封底, 每天傍晚(以减少太阳辐射的蒸发损失)用精度为1g的电子天平进行称重, 根据两次之间的重量差和micro-lysimeter的表面积换算得出日蒸发量。
直径为10.4cm的micro- lysimeter每1g的变化相当于0.11772 mm的水分蒸发量。
(3)称重后, 将其放回套筒中, 让其在田间的环境里继续蒸发,下一次称量时再把它从套筒里提出来。
为了保证棵间蒸发器内的土壤湿度与小麦行间土壤实际含水量一致, 每天或每3~5天更换棵间蒸发器中的原状土,雨后或灌溉后要马上换土。
2.缺陷:
(1)Micro—1ysimeter体积小,深度浅,特别是底端封底,隔断了田间土壤与容器内土壤水的流通,田间土壤水分与容器内土壤不能互相接触,所以难以保证较高的测量精度;(2)经常更换容器内土壤可以降低误差,但土壤干燥时,取土时会破坏土壤表面的结构,使测定受到影响;(3)由于容器切断了作物根系,所以作物根系吸水并没有被考虑在内;(4)受降雨等因素影响,资料不连续;(5)由于PVC管的阻隔作用,容器内温度略高于土壤温度,采用红外测温仪测定容器内温度比土壤温度略高l—2℃。
所以Micro—1ysimeter测定棵间蒸发接近于大田实际蒸发,但不能精确地反映土壤棵间蒸发。
3.计算方法:
时段∆t内棵间土壤蒸发量是:Ea=α(Wi-W i+1) α为折算系数0.11772 mm;Wi、W i+1为时段始、末称重量值(g);Ea棵间实际蒸发量(mm)。
---------------------------------------------------------------------------------------------------------------------------- α计算
根据土壤体积含水量与土壤贮水水深转化式关系:Dw=θ*h h为该测定土层厚度(mm),Dw为土壤水深(mm),θ为体积含水量(V%)。
1g水体积V w=1cm3;
蒸发器容器容积V=πR2h;R为小桶半径(cm),h为桶高(cm)
蒸发器内每变化1g水分,其容积含水量变化量∆θ=1 / V=1 / πR2h
则每1g变化量相当于蒸发水分(深度mm)α=∆θ*h= 10 / πR2h为桶高(cm)、10为厘米和毫米的转化系数。
Micro-lysimeter蒸发量简便方法计算方法
(1)每天蒸散量
W=(ML1+ML2+ML3)/3 ------------------------------每个处理内三个Micro-lysimeter平均值;ML i是同一天
内的称重值
ET V=10*(W i-W i+1)/(π*r2) ------------------------------r是内管半径(cm); W i-W i+1为某时段内称重变化量(g);
ET V为时段内蒸发量(mm)
(2)每10天蒸散量
∑+=9 10
i
i vi
v ET
ET--------------------------------从某一天开始累积。