多效蒸发器设计计算
多效蒸发计算范文

多效蒸发计算范文多效蒸发是一种常用于脱水和浓缩溶液的工艺方法。
它利用多组换热器和蒸发器,在不同压力条件下进行多次蒸发,以达到高效的能量利用和浓缩效果。
下面将详细介绍多效蒸发的计算方法。
蒸发率(E)是指单位时间内蒸发的物料质量。
它可以通过下列公式进行计算:E=Q/A其中,Q表示蒸发器中的蒸发热量,单位为焦耳(J),A表示蒸发器的表面积,单位为平方米(m²)。
其次是蒸发温度的计算。
多效蒸发中,各个蒸发器在不同的压力下进行蒸发,所以需要计算每个蒸发器的蒸发温度。
蒸发温度可以通过下列公式计算:T=T1-ΔT*(n-1)-ΔT1/N*(m-1)其中,T表示蒸发温度,T1表示蒸发器1的温度,ΔT表示每个蒸发器的温度压降,n表示蒸发器的级数,N表示蒸发器总数,m表示当前所在的蒸发器级数。
蒸发器数量的计算可以通过下列公式进行:N = log(D / D1) / log(α)其中,N表示蒸发器数量,D表示溶液初始浓度与最终浓度的比值,D1表示溶液的初始浓度,α表示溶液的浓缩系数。
最后是热效率的计算。
多效蒸发的热效率是指单位蒸发量所需的热量与总热量的比值。
热效率可以通过下列公式计算:η=Q/(Q+QF)其中,η表示热效率,Q表示蒸发器中的蒸发热量,QF表示各种热损失的热量。
除了上述的计算方法,还有一些附加的计算,如换热器的表面积计算和管路的尺寸计算等。
换热器的表面积可以通过下列公式计算:A=Q/(U*ΔTm)其中,A表示换热器的表面积,U表示传热系数,ΔTm表示温度驱动因数。
管路的尺寸计算可以通过下列公式计算:A=m*V/ρ*t其中,A表示管路的截面面积,m表示液体的质量流速,V表示液体的体积流速,ρ表示液体的密度,t表示液体在管路内停留的时间。
综上所述,多效蒸发的计算主要包括蒸发率、蒸发温度、蒸发器数量和热效率的计算。
通过这些计算,可以有效地设计和操作多效蒸发设备,达到预期的脱水和浓缩效果。
多效蒸发器设计计算

多效蒸发器设计计算 WTD standardization office【WTD 5AB- WTDK 08- WTD 2C】多效蒸发器设计计算(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2 + … + W n (1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5) 以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即 (1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发计算实例

多效蒸发计算实例多效蒸发是一种高效的蒸发过程,通过多个蒸发器的多次蒸发使得产生的蒸汽可以循环利用,提高能源利用率。
下面是一个多效蒸发计算的实例,来说明多效蒸发的工作原理和计算方法。
假设有一台多效蒸发装置,用于处理1000 kg/h的食品浆料,浆料中含有75%的水分。
该多效蒸发装置共有3个蒸发器,设定的蒸发温度为80℃。
第一步,我们先计算浆料中水的质量。
由于浆料含水量为75%,所以浆料中的水质量为1000 kg/h * 75% = 750 kg/h。
第二步,我们需要计算每个蒸发器的蒸汽消耗量。
假设第一个蒸发器的效率为80%,第二个蒸发器的效率为70%,第三个蒸发器的效率为60%。
第一个蒸发器的蒸汽消耗量可以通过以下公式计算:Q1=(1-η1)*m其中,Q1为第一个蒸发器的蒸汽消耗量,η1为第一个蒸发器的效率,m为浆料中水的质量。
Q1 = (1 - 80%) * 750 kg/h = 0.2 * 750 kg/h = 150 kg/h第二个蒸发器的蒸汽消耗量可以通过以下公式计算:Q2=(1-η2)*(m-Q1)其中,Q2为第二个蒸发器的蒸汽消耗量,η2为第二个蒸发器的效率,m为浆料中水的质量,Q1为第一个蒸发器的蒸汽消耗量。
Q2 = (1 - 70%) * (750 kg/h - 150 kg/h) = 0.3 * 600 kg/h =180 kg/h第三个蒸发器的蒸汽消耗量可以通过以下公式计算:Q3=(1-η3)*(m-Q1-Q2)其中,Q3为第三个蒸发器的蒸汽消耗量,η3为第三个蒸发器的效率,m为浆料中水的质量,Q1为第一个蒸发器的蒸汽消耗量,Q2为第二个蒸发器的蒸汽消耗量。
Q3 = (1 - 60%) * (750 kg/h - 150 kg/h - 180 kg/h) = 0.4 *420 kg/h = 168 kg/h第三步,我们需要计算多效蒸发装置的总蒸汽消耗量。
总蒸汽消耗量等于各个蒸发器的蒸汽消耗量之和。
多效蒸发器设计计算

多效蒸发器设计计算 Prepared on 22 November 2020多效蒸发器设计计算(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2 + … + W n (1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:: (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差 欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ;— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算

多效蒸发器设计计算(一) 蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量 (1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:1.1:1.2 (1-5)以上各式中 W — 总蒸发量,kg/h ;W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ; F — 原料液流量,kg/h ;x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6) 式中— 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;— 第一效加热蒸汽的压强,Pa ; )110x xF W -=(n W W i =ii W W W F Fx x ---=210np p p k '-=∆1p ∆1p— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发器设计计算

(一)蒸发器的设计步骤多效蒸发的计算一般采用迭代计算法(1)根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2)根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3)根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温差。
(4)根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5)根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二)蒸发器的计算方法下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成总蒸发量(1-1)在蒸发过程中,总蒸发量为各效蒸发量之和W = W1 + W2+ … + Wn(1-2)任何一效中料液的组成为(1-3)一般情况下,各效蒸发量可按总政发来那个的平均值估算,即(1-4)对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1::(1-5)以上各式中W —总蒸发量,kg/h;W 1,W2,… ,Wn—各效的蒸发量,kg/h;F —原料液流量,kg/h;x 0, x1,…, xn—原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即(1-6)式中—各效加热蒸汽压强与二次蒸汽压强之差,Pa;—第一效加热蒸汽的压强,Pa;—末效冷凝器中的二次蒸汽的压强,Pa。
多效蒸发中的有效传热总温度差可用下式计算:(1-7)式中—有效总温度差,为各效有效温度差之和,℃;—第一效加热蒸汽的温度,℃;—冷凝器操作压强下二次蒸汽的饱和温度,℃;—总的温度差损失,为各效温度差损失之和,℃。
多效蒸发器设计计算

多效蒸发器设计计算
多效蒸发器是一种用于蒸发液体中的溶质以实现浓缩的设备。
在多效蒸发器设计计算中,需要考虑到以下几个关键因素:蒸发程式、物料平衡、能量平衡、传热方程、精馏器和破坏机理。
1. 蒸发过程:多效蒸发器的基本原理是通过将溶液在多个蒸发室中进行连续蒸发,并利用蒸汽冷凝来提供热量。
在多效蒸发器设计中,需要确定合适的蒸发程式,例如同时蒸发或逐级蒸发。
2. 物料平衡:在多效蒸发器中,各个蒸发室之间的物料平衡是一个重要考虑因素。
物料平衡可以通过输入和输出流量的计算来确定。
3. 能量平衡:能量平衡是多效蒸发器设计的另一个关键点。
通过计算蒸汽冷凝所释放的热量和蒸发过程中所需的热量,可以确定能量平衡。
4. 传热方程:多效蒸发器中传热方程的计算是非常重要的。
传热方程通常包括表面传热系数、传热面积和温度差等参数,可以用于计算所需热量。
5. 精馏器:多效蒸发器中通常使用精馏器来分离液体中的溶质。
设计精馏器需要考虑到馏分和留渣的要求,以及精馏塔的塔盘或填料。
6. 破坏机理:在多效蒸发器设计中,需要考虑到溶质可能遭受
的破坏机理,例如结晶、析出或水解等。
这些因素可以影响到设计的操作条件和设备需求。
在多效蒸发器设计计算中,还需要考虑到其他因素,如设备材料的选择、蒸汽压力和温度、环境影响等。
以上只是多效蒸发器设计计算的一些参考内容,具体设计仍然需要根据实际情况和要求进行。
多效蒸发计算实例

Fx0=(F-W1)w1=(F-W1-W2)w2=…=(F-W1-…-Wn)wn
w1
=
Fw0 F -W1
,
w2
=
F
Fw0 -W1 -W2
wi
=
F
Fw0 -W1 --Wi
,
wn
=
F
Fw0 -W1 --Wn
=
Fw0 F -W
W为总蒸发水量 W = F (1 - w0 ) wn
热量衡算(不计热损):
10
精品课件!
精品课件!
tm3
Hale Waihona Puke D3r3 K3S3
1.78 2320.21000 1100 400
9.4o C
第三效的温差损失: 3=1+3=4℃
第三效的二次蒸汽的温度: T3’=74.7-9.4-4=61.3℃
13
类推: W2
H2 c pwT2
H
' 2
c pwt2
D2
(Fc p0
W1c pw )
t1 t2
H
' 2
c
pw t 2
Wi
Hi c pWTi
H
' i
c pWti
Di
(Fc p0
W1c pW
W2c pW
Wi1c pW )
ti1 ti
H
' i
c pWti
i Di (Fc p0 W1c pW W2c pW Wi1c pW ) i
讨论: (10).95i~0.,9rr9ii'称;蒸发系数,其值接近于1,一般为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
多效蒸发器设计计算
(一) 蒸发器的设计步骤
多效蒸发的计算一般采用迭代计算法
(1) 根据工艺要求及溶液的性质,确定蒸发的操作条件(如加热蒸汽压强及冷凝
器压强)、蒸发器的形式(升膜蒸发器、降膜蒸发器、强制循环蒸发器、刮膜蒸发器)、流程和效数。
(2) 根据生产经验数据,初步估计各效蒸发量和各效完成液的组成。
(3) 根据经验,假设蒸汽通过各效的压强降相等,估算各效溶液沸点和有效总温
差。
(4) 根据蒸发器的焓衡算,求各效的蒸发量和传热量。
(5) 根据传热速率方程计算各效的传热面积。
若求得的各效传热面积不相等,则
应按下面介绍的方法重新分配有效温度差,重复步骤(3)至(5),直到所求得的各效传热面积相等(或满足预先给出的精度要求)为止。
(二) 蒸发器的计算方法
下面以三效并流加料的蒸发装置为例介绍多效蒸发的计算方法。
1.估值各效蒸发量和完成液组成
总蒸发量 (1-1) 在蒸发过程中,总蒸发量为各效蒸发量之和
W = W 1 + W 2 + … + W n (1-2) 任何一效中料液的组成为
(1-3) 一般情况下,各效蒸发量可按总政发来那个的平均值估算,即
(1-4) 对于并流操作的多效蒸发,因有自蒸发现象,课按如下比例进行估计。
例如,三效W1:W2:W3=1:1.1:1.2 (1-5) 以上各式中 W — 总蒸发量,kg/h ;
W 1,W 2 ,… ,W n — 各效的蒸发量,kg/h ;
F — 原料液流量,kg/h ;
x 0, x 1,…, x n — 原料液及各效完成液的组成,质量分数。
2.估值各效溶液沸点及有效总温度差
欲求各效沸点温度,需假定压强,一般加热蒸汽压强和冷凝器中的压强(或末效压强)是给定的,其他各效压强可按各效间蒸汽压强降相等的假设来确定。
即
(1-6)
式中 — 各效加热蒸汽压强与二次蒸汽压强之差,Pa ;
— 第一效加热蒸汽的压强,Pa ;
— 末效冷凝器中的二次蒸汽的压强,Pa 。
多效蒸发中的有效传热总温度差可用下式计算:
(1-7) 式中 — 有效总温度差,为各效有效温度差之和,℃;
— 第一效加热蒸汽的温度,℃;
— 冷凝器操作压强下二次蒸汽的饱和温度,℃;
— 总的温度差损失,为各效温度差损失之和,℃。
p ∆1p k p '∑∑∆
-'-=∆)(1k T T t ∑∆t 1T k T '∑∆
(1-8) 式中
— 由于溶液的蒸汽压下降而引起的温度差损失,℃; — 由于蒸发器中溶液的静压强而引起的温度差损失,℃;
— 由于管路流体阻力产生压强降而引起的温度差损失,℃。
关于 、
和 的求法,分别介绍如下: (1)由于溶液蒸汽压下降多引起的温度差损失
可用校正系数法和杜林规则求得。
校正系数法: (1-9)
式中
— 常压下由于溶液蒸汽压下降引起的温度差损失,℃; 某些溶液在常压下的沸点
值可从手册差得; — 校正系数,量纲为一。
一般取 (1-10)
式中
— 操作压强下水的沸点,亦即二次蒸汽的饱和温度,℃; — 操作压强下二次蒸汽的汽化热,kJ/kg.
杜林规则:某种溶液的沸点和相同压强下标准液体(一般为水)的沸点呈线性关系。
在以水的沸点为横坐标,该溶液的沸点为纵坐标并以溶液的组成为参数的直角坐标图上,可得一组直线,称为杜林直线。
利用杜林线图,可根据溶液的组成及世纪压强下
水的沸点查出相同压强下溶液的沸点,从而得出 值。
根据杜林规则也可计算液体在各种压强下沸点的近似值。
此法的依据是:某液体在
两种不同压强下两沸点之差 与水同样压强下两沸点之差 ,其比值为
一常数,即
求得k 值,其他任一压强下的沸点
就可由下式求得,即 (1-11)
所以不用杜林线图也可计算出溶液的
值。
(2)由于蒸发器中溶液静压强引起的温度差损失 某些蒸汽器在操作室,器内
溶液需维持一定的液位,因而蒸发器中溶液内部的压强大于液面的压强,致使溶液内部的沸点较液面处高,二者之差即为因溶液静压强引起的温度差损失 。
为简便起见,溶液内部的沸点可按液面和底层的平均压强来查取。
平均压强近似按静力学方程估算: (1-12) 式中
— 蒸发器中液面和底部间的平均压强,Pa ; — 二次蒸汽的压强,即液面处的压强,Pa ;
— 溶液的平均密度,kg/ m 3;
— 液层高度,m ;
— 重力加速度,m/ s 2。
(1-13) 式中 — 根据平局压强
求得水的沸点,℃; — 根据二次蒸汽压强
求得水的沸点,℃。
由于管道流动阻力产生的压强降所引起的温度差损失
在多效蒸发中,末效以前各效的二次蒸汽流到次一效的加热室的过程中,由于管道阻力使其压强降低,蒸汽的
饱和温度也相应降低,由此而引起的温度插损失即为 。
根据经验,取各效间因管
道阻力引起的温度差损失为1℃.
根据已估算的各效二次蒸汽压强
及温度差损失 ,即可由下式估算各效溶液的沸点t 。
(1-14)
3.加热蒸汽消耗量和各效蒸发水量的初步计算
∑∑∑∑∆'''+∆''+∆'=∆∆'∆''∆'''∆'∆''∆'''∆'∆'0∆'=∆'f 0∆'f A t 1T 'r '∆'21A A t t -21B B t t -A t ')(11B B A A t t k t t '--='∆'∆''∆'
'm p p 'ρL g p pm t t -=∆''pm t p t m p p '∆'''∆'''p '∆∆''+∆'+'=T t
第一效的焓衡算式为
(1-15)
由式(1-15)可求得第I 效的蒸发量 。
若在焓衡算式中计入溶液的浓缩热及蒸发器的热损失,尚需考虑热利用系数 。
一般溶液的蒸发,可取 为0.98-0.7 (式
中 为溶液的组成变化,以质量分数表示)。
(1-16)
式中 — 第i 效的加热蒸汽量,kg/h,当无额外蒸汽抽出时, ;
— 第i 效加热蒸汽的汽化热,kJ/kg ; — 第i 效二次蒸汽的汽化热,kJ/kg ; — 原料液的比热容,kJ/(kg ·℃);
— 水的比热容,kJ/(kg ·℃); 、 —第i 效及第(i -1)效溶液的沸点,℃;
— 第i 效的热利用系数,量纲为一。
对于加热蒸汽(生蒸汽)的消耗量,可列出各效焓衡算式并与式(1-2)联解而求得。
4.蒸发器的传热面积和有效温度差在各效中的分配
任一效的传热速率方程为
(1-17) 式中
— 第i 效的传热速率,W ;
— 第i 效的传热系数,W ;
— 第i 效的传热面积,m 2;
— 第i 效的传热温度差,℃。
有效温度分配的目的是为了求取蒸发的传热面积
,现以三效为例,即 (1-18)
式中 (1-19)
(1-20)
在多效蒸发中,为了便于制造和安装,通常采用各效传热面积相等的蒸发器,即 若由式(1-18)求得的传热面积不相等,应依据各效面积的原则重新分配各效的有效温度差。
方法如下:
设以
表示各效面相等时的有效温度差,则 , , (1-21) 与(1-18)式相比可得
, , (1-22) 将式(1-22)中三式相加,得 或 (1-23) 式中 — 各效的有效温度差之和,称为有效总温度差,℃。
由式(1-23)求得传热面积S 后,即可由式(1-22)重新分配各效的有效温度差。
重复上述步骤,直至求得的各效传热面积相等,该面积即为所求。
i i i i PW i PW PW PO i i i r W t t c W c W c W Fc r D Q '+-----=--))((1121 i W ηηx
∆i D i r i r 'PO c PW c i t 1-i t i η∆''+∆'+'=T t i i i t S K Q ∆=i i Q i K i S i t ∆i S 111r D Q =2122t T t T t -'=-=∆t '∆332211321t t S S t S S t S S t t t ∆+∆+∆='∆+'∆+'∆=∆∑∑∆t。