直线的倾斜角.斜率.直线方程基础练习题
直线的倾斜角与斜率(含答案)

直线的倾斜角与斜率(含答案)一、单选题1.经过点A ( 3,-2)和B (0,1)的直线l 的倾斜角α为( )A .30°B .60°C .120°D .150°2.已知直线l 1: 3+m x +4y =5−3m ,l 2:2x + 5+m y =8平行,则实数m 的值为()A .−7B .−1C .−1或−7D .1333.已知直线l 1:x +my +7=0和l 2:(m −2)x +3y +2m =0互相平行,则实数m =( )A .m =−3B .m =−1C .m =−1或3D .m =1或m =−3 4.已知1F ,2F 分别为双曲线22221(0,0)x y a b a b-=>>的左焦点和右焦点,过2F 的直线l 与双曲线的右支交于A ,B 两点,12AF F ∆的内切圆半径为1r ,12BF F ∆的内切圆半径为2r ,若122r r =,则直线l 的斜率为()A .1BC .2D .5.已知集合A ={(x ,y )|x +a 2y +6=0},集合B ={(x ,y )|(a -2)x +3ay +2a =0},若A ∩B =Ø,则a 的值是( )A .3B .0C .-1D .0或-16.直线x+6y+2=0在x 轴和y 轴上的截距分别是( )A .2,13B .-2,−13C .−12,-3D .-2,-3 7.已知两直线1:230l x y -+=,2:210l mx y ++=平行,则m 的值是()A .4-B .1-C .1D .48.已知坐标平面内三点P(3,-1),M(6,2),N − ,直线l 过点P.若直线l 与线段MN 相交,则直线l 的倾斜角的取值范围()A . 450,1500B . 450,1350C . 600,1200D . 300,6009.直线1y =+的倾斜角为()A .30︒B .60︒C .150︒D .120︒二、填空题10.设直线l 1:(a +1)x +3y +2−a =0,直线l 2:2x +(a +2)y +1=0.若l 1⊥l 2,则实数a 的值为______,若l 1∥l 2,则实数a 的值为_______.11.直线l 1:x +2y −4=0与l 2:mx + 2−m y −1=0平行,则实数m =________.12.线2cos α•x﹣y ﹣1=0,α∈[π6,23π]的倾斜角θ的取值范围是__________13.直线x + 3y +1=0的倾斜角的大小是_________.14.若直线l 1:ax +2y =8与直线l 2:x +(a +1)y +4=0平行,则a =__________.15.已知点P 2,−3 ,Q 3,2 ,直线ax +y +2=0与线段PQ 相交,则实数a 的取值范围是____;16.若x ,y 满足约束条件 x −y +2≥0,2x +y −3≤0,y ≥1,则y +1x +2的最小值为__________.17.直线ax +(a −1)y +1=0与直线4x +ay −2=0互相平行,则实数a =________.18.直线x +2y +2=0与直线ax −y +1=0互相垂直,则实数a 等于________.三、解答题19.如图,在四棱锥P ABCD -中,底面ABCD 是菱形,060,,BAD E F ∠=分别为,PA BD 的中点,2.PA PD AD ===(1)证明://EF 平面PBC ;(2)若PB =A DEF -的体积.20.已知直线1:220l x y ++=;2:40l mx y n ++=.(1)若12l l ⊥,求m 的值.(2)若12//l l ,且他们的距离为,求,m n 的值.21.已知直线l 经过点()P 2,5-,且斜率为 (1)求直线l 的方程.(2)求与直线l平行,且过点()2,3的直线方程.(3)求与直线l垂直,且过点()2,3的直线方程.22.已知椭圆C的方程为x2a2+y2b2=1a>b>0,P1,22在椭圆上,椭圆的左顶点为A,左、右焦点分别为F1、F2,△PAF1的面积是△POF2的面积的2−1倍.(1)求椭圆C的方程;(2)直线y=kx(k>0)与椭圆C交于M,N,连接MF1,NF1并延长交椭圆C于D,E,连接DE,指出k DE与k之间的关系,并说明理由.23.已知直线l:kx−y+1+2k=0(k∈R)(1))若直线l不经过第四象限,求k的取值范围;(2)若直线l交x轴负半轴于点A,交y轴正半轴于点B,O为坐标原点,设△AOB的面积为S,求S的最小值及此时直线l的方程.24.已知直线l1:x+my+6=0,l2:( m−2 ) x+3y+2m=0.求当m为何值时,l1,l2 (1) 平行;(2) 相交;(3) 垂直.25.已知直线l1:x−y+1=0,l2:(a−1)x+ay+12=0.(1)若l1//l2,求实数a的值;(2)在(1)的条件下,设l1,l2与x轴的交点分别为点A与点B,平面内一动点P到点A 和点B的距离之比为P的轨迹方程E.26.已知椭圆x2a2+y2b2=1(a>b>0)的焦距为2,离心率为22,右顶点为A.(I)求该椭圆的方程;(II)过点D(2,−2)作直线PQ交椭圆于两个不同点P、Q,求证:直线AP,AQ的斜率之和为定值.27.已知椭圆C:x2a2+y2b2=1(a>b>0)的长轴长为4,且椭圆C与圆M:(x−3)2+y2=34的公共弦长为(1)求椭圆C的方程(2)椭圆C的左右两个顶点分别为A1,A2,直线l:y=kx+1与椭圆C交于E,F两点,且满足k A1F =2k A2E,求k的值.参考答案1.C【解析】分析:先由直线的斜率公式求出直线的斜率,再根据倾斜角的范围及倾斜角的正切值等于斜率,求得倾斜角的值.详解:由直线的斜率公式得,经过点A(,-2)和B(0,1)的直线l的斜率为0−3=-,又倾斜角大于或等于0°小于180°,倾斜角的正切值等于-3,故倾斜角等于120°,故选C.点睛:本题考查直线的斜率公式以及倾斜角的范围、倾斜角与斜率的关系.2.A【解析】【分析】对x,y的系数分类讨论,利用两条直线平行的充要条件即可判断出.【详解】当m=﹣3时,两条直线分别化为:2y=7,x+y=4,此时两条直线不平行;当m=﹣5时,两条直线分别化为:x﹣2y=10,x=4,此时两条直线不平行;当m≠﹣3,﹣5时,两条直线分别化为:y=−3+m4x+5−3m4,y=−25+mx+85+m,∵两条直线平行,∴−3+m4=−25+m,5−3m4≠85+m,解得m=﹣7.综上可得:m=﹣7.故选:A.【点睛】本题考查了分类讨论、两条直线平行的充要条件,属于基础题.3.C【解析】【分析】根据直线平行充要关系得等式,解得结果.【详解】由题意得1m−2=m3≠72m∴m=−1或3,选C.【点睛】本题考查直线平行位置关系,考查基本转化求解能力,属基础题.4.D【解析】设12AF F ∆的内切圆圆心为1,I ,12BF F ∆的内切圆圆心为2,I ,边1212A F A F F F 、、上的切点分别为M N E 、、,易见1I E 、横坐标相等,则1122AM AN F M F E F N F E ===,,,由122AF AF a -=, 即122AM MF AN NF a +-+=(),得122MF NF a -=,即122F E F E a -=,记1I 的横坐标为0x ,则00E x (,),于是002x c c x a +--=(),得0x a =,同理内心2I 的横坐标也为a ,则有12I I x ⊥轴,设直线的倾斜角为θ,则22129022OF I I F O θθ∠=∠=︒-,,则211212221tan ,tan tan 90222tan 2r r I F O r r F E F E θθθ⎛⎫=∠=︒-=== ⎪⎝⎭ ,222tan 12tan ,tan tan 22221tan 2θθθθθ∴==∴==- 故选D.5.D 【解析】A B ?⋂=,即直线()212602320l x a y l a x ay a :++=与:-++=平行, 令()2132a a a ⨯=-,解得01a a =或=-或3a =.0a =时,l 1:x +6=0,l 2:x =0,l 1∥l 2.a =-1时,l 1:x +y +6=0,l 2:-3x -3y -2=0.l 1∥l 2.a =3时,l 1:x +9y +6=0,l 2:x +9y +6=0,l 1与l 2重合,不合题意.∴a =0或a =-1.答案:D.点睛:本题考查两条直线平行的判定;已知两直线的一般式判定两直线平行或垂直时,若化成斜截式再判定往往要讨论该直线的斜率是否存在,容易出错,可记住以下结论进行判定: 已知直线1111:0l A x B y C ++=,2222:0l A x B y C ++=,(1)121221//0l l A B A B ⇔-=且12210AC A C -≠;(2))1212120l l A A B B ⊥⇔+=.6.B【解析】【分析】可分别令x =0,y =0,求出相应的y 和x 的值,即为相应坐标轴上的截距.【详解】令x =0,解得:y =−13,即为y 轴上截距; 令y =0,解得:x =−2,即为x 轴上截距.故选B.【点睛】本题考查截距的求法,即直线分别与x 轴、y 轴交点的横坐标和纵坐标,根据坐标轴上点的特点将0代入即可.7.A【解析】由两直线1:230l x y -+=,2:210l mx y ++=平行可得,斜率相等,截距不相等,即22m =-且132≠-,解得4m =-,故选A. 8.A【解析】【分析】先由P (3,﹣1),N (﹣ 3, 3),M (6,2),求得直线NP 和MP 的斜率,再根据直线l 的倾斜角为锐角或钝角加以讨论,将直线l 绕P 点旋转并观察倾斜角的变化,由直线的斜率公式加以计算,分别得到直线l 斜率的范围,进而得到直线l 的倾斜角的取值范围.【详解】∵P (3,﹣1),N (﹣ 3, 3),∴直线NP 的斜率k 1= 3+1− 3−3=﹣ 33.同理可得直线MP 的斜率k 2=2+16−3=1.设直线l 与线段AB 交于Q 点,当直线的倾斜角为锐角时,随着Q 从M 向N 移动的过程中,l 的倾斜角变大,l 的斜率也变大,直到PQ 平行y 轴时l 的斜率不存在,此时l 的斜率k ≥1;当直线的倾斜角为钝角时,随着l 的倾斜角变大,l 的斜率从负无穷增大到直线NP 的斜率,此时l 的斜率k ≤﹣ 33.可得直线l 的斜率取值范围为:(﹣∞,﹣ 33]∪[1,+∞).∴直线l 的倾斜角的取值范围 450,1500故选:A .【点睛】本题给出经过定点P 的直线l 与线段MN 有公共点,求l 的斜率取值范围.着重考查了直线的斜率与倾斜角及其应用的知识,属于中档题.9.B【解析】设倾斜角为θ,直线1y =+tan θ=60θ=︒,故选B .10.−85−4 【解析】分析:由题意得到关于a 的方程或方程组,据此求解方程即可求得最终结果. 详解:若l 1⊥l 2,则:2 a +1 +3 a +2 =0,整理可得:5a +8=0,求解关于实数a 的方程可得:a =−85. 若l 1∥l 2,则a +12=3a +2≠2−a 1,据此可得:a =−4.点睛:本题主要考查直线垂直、平行的充分必要条件,意在考查学生的转化能力和计算求解能力.11.23【解析】【分析】由直线的平行关系可得1× 2−m −2m =0,解之可得答案【详解】∵直线l1:x+2y−4=0与l2:mx+2−m y−1=0平行,∴1×2−m−2m=0,解得m=23故答案为23【点睛】本题主要考查的是直线的与直线的平行关系,继而求得斜率与斜率之间的关系,属于基础题。
直线的倾斜角和斜率练习题

2、1 直线的倾斜角和斜率1、下列命题正确的是( )A 、若直线的斜率存在,则必有倾斜角α与它对应B 、若直线的倾斜角存在,则必有斜率与它对应C 、直线的斜率为k ,则这条直线的倾斜角为arctan kD 、直线的倾斜角为α,则这条直线的斜率为tan α2、过点M (2,a ), N (a ,4)的直线的斜率为21,则a 等于( ) A 、–8 B 、10 C 、2 D 、43、过点A (2,b )和点B (3,2)的直线的倾斜角为43π,则b 的值是( ) A 、–1 B 、1 C 、–5 D 、54、如图,若图中直线l 1, l 2, l 3的斜率分别为k 1, k 2, k 3,则( )A 、k 1<k 2<k 3B 、k 3<k 1<k 2C 、k 3<k 2<k 1D 、k 1<k 3<k 25、设直线l 过原点,其倾斜角为α,将直线绕原点按逆时针方向旋转60o ,得到直线的倾斜角为( )A 、60o α+B 、120o α-C 、120o α-D 、当0120o o α≤<时为60o α+,当120180o o α≤<时为120o α-6、已知,A(3,1)、B(2,4),则直线AB 上方向向量AB u u u r 的坐标是( )A 、(5,5)B 、(1,3)C 、(5,5)D 、(3,1)7、直线l 过点()1,2A ,且不过第四象限,则直线l 的斜率的取值范围是( )A 、[]0,2B 、[]0,1C 、10,2⎡⎤⎢⎥⎣⎦D 、1,02⎡⎤-⎢⎥⎣⎦8、直线xcos θ+y-1=0 (θ∈R )的倾斜角的范围是 .9、设直线l1:x-2y+2=0的倾斜角为α,直线l2:mx-y+4=0的倾斜角为2α,且1α=1α+90°,则m的值为 .210、已知直线l经过A(2,1),B(1,m2)(m∈R)两点,那么直线l的倾斜角的取值范围是 .11、直线l的倾斜角60oα=,直线m l⊥,则直线m的斜率为。
直线方程典型例题加习题

直线的方程1.直线的倾斜角(1)定义 (2)范围: 2.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =. 3.直线方程的五种形式判断下面结论是否正确(请在括号中打“√”或“×”) (1)根据直线的倾斜角的大小不能确定直线的位置.( ) (2)坐标平面内的任何一条直线均有倾斜角与斜率.( ) (3)直线的倾斜角越大,其斜率就越大.( ) (4)直线的斜率为tan α,则其倾斜角为α.( ) (5)斜率相等的两直线的倾斜角不一定相等.( )(6)经过定点A (0,b )的直线都可以用方程y =kx +b 表示.( )(7)不经过原点的直线都可以用x a +yb=1表示.( )(8)经过任意两个不同的点P 1(x 1,y 1),P 2(x 2,y 2)的直线都可以用方程(y -y 1)(x2-x 1)=(x -x 1)(y 2-y 1)表示.( )1.直线3x -y +a =0的倾斜角为( ) A .30° B .60° C .150°D .120°2.如果A ·C <0,且B ·C <0,那么直线Ax +By +C =0不通过( ) A .第一象限 B .第二象限 C .第三象限D .第四象限3.已知A (3,5),B (4,7),C (-1,x )三点共线,则x =______.4.直线l 经过A (2,1),B (1,m 2)(m ∈R )两点,则直线l 的倾斜角的取值范围为____________.题型一 直线的倾斜角与斜率例1 经过P (0,-1)作直线l ,若直线l 与连接A (1,-2),B (2,1)的线段总有公共点,则直线l 的斜率k 和倾斜角α的取值范围分别为________,________.(1)若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( )A.13 B .-13 C .-32 D.23(2)直线x cos α+3y +2=0的倾斜角的范围是( ) A.⎣⎡⎭⎫π6,π2∪⎝⎛⎦⎤π2,5π6 B.⎣⎡⎦⎤0,π6∪⎣⎡⎭⎫5π6,π C.⎣⎡⎦⎤0,5π6 D.⎣⎡⎦⎤π6,5π6题型二 求直线的方程例2 根据所给条件求直线的方程:(1)直线过点(-4,0),倾斜角的正弦值为1010;(2)直线过点(-3,4),且在两坐标轴上的截距之和为12; (3)直线过点(5,10),且到原点的距离为5.已知点A (3,4),求满足下列条件的直线方程:(1)经过点A 且在两坐标轴上截距相等;(2)经过点A 且与两坐标轴围成一个等腰直角三角形.题型三 直线方程的综合应用例3 已知直线l 过点P (3,2),且与x 轴、y 轴的正半轴分别交于A 、B 两点,如图所示,求△ABO 的面积的最小值及此时直线l 的方程.已知直线l :kx -y +1+2k =0(k ∈R ).(1)证明:直线l 过定点;(2)若直线不经过第四象限,求k 的取值范围;(3)若直线l 交x 轴负半轴于A ,交y 轴正半轴于B ,△AOB 的面积为S (O 为坐标原点),求S 的最小值并求此时直线l 的方程.A 组 专项基础训练(时间:45分钟)1.若方程(2m 2+m -3)x +(m 2-m )y -4m +1=0表示一条直线,则参数m 满足的条件是( ) A .m ≠-32B .m ≠0C .m ≠0且m ≠1D .m ≠12.直线x sin π7+y cos π7=0的倾斜角α是( )A .-π7B.π7C.5π7D.6π73.直线x +(a 2+1)y +1=0的倾斜角的取值范围是( ) A.⎣⎡⎦⎤0,π4 B.⎣⎡⎭⎫3π4,π C.⎣⎡⎦⎤0,π4∪⎝⎛⎭⎫π2,π D.⎣⎡⎭⎫π4,π2∪⎣⎡⎭⎫3π4,π4.两条直线l 1:x a -y b =1和l 2:x b -ya=1在同一直角坐标系中的图象可以是()5.已知直线PQ 的斜率为-3,将直线绕点P 顺时针旋转60°所得的直线的斜率为( )A.3B .-3C .0D .1+ 36.若直线l 的斜率为k ,倾斜角为α,而α∈⎣⎡⎭⎫π6,π4∪⎣⎡⎭⎫2π3,π,则k 的取值范围是__________.7.直线l :ax +(a +1)y +2=0的倾斜角大于45°,则a 的取值范围是________________.8.若ab >0,且A (a,0)、B (0,b )、C (-2,-2)三点共线,则ab 的最小值为________.9.已知直线l 与两坐标轴围成的三角形的面积为3,分别求满足下列条件的直线l 的方程:(1)过定点A (-3,4);(2)斜率为16.。
高中数学 直线的倾斜角与斜率(常见例题 考题 练习)附答案

直线的倾斜角与斜率、直线方程知识点1.直线的倾斜角(1)定义:当直线l 与x 轴相交时,取x 轴作为基准,x 轴正向与直线l 向上方向之间所成的角叫做直线l 的倾斜角。
当直线l 与x 轴平行或重合时,规定它的倾斜角为0°。
(2)范围:直线l 倾斜角的范围是[0,π)。
2.直线的斜率(1)定义:若直线的倾斜角θ不是90°,则斜率k =tan θ。
(2)计算公式:若由A (x 1,y 1),B (x 2,y 2)确定的直线不垂直于x 轴,则k =y 2-y 1x 2-x 1。
3.直线方程的五种形式基础专练一 、走进教材1.直线l :x sin30°+y cos150°+1=0的斜率是( )A.33B.3 C .- 3 D .-332. 已知点A (1,2),B (3,1),则线段AB 的垂直平分线方程为( )A .4x +2y -5=0B .4x -2y -5=0C .x +2y -5=0D .x -2y -5=0走进教材答案1.A ; 2. B ;二、查漏补缺1.过点M (-2,m ),N (m,4)的直线的斜率等于1,则m 的值为( )A .1B .4C .1或3D .1或42.直线x +3y +m =0(m ∈R )的倾斜角为( )A .30°B .60°C .150°D .120°3.已知直线l 过点P (-2,5),且斜率为-34,则直线l 的方程为( ) A .3x +4y -14=0 B .3x -4y +14=0 C .4x +3y -14=0 D .4x -3y +14=04.若点A (4,3),B (5,a ),C (6,5)三点共线,则a 的值为__________。
5.过点(-3,4),且在两坐标轴上的截距之和为12的直线方程是________。
查漏补缺答案5.4x -y +16=0或x +3y -9=0直击考点考点一 直线的倾斜角与斜率……母题发散【典例1】 (1)直线2x cos α-y -3=0⎝⎛⎭⎫α∈⎣⎡⎦⎤π6,π3的倾斜角的取值范围是( )A.⎣⎡⎦⎤π6,π3B.⎣⎡⎦⎤π4,π3C.⎣⎡⎦⎤π4,π2D.⎣⎡⎦⎤π4,2π3(2)直线l 过点P (1,0),且与以A (2,1),B (0,3)为端点的线段有公共点,则直线l 斜率的取值范围为________。
直线的倾斜角和斜率练习题

直线斜率的性质
直线斜率等于直线倾斜角的正切 值
直线斜率为0时,直线垂直于x 轴
直线斜率为无穷大时,直线与x 轴垂直
直线斜率存在时,直线必与x轴 有交点
直线的倾斜角和斜率的 实际应用
直线的倾斜角和斜率在几何图形中的应用
确定位置:直线 的倾斜角和斜率 可以用来确定平 面上的一个点或 一条直线的位置。
添加项标题
实际应用:在解析几何中,直线的倾斜角和斜率可以用来描述直线 在平面上的位置和方向,进而解决实际问题。
添加项标题
计算方法:通过直线上两点的坐标可以计算出直线的斜率和倾斜角。
添加项标题
几何意义:直线的倾斜角和斜率可以用来研究直线与其他几何图形 之间的关系,例如直线与圆、椭圆等的位置关系。
计算距离:通 过直线的斜率 和垂直距离, 可以计算出两 点之间的距离。
判断平行:两 条直线的斜率 相等,则这两 条直线平行。
判断垂直:两 条直线的斜率 的乘积为-1, 则这两条直线
垂直。
直线的倾斜角和斜率在解析几何中的应用
添加项标题
定义:直线的倾斜角是直线与x轴正方向之间的夹角,斜率是直线 在坐标系中的倾斜程度。
直线垂直于x轴时,倾斜角为90度, 斜率不存在
特殊情况的处理
直线过原点时,倾斜角与斜率的关 系为tan(倾斜角)=斜率
添加标题
添加标题
添加标题
添加标题
直线平行于x轴时,倾斜角为0度或 180度,斜率为0
直线与x轴垂直时,倾斜角为90度, 斜率不存在
计算方法的总结
定义:直线的倾 斜角是直线与x 轴正方向的夹角, 斜率是直线在x 轴上的一个单位 长度内对应的y
练习题二:提高题
题目:已知直线方程为 y = 2x + 5,求该直线的斜率。
高考理科数学真题练习题直线的倾斜角与斜率直线方程理含解析

高考数学复习 课时作业48 直线的倾斜角与斜率、直线方程一、选择题1.直线x =π4的倾斜角等于( C )A .0 B.π4C.π2D .π解析:由直线x =π4,知倾斜角为π2.2.如图中的直线l 1,l 2,l 3的斜率分别为k 1,k 2,k 3,则( D )A .k 1<k 2<k 3B .k 3<k 1<k 2C .k 3<k 2<k 1D .k 1<k 3<k 2解析:直线l 1的倾斜角α1是钝角,故k 1<0,直线l 2与l 3的倾斜角α2与α3均为锐角且α2>α3,所以0<k 3<k 2,因此k 1<k 3<k 2.3.若三点P (1,1),A (2,-4),B (x ,-9)共线,则( B ) A .x =-1 B .x =3 C .x =92D .x =1解析:三点P (1,1),A (2,-4),B (x ,-9)共线⇒PA →∥PB →,PA →=(1,-5),PB →=(x -1,-10),得1×(-10)=-5(x -1)⇒x =3.故选B.4.直线l 1:ax -y +b =0,l 2:bx +y -a =0(ab ≠0)的图象只可能是( B )解析:因为l 1:y =ax +b ,l 2:y =-bx +a ,由图B 可知,对于直线l 1,a >0且b <0,对于直线l 2,-b >0且a >0,即b <0且a >0,满足题意.故选B.5.若直线l 与直线y =1,x =7分别交于点P ,Q ,且线段PQ 的中点坐标为(1,-1),则直线l 的斜率为( B )A.13 B .-13 C .-32 D.23解析:依题意,设点P (a,1),Q (7,b ),则有⎩⎪⎨⎪⎧a +7=2,b +1=-2,解得⎩⎪⎨⎪⎧a =-5,b =-3,从而可知直线l 的斜率为-3-17+5=-13.6.已知点P (x ,y )在直线x +y -4=0上,则x 2+y 2的最小值是( A ) A .8 B .2 2 C. 2D .16解析:∵点P (x ,y )在直线x +y -4=0上,∴y =4-x ,∴x 2+y 2=x 2+(4-x )2=2(x -2)2+8,当x =2时,x 2+y 2取得最小值8.7.(2019·郑州一模)已知直线l 的斜率为3,在y 轴上的截距为另一条直线x -2y -4=0的斜率的倒数,则直线l 的方程为( A )A .y =3x +2B .y =3x -2C .y =3x +12D .y =-3x +2解析:∵直线x -2y -4=0的斜率为12,∴直线l 在y 轴上的截距为2,∴直线l 的方程为y =3x +2,故选A.二、填空题8.已知三角形的三个顶点A (-5,0),B (3,-3),C (0,2),则BC 边上中线所在的直线方程为x +13y +5=0.解析:BC 的中点坐标为⎝ ⎛⎭⎪⎫32,-12,∴BC 边上的中线所在直线方程为y -0-12-0=x +532+5,即x +13y +5=0.9.过点(2,-3)且在两坐标轴上的截距互为相反数的直线方程为3x +2y =0或x -y -5=0.解析:若直线过原点,则直线方程为3x +2y =0;若直线不过原点,则斜率为1,方程为y +3=x -2,即为x -y -5=0,故所求直线方程为3x +2y =0或x -y -5=0.10.设点A (-1,0),B (1,0),直线2x +y -b =0与线段AB 相交,则b 的取值范围是[-2,2].解析:b 为直线y =-2x +b 在y 轴上的截距,如图,当直线y =-2x +b 过点A (-1,0)和点B (1,0)时,b 分别取得最小值和最大值.∴b 的取值范围是[-2,2].11.曲线y =x 3-x +5上各点处的切线的倾斜角的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π. 解析:设曲线上任意一点处的切线的倾斜角为θ(θ∈[0,π)),因为y ′=3x 2-1≥-1,所以tan θ≥-1,结合正切函数的图象可知,θ的取值范围为⎣⎢⎡⎭⎪⎫0,π2∪⎣⎢⎡⎭⎪⎫3π4,π.12.已知在△ABC 中,∠ACB =90°,BC =3,AC =4,P 是线段AB 上的点,则P 到AC ,BC 的距离的乘积的最大值为( A )A .3B .2C .2 3D .9解析:以C 为坐标原点,CB 所在直线为x 轴建立直角坐标系(如图所示),则A (0,4),B (3,0),直线AB 的方程为x 3+y4=1.设P (x ,y )(0≤x ≤3),所以P 到AC ,BC 的距离的乘积为xy ,因为x 3+y 4≥2x 3·y4,当且仅当x 3=y 4=12时取等号,所以xy ≤3,所以xy 的最大值为3.故选A.13.已知过点P (4,1)的直线分别交x ,y 坐标轴于A ,B 两点,O 为坐标原点,若△ABO 的面积为8,则这样的直线有( B )A .4条B .3条C .2条D .1条解析:由题意可设直线的方程为x a +y b=1,因为直线过点P (4,1), 所以4a +1b=1,①所以△ABO 的面积S =12|a ||b |=8,②联立①②消去b 可得a 2=±16(a -4),整理可得a 2-16a +64=0或a 2+16a -64=0. 可判上面的方程分别有1解和2解, 故这样的直线有3条.故选B.14.直线l 1与直线l 2交于一点P ,且l 1的斜率为1k,l 2的斜率为2k ,直线l 1,l 2与x 轴围成一个等腰三角形,则正实数k 的所有可能的取值为24或 2. 解析:设直线l 1与直线l 2的倾斜角分别为α,β,因为k >0,所以α,β均为锐角.由于直线l 1,l 2与x 轴围成一个等腰三角形,则有以下两种情况:(1)当α=2β时,tan α=tan2β,有1k =4k 1-4k 2,因为k >0,所以k =24;(2)当β=2α时,tan β=tan2α,有2k=2k1-1k 2,因为k >0,所以k = 2.故k 的所有可能的取值为24或 2. 尖子生小题库——供重点班学生使用,普通班学生慎用15.直线y =m (m >0)与y =|log a x |(a >0且a ≠1)的图象交于A ,B 两点,分别过点A ,B 作垂直于x 轴的直线交y =k x(k >0)的图象于C ,D 两点,则直线CD 的斜率( C )A .与m 有关B .与a 有关C .与k 有关D .等于-1解析:由|log a x |=m ,得x A =a m,x B =a -m,所以y C =ka -m,y D =ka m,则直线CD 的斜率为y D -y C x D -x C =ka m -ka -ma -m -a m=-k ,所以直线CD 的斜率与m 无关,与k 有关,故选C. 16.(2019·襄阳五中一模)已知点P 在直线x +3y -2=0上,点Q 在直线x +3y +6=0上,线段PQ 的中点为M (x 0,y 0),且y 0<x 0+2,则y 0x 0的取值范围是( D )A.⎣⎢⎡⎭⎪⎫-13,0B.⎝ ⎛⎭⎪⎫-13,0C.⎝ ⎛⎭⎪⎫-13,+∞ D.⎝⎛⎭⎪⎫-∞,-13∪(0,+∞)解析:设P (x 1,y 1),Q (x 2,y 2),则⎩⎪⎨⎪⎧x 1+3y 1-2=0,x 2+3y 2+6=0,x 1+x22=x 0,y 1+y 22=y 0,得x 0+3y 0+2=0,即M (x 0,y 0)在直线x +3y +2=0上.又因为y 0<x 0+2,所以M (x 0,y 0)位于直线x +3y +2=0与直线x -y +2=0交点的右下部分的直线上.设两直线的交点为F ,易得F (-2,0),而y 0x 0可看作点M 与原点O 连线的斜率,数形结合可得y 0x 0的取值范围为⎝ ⎛⎭⎪⎫-∞,-13∪(0,+∞).故选D.。
高一数学直线的倾斜角与斜率试题答案及解析

高一数学直线的倾斜角与斜率试题答案及解析1.直线的倾斜角为.【答案】【解析】设直线的倾斜角为,则.【考点】直线的倾斜角.2.已知一条直线过点(3,-2)与点(-1,-2),则这条直线的倾斜角是().A.B.C.D.【答案】A【解析】直线过点与,直线的斜率,则直线的倾斜角为.【考点】直线的斜率、倾斜角.3.已知若直线:与线段PQ的延长线相交,则的取值范围是 .【答案】【解析】直线的方程为,显然经过定点,过点M作直线,显然的斜率,过M、Q作直线的斜率为,依题意,应夹在直线与之间,即于是,即。
【考点】(1)斜率公式的应用;(2)数形结合思想的应用。
4.直线的倾斜角的大小为。
【答案】【解析】,所以倾斜角为.【考点】1.直线方程;2.倾斜角和斜率.5.经过点的直线的斜率等于1,则m的值为()A.1B.4C.1或3D.1或4【答案】A【解析】由题意可知,性的判断与证得m=1,故选A.【考点】直线斜率公式.6.过点(-3,0)和点(-4,)的直线的倾斜角是()A.30°B.150°C.60D.120°【答案】D【解析】因为,,所以,直线的倾斜角是120°,选D。
【考点】直线的斜率、倾斜角点评:简单题,利用斜率的坐标计算公式求得倾斜角的正切。
7.若直线经过A(-2,9)、B(6,-15)两点,则直线AB的倾斜角是( )A.45°B.60°C.120°D.135°【答案】C【解析】设直线AB的倾斜角是θ,由直线的斜率公式得k="tan" θ=,再根据倾斜角的范围求出倾斜角的大小。
解:设直线AB的倾斜角是θ,由直线的斜率公式得k=tanθ==又0≤θ<π,θ=120°,故选 C.【考点】直线的倾斜角和斜率点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小.求出斜率tanθ是解题的关键8.如图,若图中直线1,2,3的斜率分别为k1, k2, k3,则A.k1<k2<k3B.k3<k1<k2C.k3<k2<k1D.k1<k3<k2【答案】B【解析】由于直线L2、L1的倾斜角都是锐角,且直线L2的倾斜角大于直线L1的倾斜角,可得 K2>K1>0.由于直线L3、的倾斜角为钝角,K3<0,由此可得结论.k3<k1<k2,,故可知选B.【考点】直线的倾斜角和斜率点评:本题主要考查直线的倾斜角和斜率的关系,属于基础题.9.直线的倾斜角是()A.300B.600C.1200D.1350【答案】C【解析】由于直线的斜率为,那么根据倾斜角和斜率的关系可知,tanθ=,那么可知角为1200,故选C.【考点】直线的倾斜角和斜率的关系点评:本题考查直线的倾斜角和斜率的关系,以及倾斜角的取值范围,已知三角函数值求角的大小,求出tanθ=,是解题的关键10.已知点,,则直线的倾斜角是.【答案】【解析】直线垂直于x轴,倾斜角为【考点】直线斜率与倾斜角点评:若则直线的斜率为,倾斜角满足11.(本小题满分6分)求经过两条直线和的交点,并且与直线垂直的直线方程的一般式.【答案】【解析】由解得,则两直线的交点为………2分直线的斜率为,则所求的直线的斜率为……………4分故所求的直线为即………………6分【考点】本题考查了直线的位置关系及直线方程的求法点评:熟练运用直线的位置关系求直线方程是解题的关键12.直线的倾斜角是( )A.150oB.135oC.120oD.30o【答案】A【解析】解:因为直线,故倾斜角是150o,选A13..过点P(-2,m)和Q(m,4)的直线的斜率等于1,则m的值为.【答案】1【解析】由斜率公式可知,所以m=1.14.如果直线l沿x轴负方向平移3个单位,再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是 .【答案】【解析】设直线l的方程为y=kx+b,由题意知平移后直线方程为y=k(x+3)+b+1,即y=kx+3k+b+1,由于直线平移后还回到原来的位置,所以3k+b+1=b,所以15.直线的倾斜角等于__________.【答案】【解析】直线的斜率为,则倾斜角满足即直线的倾斜角为.16.直线的倾斜角是()A.30°B.120°C.60°D.150°【答案】A【解析】17.倾斜角为135°,在轴上的截距为的直线方程是()A.B.C.D.【答案】D【解析】直线斜率为所以直线方程为故选D18.直线的倾斜角是()A B C D【答案】C【解析】略19.已知点. 若直线与线段相交,则的取值范围是_____________.【答案】[-2,2]【解析】略20.以下直线中,倾斜角是的是()..【答案】C【解析】略21.已知点,若直线过点与线段相交,则直线的斜率的取值范围是A.B.C.D.【答案】C【解析】略22.当时,如果直线的倾斜角满足关系式,则此直线方程的斜率为;【答案】【解析】略23.直线的倾斜角为,则的值为( )A.B.C.D.【答案】A【解析】略24.长方形OABC各点的坐标如图所示,D为OA的中点,由D点发出的一束光线,入射到边AB上的点E处,经AB、BC、CO依次反射后恰好经过点A,则入射光线DE所在直线斜率为【答案】【解析】如图:作关于的对称点,关于的对称点,关于的对称点,关于的对称点,则的延长线过完点,因为,所以根据对称性得,所以【考点】点关于线对称的点25.对于直线x sin+y+1=0,其斜率的取值范围是()A.B.C.D.【答案】B【解析】直线的斜率为,因此斜率的取值范围是[-1,1],答案选B.【考点】直线的一般方程与斜率26.如图所示,直线的斜率分别为,则的大小关系为(按从大到小的顺序排列).【答案】【解析】由图形可知,比的倾斜角大,所以【考点】斜率与倾斜角的关系27.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】C【解析】确定的直线方程为,代入点得【考点】直线方程28.若图,直线的斜率分别为,则()A.B.C.D.【答案】C【解析】切斜角为钝角,斜率为负,切斜角为锐角,斜率为正,因为倾斜角大于倾斜角,所以【考点】直线倾斜角与斜率的关系29.直线经过点,且倾斜角范围是,则的范围是()A.B.C.D.【答案】C【解析】【考点】直线倾斜角与斜率的关系30.已知三点在同一条直线上,则的值为()A.B.C.D.【答案】B【解析】确定的直线方程为,代入点得【考点】直线方程。
直线的倾斜角.斜率.直线方程基础练习题

直线的倾斜角.斜率.直线方程基础练习题一、选择题1.直线013=++y x 的倾斜角为( )A .150°B .120°C .60°D .30°2.关于直线的倾斜角与斜率,下列说法正确的是( )A .所有的直线都有倾斜角和斜率B .所有的直线都有倾斜角但不一定都有斜率C .直线的倾斜角和斜率有时都不存在D .所有的直线都有斜率,但不一定有倾斜角3.若直线经过(0,1),4)A B 两点,则直线AB 的倾斜角为( ) A .30o B .45o C .60o D .120o 4.直线0334=-+y x 的斜率为( ) A.34 B.43 C.43- D.34- 5.在直角坐标系中,已知(1, 2)A -,(3, 0)B ,那么线段AB 中点的坐标为( ). A.(2,2) B.(1,1) C.(-2,-2) D.(-1,-1) 6.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为 A .30o B . 45o C .60o D .120o 7.在直角坐标系中,直线033=-+y x 的倾斜角是( )A .6π B .3π C .65π D .32π 8.一条直线经过点1(2,3)P -,倾斜角为45α=o,则这条直线的方程为( )A. 50x y ++=B.50x y --=C. 50x y -+=D. 50x y +-= 9.若直线l 经过原点和点A (2,2),则它的倾斜角为 A .-45° B .45° C .135° D .不存在 10.若直线的倾斜角为︒120,则直线的斜率为( ) A. 3 B. 3- C. 33 D. 33-11.直线02:=--+a y ax l 在x 轴和y 灿上的截距相等,则a 的值是 A.1B .-1C .-2或-1D. -2或112.倾斜角为135︒,在y 轴上的截距为1-的直线方程是( )A .01=+-y xB .01=--y xC .01=-+y xD .01=++y xA .30︒B .60︒C .120︒D .150︒14.过点(3,0),(2,3)的直线的倾斜角为( )A 、0120B 、030C 、060D 、0150 15.若直线1=x 的倾斜角为α,则α等于 A.︒0 B. ︒45 C. ︒90 D.不存在16.如右图所示,直线123,,l l l 的斜率分别为123,,k k k ,则 (A )123k k k << (B )312k k k << (C )132k k k << (D )321k k k <<17. 经过两点 (4,0)(0,3)A B -、的直线方程是( ). A .34120x y --= B. 34120x y +-= C .43120x y -+= D .43120x y ++=18.将直线y=3x 绕原点逆时针旋转90度,再向右平移1个单位,所得的直线方程为则( ) A. 3131+-=x yB. 131+-=x y C. 33-=x y D. 131+=x y 19.直线x =-1的倾斜角为 ( ▲ )(A )135︒ (B )90︒ (C )45︒ (D )0︒ 20. 直线经过点(2,0)A -,(5,3)B -,则直线的斜率为 A. -1 B. 1 C . 0 D . 221.已知直线l 经过)2,3(-A ,)3,2(-B 两点,那么直线l 的倾斜角为( ) A.3π B.6π C.4π D.43π22.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是4π,则m 的值为 A.2 B.3 C.-2D.-323.直线31y x =+的倾斜角是A .6π B .3π C .23π D .56π 24.下列四种说法中正确的是( )A .一条直线向上的方向与x 轴正向所成的角叫做这条直线的倾斜角B .直线l 的倾斜角取值范围是第一象限角或第二象限角C .已知直线l 经过),(),,(222111y x P y x P 两点,则直线l 的斜率1212x x y y k --=D .与x 轴垂直的直线斜率为0 25.直线l 的倾斜角为45°,且过(0,1),则直线l 的方程是A x+y+1=0B x-y+1=0C x-y-1=0D x+y-1=0 26.直线l 过P (1,0)、Q (12,2+-),则直线l 的倾角α=A 、ο135B 、ο45C 、ο60D 、ο225 27.直线3410x y +-=的倾斜角为α,则cos α的值为( ) A .45-B.45C.35D. 34- 28.过点P (-2,0),斜率为3的直线方程是( )A.y =3x -2B.y =3x +2C.y =3(x -2)D.y =3(x +2)29.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m 的取值范围是( ) A.(5,8) B.(8,+∞) C.(,8)D.(5,)30.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ).A .34k ≥B .324k ≤≤C .324k k ≥≤或 D .2k ≤ 31.已知直线l 的倾斜角为120o,则直线l 的斜率是( ). A .3 B .3- C .33- D . 3332.直线x tan7π+y =0的倾斜角是( ) A.-7π B.7π C.7π5 D .7π633.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1- C .090,不存在D .0180,不存在34. )A B C D 35.直线30x y -+=的倾斜角是( )A 、300B 、450C 、600D 、90036.已知直线l 过点()1,2P ,()5,7Q ,则直线l 的斜率为( ) A .45 B .45- C .54 D .54- 37.直线0cos 40sin 4010x y -++=的倾斜角是( ) A .040 B .050 C .0130 D .0140 二、填空题38.已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α . 39.已知点(3,8),(2,4)A B -,若y 轴上的点P 满足PA 的斜率是PB 斜率的2倍,则P 点的坐标为_________.40.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.4110y ++=的倾斜角是 .42.给定三点A(0,1),B(a ,0),C(3,2),直线l 经过B 、C 两点,且l 垂直AB ,则a 的值为________.43.直线5x-2y-10=0在y 轴上的截距为 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直线的倾斜角.斜率.直线方程基础练习题一、选择题1.直线013=++y x 的倾斜角为 ( )A .150°B .120°C .60°D .30°2.关于直线的倾斜角与斜率,下列说法正确的是( )A .所有的直线都有倾斜角和斜率B .所有的直线都有倾斜角但不一定都有斜率C .直线的倾斜角和斜率有时都不存在D .所有的直线都有斜率,但不一定有倾斜角3.若直线经过(0,1),4)A B 两点,则直线AB 的倾斜角为( )A .30oB .45oC .60oD .120o4.直线0334=-+y x 的斜率为( ) A.34 B.43 C.43- D.34- 5.在直角坐标系中,已知(1, 2)A -,(3, 0)B ,那么线段AB 中点的坐标为( ).A.(2,2)B.(1,1)C.(-2,-2)D.(-1,-1)6.若直线经过(0,1),(3,4)A B 两点,则直线AB 的倾斜角为A .30oB . 45oC .60oD .120o7.在直角坐标系中,直线033=-+y x 的倾斜角是()A .6πB .3πC .65πD .32π 8.一条直线经过点1(2,3)P -,倾斜角为45α=,则这条直线的方程为( )A. 50x y ++=B.50x y --=C. 50x y -+=D.50x y +-=9.若直线l 经过原点和点A (2,2),则它的倾斜角为A .-45°B .45°C .135°D .不存在10.若直线的倾斜角为︒120,则直线的斜率为( ) A. 3 B. 3- C. 33 D. 33- 11.直线02:=--+a y ax l 在x 轴和y 灿上的截距相等,则a 的值是A.1 B .-1 C .-2或-1 D.-2或112.倾斜角为135︒,在y 轴上的截距为1-的直线方程是()A .01=+-y xB .01=--y xC .01=-+y xD .01=++y x13.直线013=++y x 的倾斜角为A .30︒B .60︒C .120︒D .150︒14.过点(3,0),(2,3)的直线的倾斜角为( )A 、0120B 、030C 、060D 、015015.若直线1=x 的倾斜角为α,则α等于A.︒0B.︒45C.︒90 D.不存在16.如右图所示,直线123,,l l l 的斜率分别为123,,k k k ,则(A )123k k k <<(B )312k k k <<(C )132k k k <<(D )321k k k <<17. 经过两点(4,0)(0,3)A B -、的直线方程是( ).A .34120x y --= B. 34120x y +-=C .43120x y -+=D .43120x y ++=18.将直线y=3x 绕原点逆时针旋转90度,再向右平移1个单位,所得的直线方程为则( )A.3131+-=x yB.131+-=x yC.33-=x yD.131+=x y 19.直线x =-1的倾斜角为(▲)(A )135︒(B )90︒(C )45︒(D )0︒20. 直线经过点(2,0)A -,(5,3)B -,则直线的斜率为A. -1B. 1 C . 0 D . 221.已知直线l 经过)2,3(-A ,)3,2(-B 两点,那么直线l 的倾斜角为( )A.3πB.6πC.4π D.43π 22.直线(2m 2-5m +2)x -(m 2-4)y +5m =0的倾斜角是4π,则m 的值为 A.2B.3C.-2D.-323.直线31y x =+的倾斜角是 A .6π B .3π C .23π D .56π 24.下列四种说法中正确的是( )A .一条直线向上的方向与x 轴正向所成的角叫做这条直线的倾斜角B .直线l 的倾斜角取值范围是第一象限角或第二象限角C .已知直线l 经过),(),,(222111y x P y x P 两点,则直线l 的斜率1212x x y y k --= D .与x 轴垂直的直线斜率为025.直线l 的倾斜角为45°,且过(0,1),则直线l 的方程是A x+y+1=0B x-y+1=0C x-y-1=0D x+y-1=026.直线l 过P (1,0)、Q (12,2+-),则直线l 的倾角α=A 、 135B 、 45C 、 60D 、 22527.直线3410x y +-=的倾斜角为α,则cos α的值为( )A .45- B.45 C.35 D.34- 28.过点P (-2,0),斜率为3的直线方程是( )A.y =3x -2B.y =3x +2C.y =3(x -2)D.y =3(x +2)29.已知经过两点(5,m)和(m,8)的直线的斜率大于1,则m 的取值范围是( )A.(5,8) B.(8,+∞) C.(,8)D.(5,)30.已知点(2,3),(3,2)A B --,若直线l 过点(1,1)P 与线段AB 相交,则直线l 的斜率k 的取值范围是( ).A .34k ≥B .324k ≤≤C .324k k ≥≤或D .2k ≤ 31.已知直线l 的倾斜角为120,则直线l 的斜率是( ).A .3B .3-C .3D .33 32.直线x tan 7π+y =0的倾斜角是( ) A.-7π B.7π C.7π5D .7π6 33.直线1x =的倾斜角和斜率分别是( )A .045,1B .0135,1-C .090,不存在D .0180,不存在34. )A B C D 35.直线30x y -+=的倾斜角是( )A 、300B 、450C 、600D 、90036.已知直线l 过点()1,2P ,()5,7Q ,则直线l 的斜率为( )A .45B .45-C .54D .54- 37.直线00cos 40sin 4010x y -++=的倾斜角是( )A .040B .050C .0130D .0140二、填空题38.已知直线l 与直线01=--y x 垂直,则直线l 的倾斜角=α.39.已知点(3,8),(2,4)A B -,若y 轴上的点P 满足PA 的斜率是PB 斜率的2倍,则P 点的坐标为_________.40.经过两点A(-3,5),B(1,1 )的直线倾斜角为________.4110y ++=的倾斜角是.42.给定三点A(0,1),B(a ,0),C(3,2),直线l 经过B 、C 两点,且l 垂直AB ,则a 的值为________.43.直线5x-2y-10=0在y 轴上的截距为。
44.在平面直角坐标系中,直线01=+y 的倾斜角α的大小是___________45.与直线210x y ++=平行,且经过点(2,3)-的直线方程为.46.若直线过点(1,2),(4,2,则此直线的倾斜角是47.经过两点(,6),(1,3)A m B m -的直线的斜率是12,则m 的值为。
48.过点P(-3,2)且与直线2x +3y -1=0平行的直线方程是---------------。
49.已知两点M (3,-5),N (-7,5),则线段MN 的垂直平分线方程是--------------------。
50.经过点(cos θ,sin θ)且平行于直线x cos θ+y sin θ+2=0(θ∈R )的直线方程是----------------------------------------。
直线的倾斜角.斜率.直线方程参考答案1.B.【解析】因为k =所以倾斜角为120°.故选B.2.B.【解析】此题考查直线的倾斜角和斜率的定义;任何直线都有倾斜角,但是并不是所有的直线都与斜率,当直线的倾斜角为直角时,直线的不存在斜率。
所以A ,C ,D 错误,B 正确,所以选B ;3.C【解析】解:因为直线经过(0,1),4)A B 两点,因此3==直线的倾斜角为AB K π,故选C 4.D 【解析】∵0334=-+y x 化为433y x =-+,∴直线的斜率为34-,故选D 5.B 【解析】∵(1, 2)A -,(3, 0)B ,∴线段AB 中点的坐标(1,1),故选B6.B【解析】分析:由直线经过A (0,1),B (3,4)两点,能求出直线AB 的斜率,从而能求出直线AB 的倾斜角.解答:解:∵直线经过A (0,1),B (3,4)两点,∴直线AB 的斜率k=4130--=1, ∴直线AB 的倾斜角α=45°.故选B .7.C 【解析】直线的斜率3331-=-=k .倾斜角θ满足33tan -=θ 又πθ≤≤0 65πθ= 故选C 8.C【解析】∵倾斜角为45α=,∴直线的斜率为tan 451=,代入直线的点斜式得32y x -=+即50x y -+=,故选C9.B 【解析】直线斜率为20120k -==- 所以倾斜角为045 故选B 10.B 【解析】依题意可得,直线的斜率tan120k ==-11.D【解析】ax y 2a 0a 2x y 2a a 22a aa 1 a 2 D a+--=+++=+==-解:由直线的方程:得,此直线在轴和轴上的截距分别为和,由,得或,故选.12.D【解析】直线斜率为0tan1351;k ==-所以直线方程为1,10.y x x y =--++=即故选D13.D【解析】设直线倾斜角为(0).θθπ≤<直线013=++y x斜率为3=-所以0tan ,150.θθπθ=≤<∴=故选D 14.A【解析】此题考查过两点的直线的斜率的计算公式、直线的倾斜角和斜率的关系;设倾斜角 为[0,)απ∈,过两点的直线的斜率为tan k α===,所以倾斜角为0120,选A 15.C【解析】直线1=x 是与x 轴垂直的直线,它的倾斜角是︒90,选C16.C【解析】由图可知,1230,0,0k k k <>>,因为直线2l 比直线3l 陡,所以23k k >,从而可得231k k k >>,故选C17.A【解析】直线AB 斜率为0(3)3,404AB k --==-所以直线AB 方程为30(4),4y x -=-即 34120.x y --=故选A18.A【解析】将直线3y x =绕原点逆时针旋转90度后的直线1;3y x =-再向右平移1个单位,所得的直线方程为111(1).333y x x =--=-+故选A 19.B【解析】本题考查直线倾斜角的概念。
因为直线1x =-垂直x 轴,所以直线1x =-的倾斜角等于090.故选B20.A【解析】本题考查的是直线的斜率公式。